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On a Class of Degenerate Parabolic Equations

of Kolmogorov Type

Marco Di Francesco and Andrea Pascucci

1 Introduction

In this paper, we adapt the classical Levi parametrix method to construct a global fun-

damental solution to the following differential equation of Kolmogorov type:

Lu ≡
p0∑

i,j=1

aij(z)∂xixj
u

+

p0∑
i=1

ai(z)∂xi
u +

N∑
i,j=1

bijxi∂xj
u + c(z)u − ∂tu = 0,

(1.1)

where z = (x, t) ∈ R
N×R and 1 ≤ p0 ≤ N. By convenience, hereafter the term “Kolmogorov

equation” will be shortened to KE. We assume the following hypotheses:

(H.1) the matrix A0 = (aij)i,j=1,...,p0
is symmetric and uniformly positive definite in

R
p0 : there exists a positive constant µ such that

|η|2

µ
≤

p0∑
i,j=1

aij(z)ηiηj ≤ µ|η|2, ∀η ∈ R
p0 , z ∈ R

N+1; (1.2)

(H.2) the matrix B ≡ (bij) has constant real entries and takes the following block
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form:



∗ B1 0 · · · 0

∗ ∗ B2 · · · 0

...
...

...
. . .

...

∗ ∗ ∗ · · · Br

∗ ∗ ∗ · · · ∗


, (1.3)

where Bj is a pj−1 × pj matrix of rank pj, with

p0 ≥ p1 ≥ · · · ≥ pr ≥ 1, p0 + p1 + · · · + pr = N, (1.4)

and the ∗-blocks are arbitrary.

The regularity hypotheses on the coefficients aij, ai, c will be specified later:

roughly speaking, we assume the Hölder continuity with respect to some homogeneous

norm naturally induced by the equation.

The prototype of (1.1) is the following equation:

∂x1x1
u + x1∂x2

u − ∂tu = 0,
(
x1, x2, t

) ∈ R
3, (1.5)

whose fundamental solution was explicitly constructed by Kolmogorov [23]. In his cel-

ebrated paper [21], Hörmander generalized this result to constant coefficients KEs, that

is, equations of the form (1.1),with constant aij and ai = c ≡ 0 for i = 1, . . . , p0, satisfying

the following condition:

Ker(A) does not contain nontrivial subspaces which are invariant for B. (1.6)

In (1.6), A denotes the N × N matrix

A =

(
A0 0

0 0

)
. (1.7)

We recall that, for constant coefficients equations, condition (1.6) is equivalent to the

structural assumptions (H.1) and (H.2) which in turn are equivalent to the classical

Hörmander condition:

rank Lie
(
X1, . . . , Xp0

, Y
)

= N + 1, (1.8)
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at any point of R
N+1. In (1.8), Lie(X1, . . . , Xp0

, Y) denotes the Lie algebra generated by the

vector fields

Xi =

p0∑
j=1

aij∂xj
, i = 1, . . . , p0, Y = 〈x, BD〉 − ∂t, (1.9)

where 〈·, ·〉 and D, respectively, denote the inner product and the gradient in R
N. A proof

of the equivalence of these conditions is given by Kupcov in [24, Theorem 3] and by

Lanconelli and Polidoro in [26, Proposition A.1].

We recall that constant coefficients KEs have the remarkable property of being

invariant with respect to the left translations in the law defined by

(x, t) ◦ (ξ, τ) =
(
ξ + E(τ)x, t + τ

)
, (x, t), (ξ, τ) ∈ R

N × R, (1.10)

where

E(t) = e−tBT

. (1.11)

Moreover, we consider the family of dilations (D(λ))λ>0 on R
N+1 defined by

D(λ) ≡ (D0(λ), λ2
)

= diag
(
λIp0

, λ3Ip1
, . . . , λ2r+1Ipr , λ

2
)
, (1.12)

where Ipj
denotes the pj × pj identity matrix. It is known that if (and only if) all the ∗-

blocks in (1.3) are zero matrices, then L is also homogeneous of degree two with respect

to (D(λ)) in the sense that

L ◦ D(λ) = λ2
(
D(λ) ◦ L

)
, ∀λ > 0. (1.13)

We remark explicitly that GB ≡ (RN+1, ◦,D(λ)) is a homogeneous Lie group only deter-

mined by the matrix B.

In some particular cases, variable coefficients KEs were first studied by Weber

[36], Il’in [22], and Sonin [35] who used the parametrix method to construct a funda-

mental solution. Yet in these papers unnecessary restrictive conditions on the regular-

ity of the coefficients are required. Assuming that the KE in (1.1) satisfies hypotheses

(H.1) and (H.2) and that the ∗-blocks in (1.3) are zero matrices, the previous results were

considerably generalized in a series of papers by Polidoro [31, 32, 33], by assuming a

notion of regularity modeled on the homogeneous Lie group GB (cf. Definitions 1.2 and

1.3 below). Some of the results of Polidoro were extended to nonhomogeneous KEs by

Morbidelli [27]. We also refer to [25] for a survey of the most recent results about KEs.
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In this paper, we aim to consider the general case of (1.1) satisfying (H.1) and (H.2) with

arbitrary ∗-blocks.

The interest in obtaining results for the general class of KEs is not academic. It

is well known that “homogeneous” KEs (i.e., KEs with null ∗-blocks in (1.3)) play a cen-

tral role in the stochastic theory of diffusion processes. On the other hand, more general

KEs have been recently considered for applications in mathematical finance. In the next

section, we briefly recall some of the main motivations for studying KEs.

In order to state our main results, we recall the definition of homogeneous norm

and B-Hölder continuity given by Polidoro [31].

Definition 1.1. Given a constant matrix B of the form (1.3) and (D(λ))λ>0 defined as in

(1.12), let (qj)j=1,...,N be such that

D(λ) = diag
(
λq1 , λq2 , . . . , λqN , λ2

)
. (1.14)

For every z = (x, t) ∈ R
N+1, set

|x|B =

N∑
j=1

∣∣xj

∣∣1/qj
, ‖z‖B = |x|B + |t|1/2. (1.15)

Clearly ‖ · ‖B is a norm on R
N+1 homogeneous of degree one with respect to the

dilations (D(λ)).

Definition 1.2. A function f is B-Hölder continuous of order α ∈ ]0, 1] on a domain Ω of

R
N+1, and f ∈ Cα

B(Ω), if there exists a constant C such that∣∣f(z) − f(ζ)
∣∣ ≤ C

∥∥ζ−1 ◦ z
∥∥α

B
, ∀z, ζ ∈ Ω. (1.16)

In (1.16), ζ−1 denotes the inverse of ζ in the law “◦” in (1.10).

Next, we give the definition of solution to equation Lu = f.

Definition 1.3. A function u is a solution to the equation Lu = f in a domain Ω of R
N+1,

if there exist the Euclidean derivatives ∂xi
u, ∂xixj

u ∈ C(Ω) for i, j = 1, . . . , p0, the Lie1

derivative Yu ∈ C(Ω), and equation

p0∑
i,j=1

aij(z)∂xixj
u(z) +

p0∑
i=1

ai(z)∂xi
u(z) + Yu(z) + c(z)u(z) = f(z) (1.17)

is satisfied at any z ∈ Ω.

1A function u is Lie differentiable with respect to the vector field Y in (1.9), at the point z = (x,t), if
limδ→0(u(γ(δ)) − u(γ(0)))/δ ≡ Yu(z) exists and is finite, where γ denotes the integral curve of Y from z:
γ(δ) = (E(−δ)x,t− δ), δ ∈ R. Clearly, if u∈ C1 , then Yu(x,t) = 〈x,BDu(x,t)〉 − ∂tu(x,t).



Degenerate Parabolic Equations of Kolmogorov Type 81

We are now in a position to state the following.

Theorem 1.4. Assume that L in (1.1) verifies hypotheses (H.1) and (H.2) and that the co-

efficients aij, ai, c ∈ Cα
B(RN+1) are bounded functions. Then there exists a fundamental

solution Γ to L with the following properties:

(1) Γ(·, ζ) ∈ L1
loc(R

N+1) ∩ C(RN+1 \ {ζ}) for every ζ ∈ R
N+1;

(2) Γ(·, ζ) is a solution to Lu = 0 in R
N+1 \ {ζ} for every ζ ∈ R

N+1 (in the sense of

Definition 1.3);

(3) let g ∈ C(RN) such that

∣∣g(x)
∣∣ ≤ C0eC0|x|2 , ∀x ∈ R

N, (1.18)

for some positive constant C0; then there exists

lim
t→τ+

∫
RN

Γ(x, t, ξ, τ)g(ξ)dξ = g(x), ∀x ∈ R
N, τ ∈ R; (1.19)

(4) let g ∈ C(RN) verifying (1.18) and let f be a continuous function in the strip

ST0,T1
= R

N × ]T0, T1[, such that

∣∣f(x, t)
∣∣ ≤ C1eC1|x|2 , ∀(x, t) ∈ ST0,T1

(1.20)

and for any compact subset M of R
N, there exists a positive constant C

such that

∣∣f(x, t) − f(y, t)
∣∣ ≤ C|x − y|

β
B, ∀x, y ∈ M, t ∈ ]T0, T1

[
, (1.21)

for some β ∈ ]0, 1[; then there exists T ∈ ]T0, T1] such that the function

u(x, t) =

∫
RN

Γ
(
x, t, ξ, T0

)
g(ξ)dξ −

∫t

T0

∫
RN

Γ(x, t, ξ, τ)f(ξ, τ)dξdτ (1.22)

is a solution to the Cauchy problem

Lu = f in ST0,T ,

u
(·, T0

)
= g in R

N;
(1.23)

(5) if u is a solution to the Cauchy problem (1.23) with null f and g, and verifies

estimate (1.20), then u ≡ 0 (see also Theorem 1.6 below); in particular,

the function in (1.22) is the unique solution to problem (1.23) verifying

estimate (1.20);
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(6) the reproduction property holds:

Γ(x, t, ξ, τ) =

∫
RN

Γ(x, t, y, s)Γ(y, s, ξ, τ)dy, ∀x, ξ ∈ R
N, τ < s < t; (1.24)

(7) if c(z) ≡ c is constant, then

∫
RN

Γ(x, t, ξ, τ)dξ = e−c(t−τ), ∀x ∈ R
N, τ < t; (1.25)

