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Abstract. We consider a class of complex functional equations that admit transcendental

meromorphic solutions with relatively few distinct poles. The solutions are characterized and it is

shown that they must also satisfy a functional equation of the certain simple form. The equations

that are considered contains e.g. some delay equations and the generalized Schröder equation as

special cases. The reasoning relies on the combination of Nevanlinna theory and algebraic field

theory.

1. Introduction

In this article a meromorphic function means meromorphic in the whole complex
plane. We shall assume that the reader is familiar to Nevanlinna theory, see e.g. [9].
Especially, a meromorphic function g is small relative to a meromorphic function f ,
if T (r, g) = o(T (r, f)), when r → ∞ outside of a set of finite linear measure. This
is denoted by writing T (r, g) = S(r, f). Moreover, we use the conventional notions
ρ(f), µ(f), λ(f) and λ(f) for the order, the lower order, the exponent of convergence
of zeros and the exponent of convergence of distinct zeros of a meromorphic function
f respectively.

In the collection [12] of research problems, Rubel asked what can be said about
the differential algebraic meromorphic solutions of the equation

(1.1) f(cz) =

∑n

j=0 aj(z)(f(z))j

∑m

j=0 bj(z)(f(z))j
,

where n,m ∈ N∪{0}, aj’s and bj’s are rational functions and c ∈ C\{0, 1}. Ishizaki
has considered the existence of meromorphic solutions of the linear equation

(1.2) f(cz) = a(z)f(z) + b(z),

where a and b are meromorphic functions and c is a nonzero complex constant such
that |c| 6= 1.

Theorem 1.1. (Ishizaki, [7]) Suppose that a(z) has neither a zero nor a pole
at the origin, b(z) does not have a pole at the origin, and suppose that a(0) 6= cj,
j = 0, 1, 2, . . .. Then, the functional equation (1.2) has a meromorphic solution.
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Ishizaki also partially answered Rubel’s question by the following

Theorem 1.2. (Ishizaki, [7]) Suppose that a(z) and b(z) are rational func-
tions in (1.2). Then all transcendental meromorphic solutions of (1.2) are hyper-
transcendental i.e. do not satisfy any nontrivial algebraic differential equation with
coefficients that are rational functions.

We shall consider the question by Rubel assuming that there exist a mero-
morphic solution of (1.1) that has finitely many poles and the denominator of the
right-hand side of (1.1) is not trivial i.e. m ≥ 1. Then we shall conclude that the
solution satisfies the first order linear differential equation with rational coefficients.

However, we shall also deal with more general functional equations than (1.1),
and the conclusion concerning Rubel’s question follows from those results. To begin
with, we recall the famous Tumura–Clunie theorem.

Theorem 1.3. (Tumura and Clunie, [1], [14]) If f is a nonconstant entire func-
tion, φ := beg = fn + an−1f

n−1 + · · · + a0, b, a0, a1, . . . , an−1 are small meromorphic
functions relative to f and g is an entire function, then φ = (f + an−1/n)n.

There exist a number of generalizations of this theorem, in particular, Weis-
senborn proved the following

Theorem 1.4. (Weissenborn, [15]) Let f be a meromorphic function and let φ
be given by φ = fn +an−1f

n−1 + · · ·+a0, where a0, a1, . . . , an−1 are small meromor-
phic functions relative to f . Then either

(1.3) φ =
(

f +
an−1

n

)n

or

(1.4) T (r, f) ≤ N

(

r,
1

φ

)

+ N(r, f) + S(r, f).

We shall extend Tumura–Clunie theorem by using Weissenborn’s theorem to
concern rational functions in f with small coefficients, see Theorem 3.1 below. As an
application, we shall prove reduction theorems for functional equations that admit
meromorphic solutions with relatively few distinct poles only, see Theorems 3.4, 3.5
and 3.6. These kind of results improves in some sense the corresponding results in
[4], [5], [10] and [13].

A typical example of a reduction theorem considered in the papers mentioned
above is

Theorem 1.5. (Gundersen et al., [4]) Let f be a transcendental meromorphic
solution of the equation (1.1), where |c| > 1, bm(z) = 1 and where aj’s and bj’s are
meromorphic functions such that

max
k,j

{T (r, aj), T (r, bk)} = S(r, f).
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If N(r, f) + N(r, 1/f) = S(r, f), then the equation (1.1) is either of the form

(1.5) f(cz) = an(z)(f(z))n or f(cz) =
a0(z)

(f(z))m
.

Another example is

Theorem 1.6. (Laine et al., [10]) Assume c1, c2, . . . , cn ∈ C \ {0}, f(z) is a
transcendental meromorphic solution to the delay equation

∑

{J}
αJ(z)

(

∏

j∈J

f(z + cj)

)

= R(z, f(z)) =
P (z, f(z))

Q(z, f(z))
,

where {J} denotes all subsets of the set {1, 2, . . . , n}, P and Q are relatively prime
polynomials in f over the field of rational functions, the coefficients αJ are rational
functions and where q := degf Q > 0. Then, if f(z) has at most finitely many poles,
it must be of the form

f(z) = r(z)eg(z) + s(z),

where r(z) and s(z) are rational functions and g(z) is a transcendental entire func-
tion satisfying a difference equation of the form either

∑

j∈J

g(z + cj) = (j0 − q)g(z) + d

or
∑

j∈J

g(z + cj) =
∑

j∈I

g(z + cj) + d.

Here J and I are nonempty disjoint subsets of {1, 2, . . . , n}, j0 ∈ {0, 1, . . . , p},
p := degf P , and d ∈ C.

This paper is organized as follows. The section 2 contains growth results that
will be needed later in this paper. The reduction theorems are the main topic in the
section 3 and they play the main role in this paper. The section 4 contains results of
existence and value distribution related to the generalized Schröder equation (1.1).
Also the question by Rubel is discussed in section 4.

