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On a characterization of the cosine

by M. KuczmA (Krakow)

The problem of a functional characterization of the trigonometric
functions has often been dealt with in the mathematical literature (cf. the
excellent bibliography in [1]). In most cases the addition and subtraction
formulae of the sine and cosine were used for this purpose. Equations
of this type involve both the sine and cosine, and thus they contain
two unknown functions. It should be noticed that a single equation can
characterize more than one function. E.g. H. E. Vaughan proved [7]
that if ¢(z) and y(z) satisfy

(1) p(@—y) =p(@)o(y)+y@)p(y)
and
(@) lim ¥ _ 4,

o B

then ¢(x) = cosz and y(z) =sinz. (1) and (2) present a nice system
of conditions for a characterization of the trigonometric functions. If, how-
ever, one wants to define the cosine alone, one may use the equation

(3) p(@+y) =@y — V1—gX2)V1—¢iy),

whose general continuous solution is ¢(z) = cospz (cf. [4], [1], p. T4).

Although equations (1) or (3) are (uite sufficient for a characteri-
zation of the cosine, it would be perhaps desirable (and at least interest-
ing) to characterize the latter by an equation in a single variable. Attempts
have already been made to do this, but since the problem is more diffi-
cult, the results are less satisfactory. Equations in a single variable are
essentially weaker (contain less information) than those in two variables
(like (1) or (3)) and therefore much stronger additional conditions are
needed to determine a single funetion among all their solutions.

A functional relation which has been used for a characterization
of the cosine is the duplication formula

(4) ¢ (2x) = 2¢%(@)—1,
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which may be obtained from (3) on setting ¥y = @. H. G. Forder [3] proved
that ¢(z) = cosx is the only even solution of (4) which is twice diffe-
rentiable at # = 0 and such that ¢(0) =1, ¢"'(0) = —1. This system
of conditions is somewhat inconvenient for didactic purposes. The con-
dition of twice differentiability of ¢ at 0 requires a knowledge of the
calculus. It would be nicer to be able to introduce the cosine before
introducing derivatives, with no stronger means than e.g. continuity.
Unfortunately, as R. Cooper showed in [2], the condition that ¢ be twice
differentiable cannot be weakened, even under the additional assumption
of convexity.

In this note we discuss the possibility of a characterization of the
cosine by an equation in a single variable and some more elementary
conditions. As we shall see, the equation

x

(5) o(3) = s@VETT oo,
where the function s(x) is defined by

6) s(z)= { +1 for xe{(4k—1)m,(4k+1)m),
-1 for xe{(4k+1)w,(4k+3)w), k=0, +1,42,...,

can better serve this aim than equation (4). We shall prove the following

THEOREM 1. ¢(z) = cosx ¢8 the only function defined for all x, con-
linuous in a neighbourhood of @ = 0, satisfying equalion (5) and periodic
with the period 2.

Proof. Let ¢(z) be a function fulfilling the conditions of the theo-
rem. Putting # = 0 in (5) we obtain the equation for ¢(0):

2¢*(0)—¢(0)—-1 =0,

which has the roots +1 and —3}. According to (6) we have ¢(0)>=0
and consequently ¢(0) =1. Since p(z) is periodic, we have

(7) @(2kn) =1 for integral k.

By (7) and (5) p(®) is determined on .the set of the numbers of the form
kx/2n. This set is dense in (— oo, o). Since @ () is continuous in a neigh-
bourhood R of # = 0, it is uniquely determined in the whole of R, Being
a solution of (5), ¢(x) satisfies also equation (4). The latter allows us
to extend ¢(r) uniquely from R onto the whole of (— oo, o0). On the
other hand, ¢(#) = cosw is known to fulfil all the conditions of the
theorem.

The above theorem yields a characterization of the cosine. It is,
however, far from being satisfactory. The main objection is that equa-
tion (5) is rather clumsy; in particular, it contains the function s(®),
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which is somewhat disagreeble. So the natural question arises, whether
the cosine cannot be defined with the aid of equation (4), periodicity
and continuity. This problem turns out to be very interesting in itself
and presents some unexpected difficulties.