(8) let Γε denote the fundamental solution to the constant coefficients KE

Lε = (µ + ε)∆R
p0 + 〈x, B∇〉 − ∂t, (1.26)

where ε > 0, µ is as in (1.2), and ∆R
p0 denotes the Laplacian in the vari-

ables x1, . . . , xp0
; then for every positive ε and T , there exists a constant

C, only dependent on µ, B, ε, and T , such that

Γ(z, ζ) ≤ CΓε(z, ζ), (1.27)∣∣∂xi
Γ(z, ζ)

∣∣ ≤ C√
t − τ

Γε(z, ζ), (1.28)

∣∣∂xixj
Γ(z, ζ)

∣∣ ≤ C

t − τ
Γε(z, ζ),

∣∣YΓ(z, ζ)
∣∣ ≤ C

t − τ
Γε(z, ζ), (1.29)

for any i, j = 1, . . . , p0 and z, ζ ∈ R
N+1 with 0 < t − τ < T . �

Under the further hypothesis

(H.3) for every i, j = 1, . . . , p0, there exist the derivatives ∂xi
aij, ∂xixj

aij, ∂xi
ai ∈

Cα
B(RN+1) and they are bounded functions,

we define as usual the adjoint operator L∗ of L:

L∗v =

p0∑
i,j=1

aij∂xixj
v +

p0∑
i=1

a∗
i∂xi

v − 〈x, B∇v〉 + c∗v + ∂tv, (1.30)

where

a∗
i = −ai + 2

p0∑
j=1

∂xi
aij, c∗ = c +

p0∑
i,j=1

∂xixj
aij −

p0∑
i=1

∂xi
ai − tr(B), (1.31)

and we prove the following result.
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Theorem 1.5. There exists a fundamental solution Γ∗ of L∗ verifying the dual properties

in the statement of Theorem 1.4. Moreover, it holds that

Γ∗(z, ζ) = Γ(ζ, z), ∀z, ζ ∈ R
N+1, z �= ζ. (1.32)

�

We close this section by stating a further uniqueness result.

Theorem 1.6. Assume that L in (1.1) verifies hypotheses (H.1), (H.2), and (H.3) and that

the coefficients aij, ai, c ∈ Cα
B(RN+1) are bounded functions. If u is a solution to the

Cauchy problem (1.23) with null f and g, such that

∫T

T0

∫
RN

∣∣u(x, t)
∣∣e−C|x|2dxdt < +∞ (1.33)

for some positive constant C, then u ≡ 0. �

The paper is organized as follows. In the next section, we present some moti-

vation for studying KEs. In Section 3, we collect some preliminaries. In Section 4, we

present the parametrix method for constructing a fundamental solution. In Section 5,

we provide some potential estimates. Section 6 is devoted to the proofs of Theorems 1.4,

1.5, and 1.6.

2 Some motivation

In this section, we give some motivation for the study of KEs from probability, physics,

and finance. The operator (1.5) is the lowest dimension version of the following degener-

ate parabolic operator in R
N+1 with N = 2n:

L =

n∑
j=1

∂2
xj

+

n∑
j=1

xj∂xn+j
− ∂t. (2.1)

Kolmogorov introduced (2.1) in [23] in order to describe the probability density of a sys-

tem with 2n degree of freedom. The 2n-dimensional space is the phase space, (x1, . . . ,

xn) is the velocity, and (xn+1, . . . , x2n) is the position of the system. We also recall that

(2.1) is a prototype for a family of evolution equations arising in the kinetic theory of

gases that take the following general form:

Yu = J(u). (2.2)
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Here R
2n � x �→ u(x, t) ∈ R is the density of particles which have velocity (x1, . . . , xn) and

position (xn+1, . . . , x2n) at time t,

Yu ≡
n∑

j=1

xj∂xn+j
u + ∂tu (2.3)

is the so-called total derivative of u, and J(u) describes some kind of collision. This last

term can take different form, either linear or nonlinear. For instance, in the usual Fokker-

Planck equation, we have

J(u) = −

n∑
i,j=1

∂xi

(
aij∂xj

u + biu
)

+

n∑
i=1

ai∂xi
u + cu, (2.4)

where aij, ai, bi, and c are functions of (x, t). J(u) may also occur in nondivergence form

and the coefficients may depend on z ∈ R
2n+1 as well as on the solution u through some

integral expressions. This kind of operator is studied as a simplified version of the Boltz-

mann collision operator. A description of wide classes of stochastic processes and ki-

netic models leading to equations of the previous type can be found in the classical

monographies [9, 10, 15].

Linear KEs also arise in mathematical finance in some generalization of the cel-

ebrated Black-Scholes model [8]. Consider a “stock” whose price St is given by the sto-

chastic differential equation

dSt = µStdt + σStdWt, (2.5)

where µ and σ are positive constants and Wt is a Wiener process. Also consider a “bond”

whose price Bt only depends on a constant interest rate r:

Bt = B0etr. (2.6)

Finally, consider a “European option” which is a contract which gives the right (but not

the obligation) to buy the stock at a given “exercise price” E and at a given “expiry time”

T . The problem studied in [8] is to find a fair price of the option contract. Under some

assumptions on the financial market, Black and Scholes show that the price of the option,

as a function of the time and of the stock price V(t, St), is the solution of the following

partial differential equation:

−rV +
∂V

∂t
+ rS

∂V

∂S
+

1

2
σ2S2 ∂2V

∂S2
= 0 (2.7)



Degenerate Parabolic Equations of Kolmogorov Type 85

in the domain (S, t) ∈ R
+ × ]0, T [, with the final condition

V
(
T, ST

)
= max

(
ST − E, 0

)
. (2.8)

In the last decades, the Black-Scholes theory has been developed by many authors and

mathematical models involving KEs have appeared in the study of the so-called path-

dependent contingent claims (see, e.g., [1, 4, 5, 37]). Asian options are options whose

exercise price is not fixed as a given constant E, but depends on some average of the his-

tory of the stock price. In this case, the value of the option at the expiry time T is (for a

geometric average option)

V
(
ST ,MT

)
= max

(
ST − eMT /T , 0

)
, Mt =

∫t

0

log
(
Sτ

)
dτ. (2.9)

If we suppose by simplicity that the interest rate is r = 0, the Black-Scholes method leads

to the following degenerate equation:

S2∂2
SV + (log S)∂MV + ∂tV = 0, S, t > 0, M ∈ R, (2.10)

which can be reduced to the KE (1.5) by means of an elementary change of variables (see

[6, page 479]). A numerical study of the solution of the Cauchy problem related to (2.10)

is also proposed in [6].

A more recent motivation from finance comes from the model by Hobson and

Rogers [20]. In the Black-Scholes theory, the hypothesis that the volatility σ in the sto-

chastic differential equation (2.5) is constant contrasts with the empirical observations.

Aiming to overcome this problem, many authors proposed different models based on a

stochastic volatility (see [16] for a survey). However, the presence of a second Wiener pro-

cess leads to some difficulties in the arbitrage argument underlying the Black-Scholes

theory. The model proposed by Hobson and Rogers for European options assumes that

the volatility only depends on the difference between the present stock price and the past

price. This simple model seems to capture the features observed in the market and avoid

the problems related to the use of many sources of randomness.

As in the study of Asian options, in the Hobson-Rogers model for European op-

tions, the value of the option V(t, St,Mt) is supposed to depend on the time t, on the price

of the stock St, on some average Mt, and must satisfy the differential equation

1

2
σ2(S − M)

(
∂2

SV − ∂SV
)

+ (S − M)∂MV + ∂tV = 0 (2.11)
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that is a nonhomogeneous KE with Hölder continuous coefficients. In the recent paper

[14], the Cauchy problem related to (2.11) has been studied numerically. In [13] the sta-

bility and the rate of convergence of different numerical methods for solving (2.11) are

tested. The numerical schemes proposed in these papers rely on the approximation of the

directional derivative Y by the finite difference −(u(x, y, t) − u(x, y + δx, t − δ))/δ, hence

this method, which is respectful of the non-Euclidean geometry of the Lie group, seems

to provide a good approximation of the solution.

Nonhomogeneous KEs also arise in the theory of bonds and interest rates and are

considered in the study of the possible realization of Heath-Jarrow-Morton [19] models

in terms of a finite-dimensional Markov diffusion (see, e.g., [7, 34]).

Recently, in [12] Corielli and one of the authors investigated the parametric ap-

proximation of risk neutral transition densities in the option valuation: more precisely

they considered the approximation and estimation of general probability density func-

tions in terms of fundamental solutions of suitable PDEs with constant coefficients. Ex-

pansions of this kind seem a natural tool for obtaining approximate solution for val-

uation problems while controlling the approximation error. However they are still un-

known in the financial literature.

Finally, we recall that KEs with nonlinear total derivative term of the form

∆xu + ∂yg(u) − ∂tu = f, x =
(
x1, . . . , xn

) ∈ R
n, y, t ∈ R, (2.12)

have been considered for convection-diffusion models (cf. [17, 28]), for pricing models of

options with memory feedback (cf. [30]), and for mathematical models for utility func-

tional and decision making (cf. [2, 3, 11, 29]). The linearized equation of (2.12)

g ′(u)∂yv − ∂tv = −∆xv, (2.13)

if g ′(u) is different from zero and smooth enough, can be reduced to the form (1.1) with

N = n + 2 and

A =


1 · · · 0 0

...
. . .

...
...

0 · · · 1 0

0 · · · 0 0

 , B =


0 · · · 0 1

...
. . .

...
...

0 · · · 0 0

0 · · · 0 0

 . (2.14)
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3 Preliminaries

In this section, we recall some known results for constant coefficients KEs, that is, equa-

tions of the form

p0∑
i,j=1

aij∂xixj
u + 〈x, BDu〉 − ∂t = 0, (3.1)

with constant aij’s and satisfying hypotheses (H.1) and (H.2). Moreover, we prove some

preliminary results.