2. Growth of meromorphic solutions

The proof of the following lemma is included in the proof of Lemma 4 in [2].

Lemma 2.1. Let f be a transcendental meromorphic function and p(z) =
akz

k + ak−1z
k−1 + · · · + a0 be a complex polynomial of degree k > 0. For given

0 < δ < |ak|, let
{

λ = |ak| + δ

µ = |ak| − δ.

Then, for given ε > 0 and for r large enough,

(1 − ε)T (µrk, f) ≤ T (r, f ◦ p) ≤ (1 + ε)T (λrk, f),

N(µrk, f) + O(log r) ≤ N(r, f ◦ p) ≤ N(λrk, f) + O(log r).
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The next lemma describes a well known method to prove estimate for the lower
order of a meromorphic function.

Lemma 2.2. Let φ : (r0,∞) → (1,∞), where r0 ≥ 1, be a monotone increasing
function. If for some real constant α > 1 there exist a real number K > 1 such that
φ(αr) ≥ Kφ(r), then

(2.1) lim inf
r→∞

log φ(r)

log r
≥

log K

log α
.

Proof. Inductively, for any m ∈ N,

φ(αmr) ≥ Kmφ(r).

Let r ∈ [r0, αr0) and denote s = αmr. Then

m =
log s − log r

log α
>

log s − log αr0

log α

and we obtain

log φ(s) ≥ m log K + log φ(r0) >
log K

log α
(log s − log αr0).

Dividing the above inequality by log s and letting m → ∞ for each choice of r ∈
[r0, αr0) i.e. s → ∞, we see that

lim inf
s→∞

log φ(s)

log s
≥

log K

log α
. ¤

We shall also need two lemmas that are generalizations of the results due Gold-
stein and Silvennoinen, see Theorem 10 in [2] and Theorems 2.1.2 and 2.1.5. in [13].
To prove the lemmas we need the following important result by Valiron and Mo-
hon’ko.

Theorem 2.3. (Valiron–Mohon’ko, [9, Theorem 2.2.5 and Corollary 2.2.7]) Let
f be a meromorphic function. Then for all irreducible rational functions in f ,

(2.2) R(z, f(z)) =

∑n

j=0 aj(z)(f(z))j

∑m

j=0 bj(z)(f(z))j
,

with meromorphic coefficients aj(z), bj(z), the characteristic function of R(z, f(z))
satisfies

(2.3) T (r, R(z, f(z))) = dT (r, f) + O(Ψ(r)), r → ∞,

where d = max{n,m} and

(2.4) Ψ(r) = max
k,j

{T (r, ak), T (r, bj)}.

Lemma 2.4. Suppose f is a transcendental meromorphic function. Let Q(z, f),
R(z, f) be rational functions in f with small meromorphic coefficients relative to f
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such that 0 < q := degf Q ≤ d := degf R and p(z) = pkz
k+pk−1z

k−1+· · ·+p0 ∈ C[z]
of degree k > 1. If f is a solution of the functional equation

(2.5) Q(z, f(p(z))) = R(z, f(z)),

then d ≥ qk, and for any ε, 0 < ε < 1, there exist positive real constants K1 and
K2 such that

(2.6) K1(log r)α−ε ≤ T (r, f) ≤ K2(log r)α+ε, α =
log d − log q

log k
,

when r is large enough.

Proof. Let ε and δ be arbitrarily small positive real numbers. The use of
Valiron–Mohon’ko Theorem, see Theorem 2.3, and Lemma 2.1 yields

q(1 − ε)T (µrk, f) ≤ qT (r, f ◦ p) = dT (r, f) + S(r, f) ≤ d(1 + ε)T (r, f),

where µ = |pk| − δ and r is large enough outside of a set of finite linear measure.
As a consequence,

T (µrk, f) ≤
d(1 + ε)

q(1 − ε)
T (r, f)

outside of a set of finite linear measure. By the standard reasoning, see Lemma
1.1.1 in [9], the estimate

T (µrk, f) ≤
d(1 + ε)

q(1 − ε)
T (σr, f)

holds for any real number σ > 1 when r is large enough. Denoting t = σr we obtain

T (µσ−ktk, f) ≤
d(1 + ε)

q(1 − ε)
T (t, f).

By Lemma 3 in [3],

(2.7) T (t, f) = O((log t)α1), t → ∞,

where

(2.8) α1 =
log(d/q) + log((1 + ε)/(1 − ε))

log k
.

Since f is a transcendental function by assumption, letting ε be small enough in the
equations (2.7) and (2.8) we see that d ≥ qk.

To prove the first inequality in (2.6) we use again Valiron–Mohon’ko Theorem
and Lemma 2.1 again to obtain

(2.9) d(1 − ε)T (r, f) ≤ dT (r, f) + S(r, f) = qT (r, f ◦ p) ≤ q(1 + ε)T (λrk, f)

where λ = |pk| + δ and r is large enough outside of a set of finite linear measure.
For arbitrary σ > 1, we deduce by using Lemma 1.1.1 in [9] that

(2.10) T (λ(σr)k, f) ≥
d(1 − ε)

q(1 + ε)
T (r, f)
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holds for all r large enough. Note that ε > 0 can be chosen so that
d(1 − ε)/(q(1 + ε)) > 1, since d ≥ kq > q. By Lemma 3 in [3] again, there ex-
ist a positive constant K such that

(2.11) T (r, f) ≥ K(log r)α2 , where α2 =
log(d/q) + log((1 − ε)/(1 + ε))

log k
,

when r is large enough. ¤

Lemma 2.5. Suppose f is a transcendental meromorphic solution of the equa-
tion (2.5), where p(z) = az + b, a, b ∈ C, a 6= 0 and |a| 6= 1. Then

(2.12) µ(f) = ρ(f) =
log d − log q

log |a|
.