DEFINITION. For a given number A > 0 let D(h) denote the set of
n n
those & € (—oo, co) for which the sequence u, = 2Tw - [275"] {(where [a]

denotes the greatest integer not exceeding a) is dense in the in-
terval (0,1).

As has been proved in [5] (cf. also [6], ch. 1), for every & > 0 the
set D(h) is not empty.

Now we shall prove the following

THEOREM 2. For given numbers h > 0, z,e D(h) and y,, there exisis

at most one function @(x) defined for all z and fulfilling the following con-
ditions:

(8) @(xz) satisfies equation (4),

(9) p(x) i8 continuous in a neighbourhood of x =0,
(10) @(x) is periodic with the period h,

(11) @ (%) = Y.

Proof. Let ¢(x) be a function fulfilling conditions (8) through (11).
According to (9), (10) and (11) ¢(x) is uniquely determined at all the
points of the sequence 2"x,— kh (n, k — positive integers). Since z, ¢ D(h),
the sequence 2"z,—kh is dense in (0, k). In view of condition (9) the
function ¢ () is uniquely determined in a right neighbourhood of # = 0.
Equation (4) yields a unique extension of ¢(z) onto (0, co) and condi-
tion (10) allows us to extend ¢(x) to the whole real axis.

Unfortunately, Theorem 2 cannot be used to characterize the cosine.
Firstly, we are not able to indicate an x, e D(2x). We only know that
one does exist. Without knowledge of an &, for which the sequence
2"z,— 2k~ is dense in (0, 2x) we cannot choose the cosine out of all the
functions fulfilling (8), (9) and

(12) @(z+27m) = p(2).
Further, if we even knew an z,e D(2=n), the condition
(13) @ () = cos,

would be useless from the practical point of view. Either #,, or cosz,
would have no simple, known value, definable without the notion of cos
and arccos.



56 M. Kuczma

We see that the problem of a characterization of the cosine by
a functional equation in a single variable remains open. But we would
also like to call the reader’s attention to the following interesting and
somewhat curious fact. We may ask for what initial values y, e (—1,1)>
there exists a function ¢(x) fulfilling conditions (8), (9), (12) and (11).
Evidently ¢(z) = cospx is the solution for y, = cospx, if p is an integer.
But if p is not an integer, then ¢ (2) = cospz does not fulfil condition (12).
We are not able to say whether for y, = cospz, with a non-integral p
there exists a ¢(z) satisfying (8), (9), (12) and (11), but we conjecture
that there does not. In the favour of this conjecture we shall prove the
following

THEOREM 3. If 1, m are positive integers, 1 odd, and x,e D(2%), then
there does mot exist a function ¢(x) defined for all x and fulfilling condsi-
tions (8), (9), (12) and

l
(14) p(2,) = cos o x, .

Proof. Suppose that a function ¢(z) satisfies (8), (9), (12) and (14).
Then ¢(x) fulfils also (8), (9), (14) and

p(@+2""" %) = p(x).
#, € D(2x) implies x, e D(2™"'x). Consequently, by Theorem 2,

(15) ¢ (x) = cos Z—Zmea; .

But this is impossible, since, in view of the fact that 1 is odd, function (15)
does not satisfy (12). Thus the system of conditions (8), (9), (12), (14)
has no solution at all.

So we have the following strange result:

THEEOREM 4. There exist two sets A, B, dense in {(—1,1) and such
that for y, e A there exists a (unique) function ¢(x) defined for all x and
fulfilling conditions (8), (9), (12) and (14) (where x, € D(2x)), whereas
for y, e B there does not.

Proof. The set A contains all the numbers y, = cospz, with inte-

l
gral p, and by Theorem 3 the set B contains all the numbers y, = cos 2—,,,‘”0’

where 1, m are positive integers, I odd. So both these sets are dense in
<-1,1).

Finally let us notice that a similar difficulty did not occur in the
case of equation (5). The reason that the latter is stronger than (4) lies
in this “clumsy, disagreeable’ function s(z).
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