First we recall the explicit expression of the fundamental solution to (3.1). We

set

C(t) =

∫t

0

E(s)AET (s)ds, t ∈ R, (3.2)

where E(·) is as in (1.11). It is known (see, e.g., [26]) that (H.1) and (H.2) are equivalent to

the condition

C(t) > 0, ∀t > 0. (3.3)

If (3.3) holds, then a fundamental solution to (3.1) is given by

Γ(x, t, ξ, τ) = Γ
(
x − E(t − τ)ξ, t − τ

)
, (3.4)

where Γ(x, t) = 0 if t ≤ 0 and

Γ(x, t) =
(4π)−N/2√

det C(t)
exp

(
−

1

4

〈
C−1(t)x, x

〉
− t tr(B)

)
if t > 0. (3.5)

We remark that Γ(·, ·) is a C∞ function outside the diagonal of R
N+1 × R

N+1 and satisfies

the usual properties (1.24) and (1.25) (with c = 0). If all the ∗-blocks in (1.3) are zero

matrices, then Γ is also D(λ)-homogeneous:

Γ
(
D(λ)z

)
= λ−QΓ(z), ∀z ∈ R

N+1 \ {0}, λ > 0, (3.6)

where

Q = p0 + 3p1 + · · · + (2r + 1)pr (3.7)



88 M. Di Francesco and A. Pascucci

is the so-called homogeneous dimension of R
N with respect to the dilations group in

R
N:

D0(λ) = diag
(
λIp0

, λ3Ip1
, . . . , λ2r+1Ipr

)
. (3.8)

Next we prove some estimates for the fundamental solution to constant coeffi-

cients KEs which generalize some result in [31, Section 2]. Given B in the form (1.3), we

denote by B0 the matrix obtained by substituting the ∗-blocks with null blocks and we

set E0(t) = e−tBT
0 , t ∈ R. Moreover, for t ∈ R and ζ ∈ R

N+1, we set

Cζ(t) =

∫t

0

E(s)A(ζ)ET (s)ds, Cζ,0(t) =

∫t

0

E0(s)A(ζ)ET
0 (s)ds. (3.9)

In the following statements, we also denote by C the matrix in (3.2) with A ≡ ( Ip0
0

0 0

)
and

C0(t) =

∫t

0

E0(s)

(
Ip0

0

0 0

)
ET

0 (s)ds, (3.10)

where Ip0
denotes the identity matrix in R

p0 . Hypothesis (1.2) yields an immediate com-

parison between the quadratic forms associated to Cζ and C:

µ−1C(t) ≤ Cζ(t) ≤ µC(t) (3.11)

for any t ∈ R
+ and ζ ∈ R

N+1. Since Cζ(t), t > 0, is symmetric and positive definite,

analogous estimates hold for C−1
ζ , Cζ,0, and C−1

ζ,0 in terms of C−1, C0, and C−1
0 , respectively.

We now denote, respectively, by Γ+ and Γ− the fundamental solutions of the op-

erators

L+ = µ∆R
p0 + 〈x, B∇〉 − ∂t, L− =

1

µ
∆R

p0 + 〈x, B∇〉 − ∂t. (3.12)

Moreover, for fixed w ∈ R
N+1, we denote by Zw the fundamental solution to the frozen

Kolmogorov operator

Lw =

p0∑
i,j=1

aij(w)∂xixj
+ 〈x, BDu〉 − ∂t. (3.13)

An explicit expression of Γ+, Γ−, and Γw is given by (3.4) and (3.5).

Proposition 3.1. For every z, ζ,w ∈ R
N+1 with z �= ζ, it holds that

1

µN
Γ−(z, ζ) ≤ Zw(z, ζ) ≤ µNΓ+(z, ζ). (3.14)

�
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Proof. We only prove the second inequality. We first note that, by (3.11), we have

det Cw(t) ≥ µ−N det C(t), ∀t > 0, (3.15)

exp

(
−

1

4

〈
C−1

w (t)ω,ω
〉) ≤ exp

(
−

1

4µ

〈
C−1(t)ω,ω

〉) ∀t > 0, ω ∈ R
N. (3.16)

Given z, ζ ∈ R
N+1, for convenience, we set s = t − τ, ω = x − E(s)ξ and cN = (4π)−N/2.

Then we have

Zw(z, ζ) =
cNe−s tr B√
det Cw(s)

exp

(
−

1

4

〈
C−1

w (s)ω,ω
〉)

≤ µN/2 cNe−s tr B√
det C(s)

exp

(
−

1

4µ

〈
C−1(s)ω,ω

〉)
(by (3.15) and (3.16))

= µNΓ+(z, ζ).

(3.17)
�

The next lemma provides an asymptotic comparison near 0 of Cζ and Cζ,0.

Lemma 3.2. There exist two positive constants C0 and t0, only dependent on µ in (1.2)

and the matrix B, such that

(
1 − C0t

)
Cζ,0(t) ≤ Cζ(t) ≤ (1 + C0t

)
Cζ,0(t) (3.18)

for any ζ ∈ R
N+1 and t ∈ [0, t0]. �

Lemma 3.2 can be proved following the arguments in [26], handling with care the

dependence of the coefficients on ζ. The proof will be omitted.

Remark 3.3. As an immediate consequence of (3.11) and Lemma 3.2, for some positive t1,

we have

1

2µ
C0(t) ≤ 1

2
Cζ,0(t) ≤ Cζ(t) ≤ 2Cζ,0(t) ≤ 2µC0(t), (3.19)

(2µ)−N det C0(1) ≤ 2−N det Cζ,0(1) ≤ det Cζ(t)
tQ

≤ 2N det Cζ,0(1) ≤ (2µ)N det C0(1),

(3.20)

for any ζ ∈ R
N+1 and t ∈ [0, t1]. Analogous estimates also hold for C−1

ζ .
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Lemma 3.4. For every T > 0, there exists a positive constant C, only dependent on µ, B,

and T , such that

∣∣∣(C−1
w (t)y

)
i

∣∣∣ ≤ C

∣∣∣∣D0

(
1√
t

)
y

∣∣∣∣
√

t
, (3.21)∣∣∣(C−1

w (t)
)
ij

∣∣∣ ≤ C

t
, (3.22)

for every i, j = 1, . . . , p0, t ∈ ]0, T ], w ∈ R
N+1, and y ∈ R

N. �

Proof. We only show (3.21) since the proof of (3.22) is analogous. Let t1 be as in Remark

3.3: we first consider the case t ∈ ]0, t1]. We recall that (D0(λ)y)i = λyi for i = 1, . . . , p0

and

C−1
w,0(t) = D0

(
1√
t

)
C−1

w,0(1)D0

(
1√
t

)
, (3.23)

see [26]. Then we have

∣∣∣(C−1
w (t)y

)
i

∣∣∣ ≤ ∣∣∣((C−1
w (t) − C−1

w,0(t)
)
y
)
i

∣∣∣ + ∣∣∣(C−1
w,0(t)y

)
i

∣∣∣
=

1√
t

∣∣∣∣∣
(

D0(
√

t)
(
C−1

w (t) − C−1
w,0(t)

)
D0(

√
t)D0

(
1√
t

)
y

)
i

∣∣∣∣∣
+

1√
t

∣∣∣∣∣
(

C−1
w,0(1)D0

(
1√
t

)
y

)
i

∣∣∣∣∣
≡ I1 + I2.

(3.24)

In order to estimate I1, we note that

∥∥D0(
√

t)
(
C−1

w (t) − C−1
w,0(t)

)
D0(

√
t)
∥∥

= sup
|ξ|=1

∣∣〈(C−1
w (t) − C−1

w,0(t)
)
D0(

√
t)ξ,D0(

√
t)ξ
〉∣∣

≤ sup
|ξ|=1

∣∣〈C−1
w,0(t)D0(

√
t)ξ,D0(

√
t)ξ
〉∣∣ (by Remark 3.3 since 0 < t ≤ t1)

= sup
|ξ|=1

∣∣〈C−1
w,0(1)ξ, ξ

〉∣∣ ≤ µ
∥∥C−1

0 (1)
∥∥ (by (3.23) and Remark 3.3).

(3.25)

Hence, we infer

I1 ≤ µ√
t

∥∥C−1
0 (1)

∥∥∣∣∣∣D0

(
1√
t

)
y

∣∣∣∣. (3.26)
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On the other hand, again by Remark 3.3, we have

I2 ≤
∥∥C−1

w,0(1)
∥∥

√
t

∣∣∣∣D0

(
1√
t

)
y

∣∣∣∣ ≤ µ√
t

∥∥C−1
0 (1)

∥∥∣∣∣∣D0

(
1√
t

)
y

∣∣∣∣. (3.27)

The proof of the case t ∈ [t1, T ] is easier:

∣∣∣(C−1
w (t)y

)
i

∣∣∣ =
1√
t

∣∣∣∣∣
(

D0(
√

t)C−1
w (t)D0(

√
t)D0

(
1√
t

)
y

)
i

∣∣∣∣∣
≤ µ√

t
sup

t0≤t≤T

∥∥D0(
√

t)C−1(t)D0(
√

t)
∥∥∣∣∣∣D0

(
1√
t

)
y

∣∣∣∣ (by (3.11)).

(3.28)

�

In the next statement, Z(z, ζ) denotes the parametrix of L, that is, the fundamen-

tal solution, with pole at ζ, to the constant coefficients Kolmogorov operator

Lζ =

p0∑
i,j=1

aij(ζ)∂xixj
+ 〈x, B∇〉 − ∂t. (3.29)

Moreover, Γε, ε > 0, denotes the fundamental solution to the constant coefficients KE

(1.26).

Proposition 3.5. Given ε > 0 and a polynomial function p, there exists a constant C, only

dependent on ε, µ, B, and p, such that, if we set η = |D0((t − τ)−1/2)(x − E(t − τ)ξ)|, then

we have

∣∣p(η)
∣∣Zw(z, ζ) ≤ CΓε(z, ζ), (3.30)

for any z, ζ,w ∈ R
N+1. �

Proof. For convenience, we set s = t−τ and ω = x−E(s)ξ. By Lemma 3.2, we may consider

t0 > 0 such that (3.18) holds and

(
1 − C0t0

)2 ≥
µ +

ε

2
µ + ε

, (3.31)
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where C0 is the constant in (3.18). We first prove (3.30) for s ∈ [0, t0]. Then, by (3.11), we

have

∣∣p(|η|
)∣∣Zw(z, ζ) ≤ cNµN/2e−s tr B√

det C(s)

∣∣p(|η|
)∣∣ exp

(
−

1

4

〈
C−1

w (s)ω,ω
〉)

≤ cNµN/2e−s tr B√
det C(s)

∣∣p(|η|
)∣∣ exp

(
−

(
1 − C0t0

)
4µ

〈
C−1

0 (1)η, η
〉)

(by Lemma 3.2 and (3.11))

≤ C1e−s tr B√
det C(s)

exp

−

(
1 − C0t0

)
4

(
µ +

ε

2

) 〈C−1
0 (1)η, η

〉

≤ C1e−s tr B√
det C(s)

exp

−

(
1 − C0t0

)2
4

(
µ +

ε

2

) 〈
C−1(s)ω,ω

〉
(by Lemma 3.2 applied to the matrix C)

≤ CΓε(z, ζ) (by (3.31)).