Proof. The proof follows closely the proof of Theorem 3.4 in [4]. The use of
Valiron–Mohon’ko theorem on each side of (2.5) gives

(2.13) dT (r, f) = qT (r, f ◦ p) + S(r, f).

Assume first |a| < 1. Let ε > 0 and δ > 0 be such that λ := |a| + δ < 1. Using
Lemma 2.1 we see that

(2.14) T (r, f) ≤
q

d

1 + ε

1 − ε
T (λr, f),

where r is large enough outside of a possible set of finite linear measure. By the
equation (2.14) it is obvious that q ≥ d. Applying Lemma 3.1 in [4] to the inequal-
ity (2.14) gives

(2.15) ρ(f) ≤
log(q/d) + log(1 + ε) − log(1 − ε)

− log λ
.

Letting δ → 0 and ε → 0 we obtain

(2.16) ρ(f) ≤
log d − log q

log |a|
.

To prove µ(f) ≥ log d−log q

log |a| , we assume q > d, since the case q = d is trivial by

the inequality (2.16) and the fact that 0 ≤ µ(f) ≤ ρ(f). Let now ε > 0 be such
that q(1− ε)/(d(1+ ε)) > 1 and δ > 0 be such that ν = |a|− δ > 0. Applying again
Lemma 2.1 to the equation (2.13) we get

dT (r, f) ≥ q
1 − ε

1 + ε
T (νr, f),

where r is large enough outside of a possible set of finite linear measure. Using
again the standard reasoning to get rid of the exceptional set, we obtain that for
any fixed σ > 1 there exist R > 0 such that

T
(σ

ν
r, f

)

≥
q(1 − ε)

d(1 + ε)
T (r, f), r ≥ R.
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By Lemma 2.2,

µ(f) ≥
log

(

q(1−ε)
d(1+ε)

)

log σ
ν

=
log(q/d) + log(1 − ε) − log(1 + ε)

log σ − log(|a| − δ)
.

Letting σ → 1, ε → 0 and δ → 0 we obtain

(2.17) µ(f) ≥
log d − log q

log |a|
.

Assume next |a| > 1. Let ε > 0 and δ > 0 be such that |a| − δ > 1. From the
equation (2.5) we get

(1 + ε)d

(1 − ε)q
T (γr, f) ≥ T (r, f),

where γ = 1
|a|−δ

< 1 and r is large enough outside of a set of finite linear measure.

By this inequality it is obvious that we must have d ≥ q. Again, the use of Lemma
3.1 in [4] gives

ρ(f) ≤
log d

q
+ log(1 + ε) − log(1 − ε)

− log γ
→

log d − log q

log |a|
,

when we let ε → 0 and δ → 0.
To prove the estimate (2.17) in the case |a| > 1, we note that we have the

inequality (2.14) with λ = |a| + δ > 1. Getting rid of the exceptional set again, we
get for any σ > 1 such R > 0 that

(1 − ε)d

(1 + ε)q
T (r, f) ≤ T (σλr, f), r ≥ R.

Again, we may assume d > q and thus there exist ε > 0 such that (1−ε)d > (1+ε)q
and the use of Lemma 2.2 gives

µ(f) ≥
log d − log q + log(1 − ε) − log(1 + ε)

log σ + log(|a| + δ)
.

We let δ → 0, ε → 0 and σ → 1 to obtain the estimate (2.17). ¤

3. Distribution of poles

To express the bounds for the growth of the integrated counting function and
the characteristic function of a meromorphic function we shall use the notion of a
comparison function ∆(r), that is a positive monotone increasing real function on
(1,∞). We shall denote

(3.1) L∆ = {h meromorphic |T (r, h) = O(∆(r)), r → ∞}.

When L∆ is equipped with the pointwise multiplication and summation it shall
become a field. For example, if ∆(r) = log r, then L∆ = C(z) i.e. the field of
complex rational functions.

We begin by a version of the famous Tumura–Clunie theorem, see Theorem 1.3.
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Theorem 3.1. Let f and g be transcendental meromorphic functions such that

(3.2) N(r, g) + N(r, f) = O(∆(r)) = S(r, f), r → ∞.

Let

A(z, f) := fn + an−1f
n−1 + · · · + a1f + a0 and

B(z, f) := fm + bm−1f
m−1 + · · · + b1f + b0,

where m,n are nonnegative integers and the coefficients aj and bk are meromorphic
functions such that

(3.3) Ψ(r) := max
j,k

{T (r, aj), T (r, bk)} = S(r, f).

If A(z, f) and B(z, f) are relatively prime as polynomials in f over the field LΨ

and m ≥ 1, then the functional equation

(3.4) g =
A(z, f)

B(z, f)

must reduce to the form

(3.5) g =
A(z, f)

(f − s)m
, s = −

bm−1

m
.

Furthermore, N(r, f − s) + N(r, 1/(f − s)) = O(∆(r)) + O(Ψ(r)), when r → ∞.

To prove this theorem, we need the following variant of Lemma 2.3 in [10]. The
proof can be worked out just by a small modification of the proof of the original
lemma.

Lemma 3.2. Let a0, a1, . . . , an, b0, b1, . . . , bm, f be meromorphic functions and
denote Ψ(r) := maxj,k{T (r, aj), T (r, bk)}. Let also

A(z, f) := anfn + an−1f
n−1 + · · · + a0 and

B(z, f) := bmfm + bm−1f
m−1 + · · · + b0.