(3.32)

We next consider s ≥ t0. In this case, by Proposition 3.1, we have

∣∣p(|η|
)∣∣Z(z, ζ) ≤ C1

∣∣p(|ω|
)∣∣Γ+(z, ζ) (3.33)

and the thesis follows by a standard argument. �

Next we prove some estimates for the derivatives of Zw(z, ζ).

Proposition 3.6. For every ε > 0 and T > 0, there exists a positive constant C, only depen-

dent on µ, B, ε, and T , such that

∣∣∂xi
Zw(z, ζ)

∣∣ ≤ C√
t − τ

Γε(z, ζ),
∣∣∂xixj

Zw(z, ζ)
∣∣ ≤ C

t − τ
Γε(z, ζ), (3.34)

for every z, ζ,w ∈ R
N+1 such that 0 < t − τ < T and every i, j = 1, . . . , p0. �

Proof. We put again s = t − τ and ω = x − E(s)ξ. Then, for i = 1, . . . , p0, we have

∣∣∂xi
Zw(z, ζ)

∣∣ =
1

2

∣∣∣(C−1
w (s)ω

)
i

∣∣∣Zw(z, ζ)

≤ C√
s

∣∣∣∣D0

(
1√
s

)
ω

∣∣∣∣Zw(z, ζ) (by (3.21))
(3.35)
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and the first estimate follows by Proposition 3.5. The proof of the second estimate is

analogous. �

4 The parametrix method

In this section, we describe the Levi parametrix method to construct a fundamental so-

lution Γ for the KE (1.1). Throughout this section, we assume that L in (1.1) verifies hy-

potheses (H.1) and (H.2) and that the coefficients aij, ai, c ∈ Cα
B(RN+1) are bounded func-

tions. We remind that Zw denotes the fundamental solution to the “frozen” Kolmogorov

operator

Lw =

p0∑
i,j=1

aij(w)∂xixj
+ 〈x, BDu〉 − ∂t, (4.1)

and Z(z, ζ) = Zζ(z, ζ) is the so-called parametrix. Hereafter z = (x, t) and ζ = (ξ, τ). Ac-

cording to Levi’s method, we look for the fundamental solution Γ in the form

Γ(z, ζ) = Z(z, ζ) + J(z, ζ). (4.2)

The function J is unknown and supposed to be of the form

J(z, ζ) =

∫
Sτ,t

Z(z,w)Φ(w, ζ)dw, Sτ,t = R
N×]τ, t[, (4.3)

where Φ has to be determined by imposing that Γ is solution to L:

0 = LΓ(z, ζ) = LZ(z, ζ) + LJ(z, ζ), z �= ζ. (4.4)

Assuming that J can be differentiated under the integral sign, we get

LJ(z, ζ) =

∫
Sτ,t

LZ(z,w)Φ(w, ζ)dw − Φ(z, ζ), (4.5)

hence (4.4) yields

Φ(z, ζ) = LZ(z, ζ) +

∫
Sτ,t

LZ(z,w)Φ(w, ζ)dw. (4.6)

Thus we obtain an integral equation whose solution Φ can be determined by the succes-

sive approximation method:

Φ(z, ζ) =

+∞∑
k=1

(LZ)k(z, ζ), (4.7)
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where

(LZ)1(z, ζ) = LZ(z, ζ),

(LZ)k+1(z, ζ) =

∫
Sτ,t

LZ(z,w)(LZ)k(w, ζ)dw.
(4.8)

The previous arguments are made rigorous by the following propositions.

Proposition 4.1. There exists k0 ∈ N such that, for every T > 0 and ζ ∈ R
N+1, the series

+∞∑
k=k0

(LZ)k(·, ζ) (4.9)

converges uniformly in the strip Sτ,T ≡ {(x, t) ∈ R
N+1 | τ < t < T }. Moreover, the function

Φ(·, ζ) defined by (4.7) solves the integral equation (4.6) in Sτ,T and satisfies the following

estimate: for any ε > 0, there exists a positive constant C such that

∣∣Φ(z, ζ)
∣∣ ≤ C

Γε(z, ζ)
(t − τ)1−α/2

, ∀z ∈ Sτ,T . (4.10)
�

Proposition 4.2. For every ζ ∈ R
N+1, the function J(·, ζ) defined by (4.3) solves (4.5) in

R
N+1 \ {ζ} in the sense of Definition 1.3. �

The remainder of this section is devoted to the proof of Proposition 4.1. The proof

of Proposition 4.2 is more involved since it requires the study of some singular integrals

which will be made in the next section. Then Proposition 4.2 will be a direct consequence

of the results in Section 5 and Lemma 6.1.

Lemma 4.3. For every ε > 0 and T > 0, there exists a positive constant C, only dependent

on ε, T , µ, and B, such that

∣∣(LZ)k(z, ζ)
∣∣ ≤ Mk

(t − τ)1−αk/2
Γε(z, ζ), (4.11)

for any k ∈ N and z, ζ ∈ R
N+1 with 0 < t − τ ≤ T , where

Mk = Ck

Γk
E

(
α

2

)
ΓE

(
αk

2

) , (4.12)

and ΓE the Euler Gamma function. As a consequence, there exists k0 ∈ N such that the

function (LZ)k(·, ζ) is bounded for k ≥ k0 in Sτ,T . �
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Proof. We use the notations of Proposition 3.5 and we prove estimate (4.11) by an induc-

tive argument. For z �= ζ, we have

∣∣LZ(z, ζ)
∣∣ ≤ ∣∣∣∣∣

p0∑
i,j=1

(
aij(z) − aij(ζ)

)
∂xixj

Z(z, ζ)

∣∣∣∣∣ +
∣∣∣∣∣

p0∑
i=1

ai(z)∂xi
Z(z, ζ)

∣∣∣∣∣ + ∣∣c(z)∣∣Z(z, ζ).

(4.13)

By assumption aij ∈ Cα
B(RN+1) so that

∣∣aij(z) − aij(ζ)
∣∣ ≤ C1

∥∥ζ−1 ◦ z
∥∥α

B
= C1(t − τ)α/2

∥∥(η, 1)
∥∥α

B
. (4.14)

Hence, by Proposition 3.6, we infer

∣∣∣∣∣
p0∑

i,j=1

(
aij(z) − aij(ζ)

)
∂xixj

Z(z, ζ)

∣∣∣∣∣ ≤ C2

∥∥(η, 1)
∥∥α

B

Γε/2(z, ζ)
(t − τ)1−α/2

, (4.15)

and, since the coefficients are bounded functions,

∣∣∣∣∣
p0∑
i=1

ai(z)∂xi
Z(z, ζ)

∣∣∣∣∣ ≤ C3
Γε/2(z, ζ)√

t − τ
. (4.16)

By Proposition 3.1, we have

∣∣c(z)Z(z, ζ)
∣∣ ≤ C4Γε(z, ζ). (4.17)

Therefore, (4.11) for k = 1 easily follows from the above estimates and Proposition 3.5.

We now assume that (4.11) holds for k and prove it for k + 1. We have

∣∣(LZ)k+1(z, ζ)
∣∣

=

∣∣∣∣ ∫
Sτ,t

LZ(z,w)(LZ)k(w, ζ)dw

∣∣∣∣
≤

∫t

τ

M1

(t − s)1−α/2

Mk

(s − τ)1−kα/2

∫
RN

Γε(x, t, y, s)Γε(y, s, ξ, τ)dyds

(by the inductive hypothesis and denoting (y, s) = w)

= Γε(z, ζ)
∫ t

τ

M1

(t − s)1−α/2

Mk

(s − τ)1−kα/2
ds

(by the reproduction property (1.24) for Γε),

(4.18)

and the thesis follows by the well-known properties of the Euler Gamma function.
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The boundedness of (LZ)k, for k ≥ k0 suitably large, directly follows from (4.11)

and the explicit expression of Γε. Indeed, by (3.20) of Remark 3.3, we have

∣∣(LZ)k(z, ζ)
∣∣ ≤ CMk(t − τ)k−(Q+2)/α, (4.19)

for some constant C. Then it suffices that k0 ≥ (Q + 2)/α. �

Proof of Proposition 4.1. The convergence of the series (4.9) follows from the previous

lemma (cf. (4.19)). Indeed the power series

∑
k≥1

Mk0+ksk (4.20)

with Mk as in (4.12) has radius of convergence equal to infinity.

Then, proceeding as in Lemma 4.3, it is straightforward to prove that Φ verifies

estimate (4.10) and solves (4.6). �

Corollary 4.4. For every ε > 0 and T > 0, there exists a positive constant C, only depen-

dent on ε, T , µ, and B, such that

∣∣J(z, ζ)
∣∣ ≤ C(t − τ)α/2Γε(z, ζ), (4.21)

and the fundamental solution Γ in (4.2) verifies estimate (1.28):

Γ(z, ζ) ≤ CΓε(z, ζ), (4.22)

for any z, ζ ∈ R
N+1 with 0 < t − τ ≤ T . �

Proof. We have

∣∣J(z, ζ)
∣∣ ≤ ∫

Sτ,t

Z(z,w)
∣∣Φ(w, ζ)

∣∣dw

≤ C

∫t

τ

∫
RN

Γε(x, t, y, s)
Γε(y, s, ξ, τ)
(s − τ)1−α/2

dyds (by (4.10))

= CΓε(z, ζ)
∫ t

τ

ds

(s − τ)1−α/2
(by the reproduction property of Γε),

(4.23)

and (4.21) follows. The estimate of Γ is a direct consequence of (4.21) and the estimate of

Z in Proposition 3.1. �
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5 Potential estimates

We consider the potential

Vf(z) =

∫
ST0,t

Z(z, ζ)f(ζ)dζ, ST0,t = R
N × ]T0, t

[
, (5.1)

where f ∈ C(ST0,T1
) satisfies the growth estimate (1.20):

∣∣f(x, t)
∣∣ ≤ C1eC1|x|2 , ∀(x, t) ∈ ST0,T1

, (5.2)

and Z is the parametrix of (1.1). In this section, we aim to study the regularity properties

of Vf by adapting the arguments used by Polidoro [31].

We first show that the integral in (5.1) is convergent in the strip ST0,T for some

T ∈ ]T0, T1]. Indeed, by Proposition 3.1, we have

∣∣Vf(x, t)
∣∣ ≤ C2

∫t

T0

∫
RN

Γ+(x, t, ξ, τ)eC1|ξ|2dξdτ

≤ C3

∫t

T0

∫
RN

1√
det C(s)

exp

(
−

1

4µ

〈
C−1(s)ω,ω

〉
+ C1|ξ|2

)
dξdτ

(denoting s = t − τ and ω = x − E(s)ξ)

≤ C4

∫t

T0

∫
RN

exp

(
−

|η|2

4µ
+ C1

∣∣E(−s)
(
x − C1/2(s)η

)∣∣2)dηdτ

≤ C
(
t − T0

)
eC|x|2 (by the change of variables η = C−1/2(s)ω),

(5.3)

for some positive constant C, assuming that t ∈ ]T0, T ] with T − T0 suitably small and

using the fact that ‖C(s)‖ tends to zero as s → 0.

Proposition 5.1. There exist ∂xi
Vf ∈ C(ST0,T ) for i = 1, . . . , p0 and it holds that

∂xi
Vf(x, t) =

∫t

T0

∫
RN

∂xi
Z(x, t, ξ, τ)f(ξ, τ)dξdτ. (5.4)

�

Proof. By Proposition 3.6 and the above argument, the integral in (5.4) is absolutely con-

vergent and

∫t

T0

∫
RN

∣∣∂xi
Z(x, t, ξ, τ)f(ξ, τ)

∣∣dξdτ ≤ C
√

t − T0eC|x|2 . (5.5)

Next we set

Vf,δ(x, t) =

∫t−δ

T0

∫
RN

Z(x, t, ξ, τ)f(ξ, τ)dξdτ, 0 < δ < t − T0. (5.6)
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By Lebesgue’s theorem, we have

lim
δ→0+

Vf,δ(x, t) = Vf(x, t), (5.7)

∂xi
Vf,δ(x, t) =

∫t−δ

T0

∫
RN

∂xi
Z(x, t, ξ, τ)f(ξ, τ)dξdτ. (5.8)

In order to prove (5.4), it suffices to verify that

lim
δ→0+

∂xi
Vf,δ(x, t) =

∫t

T0

∫
RN

∂xi
Z(x, t, ξ, τ)f(ξ, τ)dξdτ, (5.9)

uniformly on BR1
× ]T0, T ]. This is an easy consequence of (5.8) and (5.5), indeed we have

∂xi
Vf,δ(x, t) −

∫t

T0

∫
RN

∂xi
Z(x, t, ξ, τ)f(ξ, τ)dξdτ

=

∫t

t−δ

∫
RN

∂xi
Z(x, t, ξ, τ)f(ξ, τ)dξdτ ≤ C

√
δeC|x|2 .

(5.10)

�

Lemma 5.2. For every positive ε and T , there exists a constant C > 0 such that

∣∣Zζ(z, ζ) − Zw(z, ζ)
∣∣ ≤ C

∥∥ζ−1 ◦ w
∥∥α

B
Γε(z, ζ),

∣∣∂xi
Zζ(z, ζ) − ∂xi

Zw(z, ζ)
∣∣ ≤ C

∥∥ζ−1 ◦ w
∥∥α

B√
t − τ

Γε(z, ζ),

∣∣∂xixj
Zζ(z, ζ) − ∂xixj

Zw(z, ζ)
∣∣ ≤ C

∥∥ζ−1 ◦ w
∥∥α

B

t − τ
Γε(z, ζ),

(5.11)

for any i, j = 1, . . . , p0 and z, ζ,w ∈ R
N+1 with 0 < t − τ ≤ T . �

Proof. We only prove the third estimate. We use the usual notations s = t − τ, ω = x −

E(s)ξ, η = D0(1/
√

s)ω and first note that

∂xixj
Zw(z, ζ) =

Ce−s tr B√
det Cw(s)

e−(1/4)〈C−1
w (s)ω,ω〉

((
C−1

w (s)
)
ij

+
(
C−1

w (s)ω
)
i

(
C−1

w (s)ω
)
j

)
.

(5.12)
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Then the thesis follows from the following estimates:

∣∣∣∣∣ 1√
det Cζ(s)

−
1√

det Cw(s)

∣∣∣∣∣ ≤ C

∥∥ζ−1 ◦ w
∥∥α

B√
det Cζ(s)

, (5.13)

∣∣e−(1/4)〈C−1
ζ (s)ω,ω〉 − e−(1/4)〈C−1

w (s)ω,ω〉∣∣ ≤ C
∥∥ζ−1 ◦ w

∥∥α

B
e−(1/4(µ+ε))〈C−1(s)ω,ω〉,

(5.14)∣∣∣(C−1
ζ (s)

)
ij

−
(
C−1

w (s)
)
ij

∣∣∣ ≤ C

s

∥∥ζ−1 ◦ w
∥∥α

B
, (5.15)∣∣∣(C−1

ζ (s)ω
)
i

(
C−1

ζ (s)ω
)
j
−
(
C−1

w (s)ω
)
i

(
C−1

w (s)ω
)
j

∣∣∣ ≤ C

s

∥∥ζ−1 ◦ w
∥∥α

B
|η|2, (5.16)

where C denotes the matrix in (3.2) with A ≡ ( Ip0
0

0 0

)
.

By Remark 3.3, (5.13) is equivalent to

∣∣det Cζ(s) − det Cw(s)
∣∣

sQ

≤ C

∣∣∣∣det

(
D0

(
1√
s

)
Cζ(s)D0

(
1√
s

))
− det

(
D0

(
1√
s

)
Cw(s)D0

(
1√
s

))∣∣∣∣
≤ C

∥∥ζ−1 ◦ w
∥∥α

B
.

(5.17)

A general result from linear algebra states that

∣∣det M1 − det M2

∣∣ ≤ C
∥∥M1 − M2

∥∥, (5.18)

where the constant C only depends on the dimension of the matrices M1, M2 and on

‖M1‖, ‖M2‖. Then (5.17) follows from the estimate

sup
|ξ|=1

∣∣∣∣〈(Cζ(s) − Cw(s)
)
D0

(
1√
s

)
ξ,D0

(
1√
s

)
ξ

〉∣∣∣∣ ≤ C
∥∥ζ−1 ◦ w

∥∥α

B

∥∥C(1)
∥∥. (5.19)

This concludes the proof of (5.13). Next we consider (5.14). An elementary inequality

yields

∣∣e−(1/4)〈C−1
ζ (s)ω,ω〉 − e−(1/4)〈C−1

w (s)ω,ω〉∣∣
≤ ∣∣〈(C−1

ζ (s) − C−1
w (s)

)
ω,ω

〉∣∣e−(1/4µ)〈C−1(s)ω,ω〉

≤ ∥∥D0(
√

s)
(
C−1

ζ (s) − C−1
w (s)

)
D0(

√
s)
∥∥|η|2e−(1/4µ)〈C−1(s)ω,ω〉

≤ C
∥∥D0(

√
s)
(
C−1

ζ (s) − C−1
w (s)

)
D0(

√
s)
∥∥e−(1/4(µ+ε))〈C−1(s)ω,ω〉.

(5.20)
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On the other hand,

∥∥D0(
√

s)
(
C−1

ζ (s) − C−1
w (s)

)
D0(

√
s)
∥∥

≤ ∥∥D0(
√

s)C−1
ζ (s)D0(

√
s)
∥∥∥∥∥∥D0

(
1√
s

)(
Cω(s) − Cζ(s)

)
D0

(
1√
s

)∥∥∥∥
· ∥∥D0(

√
s)C−1

w (s)D0(
√

s)
∥∥

≤ C
∥∥ζ−1 ◦ w

∥∥α

B
,

(5.21)

and this proves (5.14). We omit the proofs of (5.15) and (5.16) which are analogous. �

Proposition 5.3. Under the hypotheses of Theorem 1.4, there exist ∂xixj
Vf ∈ C(ST0,T ) for

i, j = 1, . . . , p0, and it holds that

∂xixj
Vf(x, t) =

∫t

T0

∫
RN

∂xixj
Z(x, t, ξ, τ)f(ξ, τ)dξdτ. (5.22)

�

Proof. We first show that the integral in (5.22) exists. Fixed R > 0, we consider x ∈ R
N

such that |x| < R and denote by BR the Euclidean ball in R
N centered at the origin. For a

suitable R1 > R to be determined later, we split the integral in (5.22) as follows:

∫t

T0

∫
RN

∂xixj
Z(x, t, ξ, τ)f(ξ, τ)dξdτ

=

∫t

T0

∫
BR1

∂xixj
Z(x, t, ξ, τ)f(ξ, τ)dξdτ+

∫ t

T0

∫
RN\BR1

∂xixj
Z(x, t, ξ, τ)f(ξ, τ)dξdτ

≡ K1 + K2.

(5.23)

We consider K1. For every τ ∈ ]T0, t[ and y ∈ R
N, denoting w = (y, τ), we have

∫
BR1

∂xixj
Z(x, t, ξ, τ)f(ξ, τ)dξ

=

∫
BR1

∂xixj
Z(x, t, ξ, τ)

(
f(ξ, τ) − f(y, τ)

)
dξ

+ f(y, τ)
∫
BR1

∂xixj

(
Z(x, t, ξ, τ) − Zw(x, t, ξ, τ)

)
dξ

+ f(y, τ)
∫
BR1

∂xixj
Zw(x, t, ξ, τ)dξ

= I1 + I2 + I3.