If A and B have no common factor of positive degree in f over the field LΨ, then

(3.6) N(r, 1/B(z, f)) ≤ N(r, A(z, f)/B(z, f)) + O(Ψ(r)), r → ∞.

Proof of Theorem 3.1. Using Lemma 3.2 and the assumptions, we obtain

N(r, 1/B(z, f)) ≤ N(r, A(z, f)/B(z, f)) + O(Ψ(r))

= N(r, g) + O(Ψ(r))

= O(∆(r)) + O(Ψ(r)) = S(r, f), r → ∞.

(3.7)

If B(z, f) 6= (f + bm−1

m
)m, then the application of Theorem 1.4, the estimate (3.7)

and the assumptions yields

(3.8) T (r, f) ≤ N(r, 1/B(z, f)) + N(r, f) + S(r, f) = S(r, f),
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that is a contradiction. Hence, we must have B(z, f) = (f + bm−1

m
)m. Denoting

s := − bm−1

m
, using the assumptions and the estimate (3.7) we obtain

N(r, f − s) + N(r, 1/(f − s)) = O(∆(r)) + O(Ψ(r)), r → ∞. ¤

In the sequel we shall consider polynomials

A(z, y) := yn + an−1y
n−1 + · · · + a1y + a0,

B(z, y) := ym + bm−1y
m−1 + · · · + b1y + b0 and

C(z, y) := cqy
q + cq−1y

q−1 + · · · + c1y + c0,

where n,m and q are nonnegative integers and the coefficients ai, bj and ck are
rational functions. We also assume A(z, y) and B(z, y) are relatively prime as
polynomials in y over the field of rational functions. We shall denote d := max{m,n}
and consider the functional equation

(3.9) C(z, f(p(z))) =
A(z, f(z))

B(z, f(z))
,

where p(z) is a complex polynomial to be specified later. We shall investigate
the equation (3.9) in the case when a transcendental meromorphic solution f has
relatively few distinct poles compared to its growth. We shall use a result that
is of algebraic nature and so let us take a short look at differential algebra before
proceeding.

As we noted earlier L∆ is a field. In fact, for an arbitrary function g ∈ L∆,
we have g′ ∈ L∆. That means that L∆ is a differential field. Another important
property of L∆ is that it is relatively algebraically closed subfield of the field of
meromorphic functions, i.e. if a meromorphic function satisfies an algebraic equation
over the field L∆, it must be an element of it. For the proof of this fact, see [6].

For meromorphic functions g1, g2, . . . , gn that are algebraically independent over
the field L∆, the notion L∆(g1, g2, . . . , gn) means all rational functions in g1, g2, . . . , gn

with coefficients lying in the field L∆. Note that L∆(g1, g2, . . . , gn) is a field and if
g′
1, g

′
2, . . . , g

′
n ∈ L∆(g1, g2, . . . , gn), it becomes a differential field.

Now we are ready to state the algebraic result mentioned above. Originally it
is due Kolchin, but the proof of a more general setting can also be found in [11,
Lemma 4.6].

Lemma 3.3. (Kolchin, [8]) Let a1, a2, . . . , an ∈ L∆ and suppose that meromor-
phic functions A1, A2, . . . , An are algebraically independent over the field L∆ and
that they form a solution of the system of differential equations

(3.10) y′ = aiy, i = 1, 2, . . . , n.

If a nontrivial meromorphic function f is such that f ′/f ∈ L∆ and f is algebraic
over the differential field L∆(A1, A2, . . . , An), then the minimal polynomial of f
over the field L∆(A1, A2, . . . , An) is of the form

(3.11) yK − pAq1

1 Aq2

2 · · ·Aqn

n ,



160 Jarkko Rieppo

where K ∈ N, p ∈ L∆ and qk ∈ Z for k = 1, 2, . . . , n.

First we look at the case when p is a linear polynomial in (3.9).

Theorem 3.4. Suppose that in the equation (3.9) we have m > 0, d 6= q, p(z) =
az + b, a, b ∈ C, a 6= 0 and |a| 6= 1. Assume f is a transcendental meromorphic
function such that

(3.12) λ(1/f) <
log d − log q

log |a|
=: α.

If f is a solution of the functional equation (3.9), then f satisfies the functional
equation

(3.13) c(z)(f(p(z)) − s(p(z)))L =
1

(f(z) − s(z))K
, s = −

bm−1

m
∈ C(z),

where K and L are positive integers such that m = rmK, n = rnK and q = rmL,
where rm, rn are nonnegative integers satisfying rn ≤ rm, and c is a rational function.
Furthermore,

(3.14) max{λ(f − s), λ(1/(f − s))} < α.

Proof. By assumption, there exists a positive real constant β < α such that
N(r, f) = O(rβ), when r → ∞. Let ε > 0 and λ := |a| + ε. Taking advantage of
Lemma 2.1, we obtain

(3.15) N(r, f ◦ p) ≤ N(λr, f) + O(log r) ≤ O((λr)β) + O(log r) = O(rβ),

when r → ∞. Let σ > 0 be such that β + σ < α. Lemma 2.5 yields then

(3.16)
rβ

T (r, f)
≤

rβ

rα−σ
= rβ+σ−α → 0, r → ∞.

Combining (3.15) and (3.16) gives

N(r, C(z, f ◦ p)) + N(r, f) ≤ N(r, f ◦ p) + O(log r) + O(rβ)

≤ O(rβ) = S(r, f),

when r → ∞. Now we have shown that the assumption (3.2) of Theorem 3.1 holds
and thus we may conclude that the equation (3.9) must be of the form

(3.17) C(z, f ◦ p) =
A(z, f)

(f − s)m
, s = −

bm−1

m
,

and

(3.18) N(r, f − s) + N(r, 1/(f − s)) = O(rβ), r → ∞.
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Denoting h := f − s and using the lemma of the logarithmic derivative (note
that ρ(f) = α < ∞ by Lemma 2.5) we obtain

T (r, h′/h) = T (r, (f − s)′/(f − s))

≤ N(r, f − s) + N(r, 1/(f − s)) + m(r, (f − s)′/(f − s))

= O(rβ) + O(log r), r → ∞.