(5.24)
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We put y = E(τ − t)x and by Proposition 3.6 and the regularity properties of f, we get

∣∣I1

∣∣ ≤ C

∫
RN

Γε(x, t, ξ, τ)
t − τ

∣∣ξ − E(τ − t)x
∣∣β
B
dξ ≤ C

∫
RN

Γε(x, t, ξ, τ)
(t − τ)1−β/2

|η|
β
Bdξ, (5.25)

since

∣∣ξ − E(τ − t)x
∣∣
B
≤ C

√
t − τ|η|B, (5.26)

for some constant C, where η = D0(1/
√

t − τ)(x − E(t − τ)ξ). Now, by Proposition 3.5, we

have

|η|βΓε(x, t, ξ, τ) ≤ CΓ2ε(x, t, ξ, τ), (5.27)

and since

∫
RN

Γ2ε(x, t, ξ, τ)dξ = 1, t > τ, (5.28)

we finally deduce

∣∣I1

∣∣ ≤ C

(t − τ)1−β/2
. (5.29)

Next we consider I2. By Lemma 5.2 and the growth estimate (1.20), we have

∣∣I2

∣∣ ≤ C1

∣∣f(y, τ)
∣∣ ∫

BR1

Γε(x, t, ξ, τ)
t − τ

|ξ − y|αBdξ

≤ C2eC2|x|2
∫

RN

Γε(x, t, ξ, τ)
t − τ

∣∣ξ − E(τ − t)x
∣∣α
B
dξ

≤ C

(t − τ)1−α/2
(by the previous argument).

(5.30)

We now consider I3. We first remark that we have

∂xi
Zw(x, t, ξ, τ) = −

1

2
Zw(x, t, ξ, τ)

(
C−1

w (t − τ)
(
x − E(t − τ)ξ

))
i
,

∂ξi
Zw(x, t, ξ, τ) =

1

2
Zw(x, t, ξ, τ)

N∑
j=1

(
C−1

w (t − τ)
(
x − E(t − τ)ξ

))
j
Eji(t − τ)

= −

N∑
j=1

∂xj
Zw(x, t, ξ, τ)Eji(t − τ).

(5.31)
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Thus it holds that

∇ξZw(x, t, ξ, τ) = −∇xZw(x, t, ξ, τ)E(t − τ) (5.32)

and inverting the matrix E, we finally get

∇xZw(x, t, ξ, τ) = −∇ξZw(x, t, ξ, τ)E(τ − t). (5.33)

Therefore, we have

∫
BR1

∂xixj
Zw(x, t, ξ, τ)dξ

= −

N∑
k=1

∫
BR1

∂xiξk
Zw(x, t, ξ, τ)Ekj(τ − t)dξ

= −

N∑
k=1

∫
∂BR1

∂xi
Zw(x, t, ξ, τ)νkEkj(τ − t)dσ(ξ)

(by the divergence theorem and denoting by ν the outer normal to BR1
);

(5.34)

thus, by Proposition 3.6, we conclude that

∣∣I3

∣∣ ≤ C√
t − τ

. (5.35)

We consider K2. We first note that

E(s) = IN + O(s), as s −→ 0. (5.36)

Then for some positive constant C, we have

∣∣x − E(t − τ)ξ
∣∣ ≥ C|ξ| − |x| ≥ CR1 − R ≡ R2 > 0, (5.37)

since |x| < R and assuming |ξ| ≥ R1 with R1 suitably large. Then we have

∣∣K2

∣∣ ≤ C

∫ t

T0

∫
RN\BR1

Γε(x, t, ξ, τ)
t − τ

eC1|ξ|2dξdτ

≤ Ce|x|2
∫t

T0

∫
|ω|≥R2

1

(t − τ)(Q+2)/2
exp

(
−

∣∣C−1/2(t − τ)ω
∣∣2

4µ
+ C2|ω|2

)
dωdτ

(by the change of variable ω = x − E(t − τ)ξ).

(5.38)
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Keeping in mind the asymptotic estimate of Lemma 3.2, clearly the last integral con-

verges (provided that T − T0 is suitably small).

So far we have proved the existence of the integral in (5.22), next we prove (5.22).

We set

Vf(z) = V
(1)
f (z) + V

(2)
f (z), (5.39)

where

V
(1)
f (x, t) =

∫t

T0

∫
BR1

Z(x, t, ξ, τ)f(ξ, τ)dξdτ,

V
(2)
f (x, t) =

∫t

T0

∫
RN\BR1

Z(x, t, ξ, τ)f(ξ, τ)dξdτ.

(5.40)

By Lebesgue’s theorem, we have

∂xixj
V

(2)
f (x, t) =

∫t

T0

∫
RN\BR1

∂xixj
Z(x, t, ξ, τ)f(ξ, τ)dξdτ. (5.41)

In order to prove that

∂xixj
V

(1)
f (x, t) =

∫t

T0

∫
BR1

∂xixj
Z(x, t, ξ, τ)f(ξ, τ)dξdτ, (5.42)

we set

V
(1)
f,δ(x, t) =

∫t−δ

T0

∫
BR1

Z(x, t, ξ, τ)f(ξ, τ)dξdτ, 0 < δ < t − T0. (5.43)

By the dominated convergence theorem and Proposition 5.1, we have

lim
δ→0+

∂xi
V

(1)
f,δ(x, t) = lim

δ→0+

∫t−δ

T0

∫
BR1

∂xi
Z(x, t, ξ, τ)f(ξ, τ)dξdτ

=

∫t

T0

∫
BR1

∂xi
Z(x, t, ξ, τ)f(ξ, τ)dξdτ

= ∂xi
V

(1)
f (x, t).

(5.44)

Hence, in order to show (5.42), it suffices to prove that

lim
δ→0+

∂xixj
V

(1)
f,δ(x, t) =

∫t

T0

∫
BR1

∂xixj
Z(x, t, ξ, τ)f(ξ, τ)dξdτ, (5.45)
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uniformly on BR1
× ]T0, T ]. Denoting w = (y, τ) for y ∈ R

N, we have

∂xixj
V

(1)
f,δ(x, t) −

∫t

T0

∫
BR1

∂xixj
Z(x, t, ξ, τ)f(ξ, τ)dξdτ

=

∫t

t−δ

(
J1(τ) + J2(τ) + J3(τ)

)
dτ,

(5.46)

where

J1(τ) =

∫
BR1

∂xixj
Z(x, t, ξ, τ)

(
f(ξ, τ) − f(y, τ)

)
dξ,

J2(τ) = f(y, τ)
∫
BR1

∂xixj

(
Z(x, t, ξ, τ) − Zw(x, t, ξ, τ)

)
dξ,

J3(τ) = f(y, τ)
∫
BR1

∂xixj
Zw(x, t, ξ, τ)dξ.

(5.47)

Proceeding as in the estimate of I1 in (5.25) by choosing y = E(τ − t)x, we obtain

∫t

t−δ

∣∣J1(τ)
∣∣dτ ≤ C

∫t

t−δ

1

(t − τ)1−β/2
dτ. (5.48)

Analogously the terms J2 and J3 can be treated as I2 and I3 in (5.25), thus (5.45) follows

straightforwardly. �

Proposition 5.4. Under the hypotheses of Theorem 1.4, there exists YVf ∈ C(ST0,T ) and it

holds that

YVf(z) =

∫
ST0,t

YZ(z, ζ)f(ζ)dζ − f(z). (5.49)
�

Proof. The proof is analogous to that of [31, Proposition 3.3]. As in the proof of Propo-

sition 5.3, we split the domain of the integral in (5.49) in ]T0, t[×(RN \BR1
) and ]T0, t[×BR1

and we only consider the second integral since the other one is straightforward.

We set

Vf,δ(x, t) =

∫t−δ

T0

∫
BR1

Z(x, t, ξ, τ)f(ξ, τ)dξdτ (5.50)

and consider the integral path of −Y starting from z:

γ : R −→ R
N+1, γ(s) =

(
x(s), t(s)

)
=
(
E(s)x, t + s

)
. (5.51)
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Clearly, γ(0) = z and γ̇(s) = (−BTx(s), 1) = −Y(γ(s)). We show that

YVf,δ(x, t) =

∫t−δ

T0

∫
BR1

YZ(x, t, ξ, τ)f(ξ, τ)dξdτ −

∫
BR1

Z(x, t, ξ, t − δ)f(ξ, t − δ)dξ.

(5.52)

Indeed, for |s| < δ/2, we have

Vf,δ

(
γ(s)

)
− Vf,δ

(
γ(0)

)
s

=

∫t−δ

T0

∫
BR1

Z
(
γ(s), ξ, τ

)
− Z

(
γ(0), ξ, τ

)
s

f(ξ, τ)dξdτ

+
1

s

∫t+s−δ

t−δ

∫
BR1

Z
(
γ(s), ξ, τ

)
f(ξ, τ)dξdτ.

(5.53)

Since Z(z, ζ) is the fundamental solution of Lζ, there exists s∗ such that

Z
(
γ(s), ζ

)
− Z

(
γ(0), ζ

)
s

=
d

ds
Z
(
γ(s), ζ

)∣∣
s=s∗ = −YZ

(
γ
(
s∗
)
, ζ
)

=

p0∑
i,j=1

aij(ζ)∂xixj
Z
(
γ
(
s∗
)
, ζ
)
.

(5.54)

By Proposition 3.6 and since |s∗| < δ/2, the last term in (5.54) is a bounded function of

ζ ∈ R
N × ]T0, t − δ[. Thus we have

lim
s→0

∫t−δ

T0

∫
BR1

Z
(
γ(s), ξ, τ

)
− Z

(
γ(0), ξ, τ

)
s

f(ξ, τ)dξdτ

= −

∫t−δ

T0

∫
BR1

YZ(x, t, ξ, τ)f(ξ, τ)dξdτ.

(5.55)

On the other hand,

∫
BR1

Z(x, t, y, t − δ)f(y, t − δ)dξ −
1

s

∫t+s−δ

t−δ

∫
BR1

Z
(
γ(s), ξ, τ

)
f(ξ, τ)dξdτ

=

∫1

0

∫
BR1

(
Z(x, t, ξ, t − δ) − Z(γ(s), ξ, t − δ + ρs)

)
f(ξ, t − δ)dξdr

+

∫1

0

∫
BR1

Z
(
γ(s), ξ, t − δ + ρs

)(
f(ξ, t − δ) − f(ξ, t − δ + ρs)

)
dξdr(

by setting ρ =
τ − t + δ

s

)
= I(z, s) + J(z, s).

(5.56)
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Since |s| < δ/2, then the integrand of I is a bounded function of (ξ, ρ) ∈ BR1
× [0, 1], there-

fore

lim
s→0

I(z, s) = 0. (5.57)

Analogously we have

lim
s→0

J(z, s) = 0. (5.58)

This concludes the proof of (5.52).