This means that h′/h is an element of the differential field

L := {g meromorphic |T (r, g) = O(rβ)}.

Using (3.18) we obtain similarly as in (3.15) the estimates

N(r, h ◦ p) ≤ O(rβ), r → ∞

and

N(r,
1

h ◦ p
) ≤ O(rβ), r → ∞.

By using the estimates above and the lemma of a logarithmic derivative gives

T (r,D(h ◦ p)/h ◦ p) = m(r,D(h ◦ p)/h ◦ p) + N(r, 1/h ◦ p) + N(r, h ◦ p)

= O(rβ), r → ∞.

Thus we have shown that the logarithmic derivative of h ◦ p is an element of the
field L .

Next we prove that f must satisfy the equation of the form (3.13). Since h
satisfies

(3.19) C(z, (h + s) ◦ p) =
A(z, h + s)

hm

we see that h is algebraic over the differential field L (h◦p). It is easy to see that the
polynomials ym and A∗(z, y) := A(z, y + s) cannot have a common factor in L [y]
that is of positive degree in y. Indeed, if they had, y would divide A∗(z, y), and
there would exist M(z, y) ∈ L [y] such that A∗(z, y) = M(z, y)y. As a consequence,
M(z, y) ∈ C(z)[y] and A(z, y) = A∗(z, y − s) = M(z, y − s)(y − s), which would
mean that A(z, y) and B(z, y) had a common factor y − s, that is excluded by the
assumptions. We shall write below

A(z, y + s) = A∗(z, y) = yn + a∗
n−1y

n−1 + · · · + a∗
0 and

C(z, y + s ◦ p) = C∗(z, y) = c∗qy
q + c∗q−1y

q−1 + · · · + c∗0.
(3.20)

where a∗
0, a

∗
1, . . . , a

∗
n−1, c

∗
0, c

∗
1, . . . , c

∗
q ∈ C(z).

The use of Lemma 3.3 states that the minimal polynomial of h over the field
L (h ◦ p) is of the form

(3.21) yK − r(h ◦ p)L, r ∈ L , L ∈ Z \ {0}, K ∈ N.

It is easy to see that the minimal polynomial of h ◦ p over the field L (h) is either
of the form y|L| − hK/r or y|L| − r/hK . Since h satisfies the equation (3.19) over
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the field L (h ◦ p), we must have d ≥ K. By the same equation, h ◦ p satisfies an
equation of degree q over the field L (h), and thus q ≥ |L|.

By the division algorithm, there exist nonnegative integers rm, rn, sm and sn such
that max{sm, sn} < K, m = rmK + sm and n = rnK + sn. Since hK = r(h ◦ p)L,
we may write the equation (3.19) in the form

(3.22) C∗(z, h ◦ p)hsmrrm(h ◦ p)Lrm =
K−1
∑

j=0

hj

(

rn
∑

k=0

a∗
kK+jr

k(h ◦ p)Lk

)

,

where a∗
k = 0 whenever k > n and a∗

n = 1. The function h cannot satisfy a nontrivial
algebraic equation over the field L (h ◦ p) of lower degree than K and so

(3.23) C∗(z, h ◦ p)rrm(h ◦ p)Lrm =
rn

∑

k=0

a∗
kK+sm

rk(h ◦ p)Lk

and

(3.24)
rn

∑

k=0

a∗
kK+jr

k(h ◦ p)Lk = 0, j = 0, 1, . . . , K − 1, j 6= sm.

Since h ◦ p is transcendental over the field L , the equation (3.24) yields

(3.25) a∗
kK+j = 0, k = 0, 1, . . . , rn, j = 0, 1, . . . , K − 1, j 6= sm.

Since a∗
0 = A(z, s) 6= 0, a∗

0 must appear in the equation (3.23) and thus we must
have kK + sm = 0 for some k ∈ {0, 1, 2, . . . , rn} which is possible only if k = 0
and sm = 0. By the same reason, L < 0, since otherwise the left-hand side of
(3.23) would be divisible by a monomial as a polynomial over the field L , but
it is impossible since the right-hand side of (3.23) is not divisible by a monomial.
Further, a∗

rnK+sn
= an = 1 and thus rnK + sn = rnK + sm and so sn = sm = 0.

Rewriting (3.23) in the form

(3.26) C∗(z, h ◦ p)rrm(h ◦ p)|L|(rn−rm) =
rn

∑

k=0

a∗
kKrk(h ◦ p)(rn−k)|L|,

we see that rn ≤ rm, since the right-hand side of the equation above is not divisible
by a monomial as a polynomial over L . Multiplying the both sides of the equation
above by (h ◦ p)|L|(rm−rn) and comparing the degrees and the leading terms, we see
that q = |L|rm and rrm = a∗

0/cq. Since r is meromorphic, it must be a rational
function. ¤

In the case when p is not linear, we have the following

Theorem 3.5. Suppose p(z) is a nonconstant complex polynomial of degree
k > 1 and d > kq. Assume f is a transcendental meromorphic solution of the
functional equation (3.9), where m ≥ 1. If β is a real number such that 1 ≤ β <
α := log d−log q

log k
, then

(3.27) N(r, f) 6= O((log r)β), r → ∞.
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Proof. Assume there exist a real number β, 1 ≤ β < α, such that N(r, f) =
O((log r)β), when r → ∞. Let ε > 0 and λ := |ak| + ε, where ak is the leading
coefficient of the polynomial p. Using Lemma 2.1 and the assumptions, we obtain

N(r, f ◦ p) ≤ N(λrk, f) + O(log r) ≤ O((log λ + k log r)β) + O(log r)

≤ O((log r)β), r → ∞.
(3.28)

Let σ > 0 be such that β + σ < α. By Lemma 2.4 there exist a real number K > 0
for sufficiently large values of r such that

(3.29)
(log r)β

T (r, f)
≤

(log r)β

K(log r)α−σ
= K−1(log r)β+σ−α → 0,

when we let r → ∞. Combining (3.28) and (3.29) gives

N(r, C(z, f ◦ p)) + N(r, f) ≤ N(r, f ◦ p) + O(log r) + O((log r))β

≤ O((log r)β) = S(r, f), r → ∞.

Thus, the assumption (3.2) of Theorem 3.1 holds and we may conclude that the
equation (3.9) must be of the form

(3.30) C(z, f ◦ p) =
A(z, f)

(f − s)m
, where s = −

bm−1

m
,

and

(3.31) N(r, f − s) + N(r, 1/(f − s)) = O((log r)β), r → ∞.

Denoting h := f − s and using the lemma of the logarithmic derivative (note
that ρ(f) = 0 by Lemma 2.4) we obtain

T (r, h′/h) = T (r, (f − s)′/(f − s))

≤ N(r, f − s) + N(r, 1/(f − s)) + m(r, (f − s)′/(f − s))

= O((log r)β) + O(log r), r → ∞.

This means that h′/h is an element of the differential field

L := {g meromorphic |T (r, g) = O((log r)β)}.

Using (3.31) we obtain similarly as in (3.28) the estimates

N(r, h ◦ p) + N(r,
1

h ◦ p
) ≤ O((log r)β), r → ∞.

By using the estimates above and the lemma of the logarithmic derivative gives

T (r,D(h ◦ p)/h ◦ p) = m(r,D(h ◦ p)/h ◦ p) + N(r, 1/h ◦ p) + N(r, h ◦ p)

= O((log r)β), r → ∞.

Thus we have shown that the logarithmic derivative of h ◦ p is an element of the
field L .
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Again, we may apply Lemma 3.3 to show that h satisfies the equation of the
form

(3.32) hK = r(h ◦ p)L, r ∈ L , L ∈ Z, K ∈ N.

Now we may proceed similarly as in the proof of Theorem 3.4 starting from the
equation (3.21) to the end of that proof, where we concluded that r must actually
be a rational function.

Denoting g = h′/h and taking the logarithmic derivatives on both sides of the
equation (3.32), we see that g satisfies

(3.33) p′(z) · Lg(p(z)) = Kg(z) −
r′(z)

r(z)
.

The meromorphic solution of this equation must be a rational function, see [13,
Lemma 5.1.1], and thus by Hadamard factorization, h = S exp(P ), where S is a
rational function and P is a polynomial. But ρ(f) = ρ(h) = 0 by Lemma 2.4, and
so P must be a constant and f rational, that is a contradiction. ¤

To give an idea of generalizing Theorem 3.4, we consider the case when the so-
lution has finitely many poles only but the functional equation is more complicated.

Theorem 3.6. Let p1, p2, . . . , pr be distinct nontrivial complex polynomials
and C(z, y1, . . . , yr) a polynomial in variables y1, y2, . . . , yr with rational coefficients.
Assume f is a transcendental meromorphic function of finite order of growth such
that it has only finitely many poles and the functions f(p1), f(p2), . . . , f(pr) are
algebraically independent over the field C(z). If f satisfies the functional equation

(3.34) C(z, f(p1(z)), f(p2(z)), . . . , f(pr(z))) =
A(z, f(z))

B(z, f(z))
,

where m = degf B ≥ 1, then f must satisfy the functional equation

(3.35) c(z)
r

∏

j=1

(f(pj(z)) − s(pj(z)))qj =
1

(f(z) − s(z))K
, s = −

bm−1

m
∈ C(z),

where c ∈ C(z), K ∈ N, q1, . . . , qr ∈ N ∪ {0}, and the function f − s has at most
finitely many zeros and poles.

Proof. First we apply Theorem 3.1 to conclude that B(z, f) = (f − s)m, where
s = −bm−1/m, and h := f − s has at most finitely many zeros and poles. By
assumption, h is of finite order, and so h′/h is a rational function. Consequently,
the functions

(3.36) h(p1), h(p2), . . . , h(pr)

have at most finitely many zeros and poles, and they are of finite order of growth.
This means that the logarithmic derivatives of the functions (3.36) are rational
functions. Moreover, h satisfies

(3.37) C(z, h(p1) + s(p1), h(p2) + s(p2), . . . , h(pr) + s(pr)) =
A(z, h + s)

hm
,
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which means that h is algebraic over the differential field

L := C(z)(h(p1), h(p2), . . . , h(pr)).

Applying Lemma 3.3, we deduce that the minimal polynomial of h over L is of the
form

(3.38) yK − c(z)
r

∏

j=1

h(pj)
qj , c ∈ C(z), qj ∈ Z, K ∈ N.

Obviously, the left-hand side of the equation (3.37) is transcendental over C(z).
The irreducibility of the right-hand side of the equation (3.37) can be seen in the
same manner as in the proof of Theorem 3.5 and we shall use the notion A∗(z, y) =
A(z, y + s) as in (3.20) and

C∗(z, y1, y2, . . . , yr) = C(z, y1 + s ◦ p1, . . . , yr + s ◦ pr).

There exist nonnegative integers rm, rn, sm, sn such that max{sm, sn} < K and

m = rmK + sm and n = rnK + sn.