Next we prove that

lim
δ→0+

YVf,δ(x, t) =

∫t

T0

∫
BR1

YZ(x, t, ξ, τ)f(ξ, τ)dξdτ − f(x, t), (5.59)

uniformly on BR × ]T0, T [. To this end, it suffices to note that, since Z(z, ζ) is the funda-

mental solution of Lζ, we have∣∣∣∣∣
∫t

t−δ

∫
BR1

YZ(x, t, ξ, τ)f(ξ, τ)dξdτ

∣∣∣∣∣
≤

p0∑
i,j=1

∫t

t−δ

∫
BR1

∣∣aij(ξ, τ)∂xixj
Z(x, t, ξ, τ)f(ξ, τ)

∣∣dξdτ

≤ C

∫ t

t−δ

1

(t − τ)1−β/2
dτ

(proceeding as in the proof of Proposition 5.3, cf. (5.29)).

(5.60)

Finally, since f is a continuous and bounded function on BR × ]T0, T [, we have

lim
δ→0+

∫
BR1

Z(x, t, ξ, t − δ)f(ξ, t − δ)dξ = f(x, t), (5.61)

uniformly on BR × ]T0, T [ and this concludes the proof. �

6 Proof of Theorems 1.4 and 1.5

In this section, we prove Theorems 1.4 and 1.5. We begin by a preliminary result.

Lemma 6.1. For every ε > 0 and T > 0, there exists a positive constant C such that

∣∣Φ(x, t, ξ, τ) − Φ(y, t, ξ, τ)
∣∣ ≤ C

|x − y|
α/2
B

(t − τ)1−α/4

(
Γε(x, t, ξ, τ) + Γε(y, t, ξ, τ)

)
, (6.1)

for any (ξ, τ) ∈ R
N+1, t ∈ ]τ, τ + T ], and x, y ∈ R

N. �
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Proof. We set w = (y, t) and note that if |x−y|B ≥ √
t − τ, then we have the trivial estimate

∣∣LZ(z, ζ) − LZ(w, ζ)
∣∣ ≤ C

(t − τ)1−α/2

(
Γε(z, ζ) + Γε(w, ζ)

)
. (6.2)

In the case |x − y|B <
√

t − τ, we first prove the following estimates:

∣∣Z(z, ζ) − Z(w, ζ)
∣∣ ≤ C√

t − τ
Γε/2(z, ζ),

∣∣∂xk
Z(z, ζ) − ∂xi

Z(w, ζ)
∣∣ ≤ C

|x − y|B

t − τ
Γε/2(z, ζ),∣∣∂xixj

Z(z, ζ) − ∂xixj
Z(w, ζ)

∣∣ ≤ C
|x − y|B

(t − τ)3/2
Γε/2(z, ζ).

(6.3)

Since the proof is similar, we only consider the third estimate in (6.3). By using the mean-

value theorem, we have

∣∣∂xixj
Z(z, ζ) − ∂xixj

Z(w, ζ)
∣∣ ≤ max

ρ∈[0,1]

N∑
h=1

∣∣∂xhxixj
Z
(
x + ρ(x − y), t, ξ, τ

)
(x − y)h

∣∣.
(6.4)

Denoting s = t − τ, ω = x − E(s)ξ, and C = Cζ(s), a short computation shows

∂xhxixj
Z(z, ζ) = Z(z, ζ)

(
C−1

ih

(
C−1ω

)
j
+
(
C−1ω

)
i
C−1

jh +
(
C−1ω

)
h
C−1

ij

+
(
C−1ω

)
h

(
C−1ω

)
i

(
C−1ω

)
j

)
≡ Z(z, ζ)

(
ah(ω) + bh(ω) + ch(ω) + dh(ω)

)
.

(6.5)

Then we put v = x − y, ω̃ = ω + ρv and, by Lemma 3.4, we get∣∣∣∣∣
N∑

h=1

vhah(ω̃)

∣∣∣∣∣ ≤
N∑

h=1

∣∣∣C−1
ih vh

(
C−1ω̃

)
j

∣∣∣ =

∣∣∣(C−1v
)
i

∣∣∣∣∣∣(C−1ω̃
)
j

∣∣∣
≤ C

s

∣∣∣∣D0

(
1√
s

)∣∣∣∣∣∣∣∣D0

(
1√
s

)
ω̃

∣∣∣∣.
(6.6)

Since |v|B <
√

s, we have |D0(1/
√

s)v| ≤ C|D0(1/
√

s)v|B = C(|v|B/
√

s), therefore∣∣∣∣∣
N∑

h=1

vhah(ω̃)

∣∣∣∣∣ ≤ C
|v|B|η̃|B

s3/2
, (6.7)

where η̃ = D0(1/
√

s)ω̃. The same estimate holds substituting ah with bh or ch. Moreover,∣∣∣∣∣
N∑

h=1

vhdh(ω̃)

∣∣∣∣∣ ≤
N∑

h=1

∣∣∣(C−1ω̃
)
h
vh

(
C−1ω̃

)
i

(
C−1ω̃

)
j

∣∣∣ ≤ |v|B|η̃|3B
s3/2

. (6.8)



108 M. Di Francesco and A. Pascucci

Collecting all the terms and using Proposition 3.5, we obtain

∣∣∂xixj
Z(z, ζ) − ∂xixj

Z(w, ζ)
∣∣ ≤ |v|B

(
|η̃|B + |η̃|3B

)
s3/2

Z(x + ρv, t, ξ, τ)

≤ |x − y|B

s3/2
Γε/3(x + ρv, t, ξ, τ).

(6.9)

By a standard argument, we have that, if |x − y|B <
√

t − τ, then

Γε/3(x + v, t, ξ, τ) ≤ Γε/2(x, t, ξ, τ). (6.10)

This concludes the proof of the third inequality in (6.3) at least for |x−y|B <
√

t − τ. Next

we show how to deduce from (6.3) an estimate similar to (6.2). We recall that (w)−1 ◦ z =

(x − y, 0) and we have

∣∣LZ(z, ζ) − LZ(w, ζ)
∣∣

=

∣∣∣∣∣
p0∑

i,j=1

aij(z)∂xixj
Z(z, ζ) +

p0∑
i=1

ai(z)∂xi
Z(z, ζ)

−

p0∑
i,j=1

aij(w)∂xixj
Z(w, ζ) −

p0∑
i=1

ai(w)∂xi
Z(w, ζ)

+ YZ(z, ζ) − YZ(w, ζ) + c(z)Z(z, ζ) − c(w)Z(w, ζ)

− LζZ(z, ζ) + LζZ(w, ζ)

∣∣∣∣∣
≤

p0∑
i,j=1

∣∣aij(z) − aij(w)
∣∣∣∣∂xixj

Z(w, ζ)
∣∣

+

p0∑
i,j=1

∣∣aij(z) − aij(ζ)
∣∣∣∣∂xixj

Z(z, ζ) − ∂xixj
Z(w, ζ)

∣∣
+

p0∑
i=1

∣∣ai(z) − ai(w)
∣∣∣∣∂xi

Z(w, ζ)
∣∣

+

p0∑
i=1

∣∣ai(w)
∣∣∣∣∂xi

Z(z, ζ) − ∂xi
Z(w, ζ)

∣∣
+
∣∣c(z) − c(w)

∣∣∣∣Z(w, ζ)
∣∣ + ∣∣c(z)∣∣∣∣Z(z, ζ) − Z(w, ζ)

∣∣
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≤ C

(
|x − y|αB
t − τ

Γε/2(w, ζ) +
∥∥ζ−1 ◦ z

∥∥α

B

|x − y|B

(t − τ)3/2
Γε/2(z, ζ)

+
|x − y|αB√

t − τ
Γε/2(w, ζ) +

|x − y|B

t − τ
Γε/2(z, ζ)

+ |x − y|αBΓε/2(w, ζ) +
|x − y|B√

t − τ
Γε/2(z, ζ)

)
(by the regularity properties of the coefficients,

by Proposition 3.6, and by (6.3)).

(6.11)

Since ∥∥ζ−1 ◦ z
∥∥α

B
= (t − τ)α/2

(
1 +

∣∣D0

(
(t − τ)−1/2

)(
x − E(t − τ)ξ

)∣∣α
B

)
, (6.12)

we may use Proposition 3.5 to deduce

∣∣LZ(z, ζ) − LZ(w, ζ)
∣∣ ≤ C

(
|x − y|B

(t − τ)(3−α)/2
+

|x − y|αB
t − τ

)(
Γε(z, ζ) + Γε(w, ζ)

)
. (6.13)

On the other hand, if |x − y|B <
√

t − τ, it holds that

|x − y|B

(t − τ)(3−α)/2
+

|x − y|αB
t − τ

≤ |x − y|B

(t − τ)(3−α)/2

(
|x − y|B√

t − τ

)−1+α/2

+
|x − y|αB
t − τ

(
|x − y|B√

t − τ

)−α

=
|x − y|

α/2
B

(t − τ)1−α/4
.

(6.14)

Combining (6.2), (6.13), and (6.14), finally we get

∣∣LZ(z, ζ) − LZ(w, ζ)
∣∣ ≤ C

|x − y|
α/2
B

(t − τ)1−α/4

(
Γε(z, ζ) + Γε(w, ζ)

)
. (6.15)

By (6.15) and an inductive argument, it is possible to show that if M1 is the constant in

(4.11) such that |LZ(z, ζ)| ≤ M1(Γε(z, ζ)/(t − τ)1−α/2), then we have

∣∣(LZ)k(z, ζ)−(LZ)k(w, ζ)
∣∣≤M̃k

|x − y|
α/2
B

(t − τ)1−α/4

(
Γε(z, ζ)+Γε(w, ζ)

)
Mk

1(t − τ)k, (6.16)

where

M̃k = C0Γk
E

(
α

2

) ΓE

(
α

4

)
ΓE

(
α

2

(
k +

1

2

)) , (6.17)
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for some positive constant C0. The thesis follows since the power series with coefficients

M̃k has radius of convergence equal to infinity. �

Proof of Theorem 1.4. Let Γ be the function defined in (4.2), (4.3), and (4.7) by means of

Proposition 4.1:

Γ(z, ζ) = Z(z, ζ) +

∫
Sτ,t

Z(z,w)Φ(w, ζ)dw, z �= ζ. (6.18)

(1) By Corollary 4.4 and Proposition 4.1, it is clear that Γ(·, ζ) ∈ L1
loc(R

N+1) ∩
C(RN+1 \ {ζ}) for every ζ ∈ R

N+1.