Since h is a root of the polynomial (3.38), we may write the equation (3.37) in the
form

C∗(z, h(p1), h(p2), . . . , h(pr))h
smcrm ((h(p1))

q1 · · · (h(pr))
qr)rm

=
K−1
∑

j=0

hj

(

rn
∑

k=0

a∗
Kk+jc

k ((h(p1))
q1 · · · (h(pr))

qr)k

)

.
(3.39)

Since h cannot satisfy a nontrivial algebraic equation over the field
C(z, h ◦ p1, . . . , h ◦ pr) of lower degree than K, we must have

C∗(z, h(p1), h(p2), . . . , h(pr))c
rm ((h(p1))

q1 · · · (h(pr))
qr)rm

=
rn

∑

k=0

a∗
Kk+sm

ck ((h(p1))
q1 · · · (h(pr))

qr)k(3.40)

and

(3.41)
rn

∑

k=0

a∗
Kk+jc

k ((h(p1))
q1 · · · (h(pr))

qr)k = 0, j = 0, 1, . . . , K − 1, j 6= sm.

Since the functions h(p1), h(p2), . . . , h(pr) are algebraically independent over the
field of rational functions, the equations (3.40) and (3.41) must be polynomial iden-
tities in h(p1), h(p2), . . . , h(pr). Hence, a∗

Kk+j = 0, j = 0, 1, . . . , K − 1, j 6= sm and
k = 0, 1, . . . , rn. Since A∗(z, y) cannot be divisible by y, the coefficient a∗

0 6= 0,
and thus sm = 0 and the right-hand side of (3.40) is not divisible by any of the
functions h(p1), h(p2), . . . , h(pr). Thus all powers q1, q2, . . . , qr must be nonpositive
integers. ¤
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Example 3.7. The equation

(3.42) (f(p(z)))2 =
1

f(z)

admits the solution f(z) = exp(z2) when p(z) = i√
2
z. If p(z) = z + z0, where

exp(z0) = −1/2, it admits the solution f(z) = exp(exp(z)). The latter solution
shows that the assumption of the solution being of finite order is not necessary in
Theorem 3.6.

4. The generalized Schröder equation

Theorem 3.6 gives a partial answer to a question posed by Rubel ([12]) con-
cerning the generalized Schröder equation (1.1), where the coefficients are rational
functions. It is known that meromorphic solutions of (1.1) are of finite order, see
Lemma 2.5 (proved also in [4].) Theorem 3.6 shows that all meromorphic solu-
tions with at most finitely many poles (e.g. entire solutions) satisfy the first or-
der linear differential equation with rational coefficients since they are of the form
f(z) = r(z) exp(g(z)) + s(z), where r and s are rational functions and g is a poly-
nomial.

We give a converse result to Theorem 3.4 in the case when b = 0.

Theorem 4.1. Let a be a nonzero complex constant such that |a| 6= 1 and let
q and m be distinct positive integers. Suppose f is a transcendental meromorphic
solution of the equation

(4.1) c(z)(f(az))q =
1

(f(z))m
,

where c is a rational function. Then either

(i) f(z) = r(z) exp(αzρ), where r is a rational function, α ∈ C \ {0} and
ρ = ρ(f) = log m−log q

log |a| , or

(ii) max{λ(f), λ(1/f)} = 0 and λ(f) = λ(1/f) = ρ(f) = log m−log q

log |a| . Further-

more, if |a| > 1, then m is divisible by q and otherwise q is divisible by
m.

Proof. Note first that ρ := ρ(f) = log m−log q

log |a| > 0 by Lemma 2.5 and the

assumption m 6= q. Assume first f has at most finitely many zeros and poles. Then,
by Hadamard factorization, there exist a rational function r(z) and a polynomial
Λ(z) =

∑ρ

j=1 λjz
j, λρ 6= 0, such that f(z) = r(z) exp(Λ(z)). Substituting this

representation of f into the equation (4.1), we see that

q

ρ
∑

j=1

λj(az)j + m

ρ
∑

j=1

λjz
j = 0,

and so

λj(qa
j + m) = 0, j = 1, . . . , ρ.
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Since λρ 6= 0, we have aρ = −m/q. If ak = −m/q for some k ∈ {1, 2, . . . , ρ − 1},
then aρ−k = 1, that is excluded by the assumption |a| 6= 1. Thus λj = 0 for
k = 1, 2, . . . , ρ − 1.

Assume next f has infinitely many zeros. First, we look at the case when |a| > 1.
Choose a finite zero z0 of f that is of the smallest modulus such that |z0| > R, where
R := max{1, |zk| | c(zk) = 0 or c(zk) = ∞}.

Denote by Z the number of zeros and by P the number of poles of f inside the
disk about zero of radius R. Further, denote the multiplicity of the zero z0 by µ.
By iterating the equation (4.1), we see that f has a zero sequence of the form

(4.2) a2jz0, j = 0, 1, 2, . . . ,

and corresponding multiplicities are given by

(4.3) t2jµ, t = m/q, j = 0, 1, 2, . . . .

Similarly, there exist a pole sequence of f which is of the form

(4.4) a2j+1z0, j = 0, 1, 2, . . .

with corresponding multiplicities

(4.5) t2j+1µ, j = 0, 1, 2, . . . .

If we had assumed that f had infinitely many poles instead of infinitely many zeros,
then (4.2) would be the sequence of poles and (4.4) would be the sequence of zeros.
We immediately see that t must be a positive integer i.e. q must divide m.

Iterating the equation (4.1) we see that f has a zero sequence a−2jz0, j =
0, 1, 2, . . ., which tends to origin unless the coefficient c has a pole or zero at some
point a−kz0, k ∈ N. Of course, the infinite zero sequence cannot have a finite limit,
and so we conclude that every zero sequence of f is initialized by a zero or a pole
of the coefficient c. The same conclusion is true for a pole sequence also. In other
words, outside of the disk containing all the zeros and the poles of c, f has at
most finitely many zero sequences that are of the form (4.2), and finitely many pole
sequences that are of the form (4.4).

In a disk about the origin of radius r > |z0| there exist a nonnegative integer
k such that |a|2k|z0| ≤ r < |a|2(k+1)|z0|. By the discussion above, f has at most
finitely many zero and pole sequences, say at most q pieces all together, and so f
has at most qk zeros and q(k − 1) poles in the annulus {z|R < |z| ≤ r}, and

(4.6)
log r − log |z0|

2 log |a|
− 1 < k ≤

log r − log |z0|

2 log |a|
.

Using the estimate (4.6), we get

(4.7) log n(r, 1/f) = log(qk + Z) ≤ log

(

q
log r − log |z0|

2 log |a|
+ Z

)

.

Dividing the above estimate by log r and letting r → ∞ we see that

(4.8) λ(f) = lim sup
r→∞

log n(r, 1/f)

log r
= 0.
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Similarly we obtain λ(1/f) = 0.
We continue by counting the number of zeros according to their multiplicities.

By (4.3), the number of zeros in the annulus {z |R < |z| ≤ r} can be calculated by
using the formula for geometric sum and so

(4.9) n(r, 1/f) ≥ µ
(t2)k+1 − 1

t2 − 1
+ K >

(t2)k+1(1 − t−2k−2)

t2 − 1
,

where the nonnegative integer K is the number of zeros according to their multi-
plicities inside the disk {z | |z| ≤ R}. Using (4.6) and (4.9) gives

+

log n(r, 1/f) >
+

log (t2)k+1+
+

log (1 − t−2k−2)−
+

log (t2 − 1)

≥

(

log r − log |z0|

log |a|

)

+

log t−
+

log (t2 − 1).

Hence by Lemma 2.5,

(4.10) λ(f) = lim sup
r→∞

+

log n(r, 1/f)

log r
≥

log t

log |a|
= ρ(f),

and so λ(f) = ρ(f). In the similar way as we calculated λ(f) we are able to obtain
λ(1/f) = ρ(f).

Assume next |a| < 1 and denote w = 1/a. We may look at the equation

(4.11) c(wz)(f(wz))m =
1

(f(z))q
,

and we may repeat the similar reasoning as above. ¤

Theorem 4.2. Let p(z) = az, where a is a nonzero complex constant such
that |a| 6= 1. Suppose f is a transcendental meromorphic function such that it has
infinitely many poles but λ(1/f) < ρ(f). If f is a solution of the equation (3.9),
where m ≥ 1 and d 6= q, then f is hypertranscendental.

Proof. Using Theorem 3.4 we see that f satisfies the equation

(4.12) c(z) (f(az) − s(az))L =
1

(f(z) − s(z))K
, s = −

bm−1

m
, K,L ∈ N.

Denoting g = (f − s)′/(f − s) we note that g satisfies

(4.13)
c′(z)

c(z)
+ a · Lg(az) = −Kg(z).

Since f has infinitely many poles, g is a transcendental meromorphic function, and
by Theorem 1.2, g is hypertranscendental, which means that f is also hypertran-
scendental. ¤

Finally, we consider the question of existence of the solutions.
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Theorem 4.3. Let a ∈ C\{0} such that |a| > 1 and let c(z) be a meromorphic
function such that it does not have a zero or a pole at the origin. Then, the equation

(4.14) c(z)f(az) =
1

(f(z))m
, m ∈ N,

admits a meromorphic solution, provided that m 6= −aj+1, j = 0, 1, 2, . . ..

Proof. The equation

(4.15) ay(az) = −my(z) −
c′(z)

c(z)
,

admits a meromorphic solution y(z) by Theorem 1.1. Assume first y has a pole at
the origin and look at the series expansions of y(z) and y(az) at the origin,

y(z; 0) = α−µz
−µ + α−µ+1z

−µ+1 + · · ·

y(az; 0) = α−µ(az)−µ + α−µ+1(az)−µ+1 + · · · ,

where αj’s are complex constants and µ is a positive integer. Substituting these
expansions into the equation (4.15) we see that

(4.16) m = −a1−µ,

which is impossible by the fact that m ∈ N.
Hence y is analytic at the origin and thus there exist a meromorphic function f

in some disk |z| < R, where R > 0, such that, f ′/f = y. Thus integrating both sides
of the equation (4.15) shows that f satisfies the equation (4.14). By [4], Proposition
2.2, f can be meromorphically continued over the whole complex plane. ¤

Example 4.4. The equation

(4.17) (z − 1)f(2z) =
1

(f(z))2
.

admits a meromorphic solution by Theorem 4.3. We shall show that it must be
hypertranscendental.

The meromorphic function g = f ′/f satisfies

(4.18) 2g(2z) = −2g(z) −
1

z − 1
.

By this equation, z = 1 is a pole of g(z) or g(2z). Assume first g(z) has a pole
at z = 1 and g(2z) doesn’t. Since g is a logarithmic derivative of f , the series
expansion at z = 1 has the form

(4.19) g(z; 1) =
a−1

z − 1
+ a0 + a1(z − 1) + · · · ,

where a−1 is an integer. Substituting this expansion into the equation (4.18) we
obtain a−1 = −1/2 that is a contradiction. Hence, also g(2z) has a pole at z = 1.
Iterating the equation (4.18) we see that g(4z) has a pole at z = 1, g(8z) has a
pole at z = 1 etc. So g has infinitely many poles and it is transcendental. By
Theorem 1.2, g as well as f are hypertranscendental.
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