(2) Thanks to estimate (4.10) and Lemma 6.1, we may apply Propositions 5.1, 5.3,

and 5.4 to conclude that the following derivatives exist and are continuous functions for

z �= ζ:

∂xi
Γ(z, ζ) = ∂xi

Z(z, ζ) +

∫
Sτ,t

∂xi
Z(z,w)Φ(w, ζ)dw,

∂xixj
Γ(z, ζ) = ∂xixj

Z(z, ζ) +

∫
Sτ,t

∂xixj
Z(z,w)Φ(w, ζ)dw,

YΓ(z, ζ) = YZ(z, ζ) +

∫
Sτ,t

∂xi
YZ(z,w)Φ(w, ζ)dw − Φ(z, ζ),

(6.19)

for every i, j = 1, . . . , p0. By using the above formulas, we directly obtain

LΓ(z, ζ) = LZ(z, ζ) +

∫
Sτ,t

LZ(z,w)Φ(w, ζ)dw − Φ(z, ζ) = 0 (6.20)

for z �= ζ, since Φ satisfies the integral equation (4.6).

(3) Formula (1.19) can be proved following [31, Proposition 2.5].

(4) By the results in Section 4, the function u in (1.22) is well defined in ST0,T for

T − T0 > 0 suitably small. We set

V(z) =

∫
ST0,t

Γ(z, ζ)f(ζ)dζ, (6.21)

and we prove that

LV = −f, in ST0,T . (6.22)

Using expression (6.18) of Γ , we rewrite V = Vf + Vf̂ where Vf is the potential in (5.1) and

f̂(z) =

∫
ST0,t

Φ(z, ζ)f(ζ)dζ. (6.23)
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In order to apply Propositions 5.1, 5.3, and 5.4 to the potential Vf̂, we show that f̂ verifies

estimates (1.20) and (1.21). By (4.10) we have

∣∣f̂(z)∣∣ ≤ C

∫
ST0,t

Γε(z, ζ)
(t − τ)1−α/2

∣∣f(ζ)
∣∣dζ

≤ C
(
t − T0

)α/2
eC|x|2 (proceeding as in the proof of (5.3)).

(6.24)

On the other hand, by Lemma 6.1, we infer

∣∣f̂(x, t) − f̂(y, t)
∣∣

≤
∫t

T0

∫
RN

∣∣Φ(x, t, ξ, τ) − Φ(y, t, ξ, τ)
∣∣∣∣f(ξ, τ)

∣∣dξdτ

≤ C|x − y|
α/2
B

∫t

T0

1

(t − τ)1−α/4

∫
RN

(
Γε(x, t, ξ, τ) + Γε(y, t, ξ, τ)

)∣∣f(ξ, τ)
∣∣dξdτ

≤ C
(
t − T0

)α/4
|x − y|

α/2
B eC(|x|2+|y|2).

(6.25)

Therefore, we can apply Propositions 5.1, 5.3, and 5.4 and we get, for z ∈ ST0,T ,

LV(z) = LVf(z) + LVf̂(z)

= −f(z) − f̂(z) +

∫
ST0,t

LZ(z, ζ)
(
f(ζ) + f̂(ζ)

)
dζ

= −f(z) +

∫
ST0,t

f(ζ)
(

− Φ(z, ζ) + LZ(z, ζ) +

∫
Sτ,t

LZ(z,w)Φ(w, ζ)dw

)
dζ

= −f(z),

(6.26)

by (4.6). Since, for t > T0, it holds that

L

∫
RN

Γ
(
x, t, ξ, T0

)
g(ξ)dξ =

∫
RN

LΓ
(
x, t, ξ, T0

)
= 0, (6.27)

by Step (2), we conclude that Lu = f in ST0,T . Moreover, by Corollary 4.4,

∣∣V(z)
∣∣ ≤ C

∫
ST0,t

Γε(z, ζ)
∣∣f(ζ)

∣∣dζ

≤ C
(
t − T0

)
eC|x|2 (proceeding as in the proof of (5.3)),

(6.28)

therefore, by Step (3), we have that u ∈ C(RN × [T0, T [) and u(·, T0) = g.
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(5)–(7)The uniqueness result can be proved proceeding exactly as in the classical

parabolic case (see, e.g., [18]). Then the reproduction property (1.24) and formula (1.25)

follow immediately.

(8) Estimate (1.27) is included in Corollary 4.4. Analogously, by Proposition 3.6

and (4.10), we have

∣∣∂xi
Γ(z, ζ)

∣∣ ≤ CΓε(z, ζ)√
t − τ

+ CΓε(z, ζ)
∫ t

τ

1

(t − s)1/2

1

(s − τ)1−α/2
ds ≤ C

Γε(z, ζ)√
t − τ

, (6.29)

for any i = 1, . . . , p0 and z, ζ ∈ R
N+1 with 0 < t − τ < T . The proof of (1.29) is less trivial:∣∣∂xixj

Γ(z, ζ)
∣∣

≤ ∣∣∂xixj
Z(z, ζ)

∣∣ + ∣∣∂xixj
J(z, ζ)

∣∣
≤ C

Γε(z, ζ)
t − τ

+

∣∣∣∣ ∫
Sτ,t

∂xixj
Z(z,w)Φ(w, ζ)dw

∣∣∣∣
(by Propositions 3.6 and 5.3)

≤ C
Γε(z, ζ)
t − τ

+ C

∫t

τ

1

(t − s)α/4

1

(s − τ)α/4
ds

(managing the singularity of the integral as in the proof of Proposition 5.3)

≤ C
Γε(z, ζ)
t − τ

.

(6.30)
�

Proof of Theorem 1.5. The proof of the existence and the properties of Γ∗ is analogous to

that of Theorem 1.4. In order to prove (1.32), we first note that the Green’s identity holds:

vLu − uL∗v =

p0∑
i,j=1

∂xi

(
aij

(
v∂xj

u − u∂xj
v
)

+ uv
(
ai − ∂xj

aij

))
+

N∑
i,j=1

∂xj

(
bijxiuv

)
− ∂t(uv),

(6.31)

for any u, v ∈ C∞
0 (RN+1). Then we consider the functions

u(w) = Γ(w, ζ), v(w) = Γ∗(w, z) (6.32)

for w = (y, s) with τ < s < t. Given R, δ > 0, we integrate the identity (6.31) over the

domain {(y, s) | |y| < R, τ + δ < s < t − δ} and we obtain

∫
|y|<R

u(y, t − δ)v(y, t − δ)dy −

∫
|y|<R

u(y, τ + δ)v(y, τ + δ)dy = IR,δ, (6.33)
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where

IR,δ =

p0∑
i,j=1

∫t−δ

τ+δ

∫
|y|=R

(
aij

(
v∂yj

u − u∂yj
v
)

− uv∂yj
aij

)
νidσ(w)

+

N∑
i,j=1

∫t−δ

τ+δ

∫
|y|=R

bijyiνjuv dσ(w).

(6.34)

By (1.28) and (1.29) (and the analogous estimates for Γ∗), we get

lim
R→+∞ IR,δ = 0, (6.35)

so that

∫
RN

u(y, t − δ)v(y, t − δ)dy =

∫
RN

u(y, τ + δ)v(y, τ + δ)dy (6.36)

and the thesis follows by letting δ → 0+. �

Proof of Theorem 1.6. We only sketch the proof since it suffices to proceed as in [18, The-

orem 16, page 29], by using Theorem 1.5 and the estimates (1.28) and (1.29) in Theorem

1.4.

It is not restrictive to assume T0 = 0. We first prove that u = 0 in a suitable thin

strip S0,ε. Fixed (y, s) ∈ S0,ε, for any R > |y|, we consider hR ∈ C∞
0 (BR+1), 0 ≤ hR ≤ 1, such

that hR ≡ 1 on BR and with the first- and second-order derivatives bounded uniformly

with respect to R. We integrate the Green’s identity (6.31) with u = u(ζ) and v(ξ, τ) =

hR(ξ)Γ(y, s, ξ, τ) over the domain {ζ ∈ R
N+1 : ξ ∈ BR+1, 0 < τ < s−δ}, for some δ > 0. Since

Lu = 0, we have

−

∫s−δ

0

∫
BR+1

u(ξ, τ)L∗v(ξ, τ)dξdτ

=

∫s−δ

0

∫
BR+1

(
vLu − uL∗v

)
(ξ, τ)dξdτ

= −

∫
BR+1

u(ξ, s − δ)h(ξ)Γ(y, s, ξ, s − δ)dξ +

∫
BR+1

u(ξ, 0)h(ξ)Γ(y, s, ξ, 0)dξ

+

p0∑
i,j=1

∫s−δ

0

∫
∂BR+1

(
aij

(
v∂ξj

u − u∂ξj
v
)

− uv∂ξj
aij

)
dσ(ζ)

+

N∑
i,j=1

∫s−δ

0

∫
BR+1

bijξiuvνjdσ(ζ) (by the divergence theorem).

(6.37)
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The last three terms in (6.37) are null by hypothesis, then letting δ → 0+, we get

u(y, s) = lim
δ→0+

∫
BR+1

u(ξ, s − δ)h(ξ)Γ(y, s, ξ, s − δ)dξ

=

∫s

0

∫
BR+1

u(ξ, τ)L∗v(ξ, τ)dξdτ.

(6.38)

Since L∗Γ(y, s, ξ, τ) = 0, we deduce

u(y, s) =

∫s

0

∫
BR+1\BR

u(ξ, τ)

(
p0∑

i,j=1

aij(ξ, τ)
(
2∂ξi

hR(ξ)∂ξj
Γ(y, s, ξ, τ)

+ Γ(y, s, ξ, τ)∂ξiξj
hR(ξ)

)
−

p0∑
i=1

ai(ξ, τ)Γ(y, s, ξ, τ)∂ξi
hR(ξ)

−

N∑
i,j=1

bijξi∂ξj
hR(ξ)Γ(y, s, ξ, τ)

)
dξdτ.

(6.39)

By means of Theorem 1.5 and (1.28) and (1.29), it is straightforward to conclude that if ε

is suitably small, then the integral at the right-hand side of (6.39) tends to zero as R →
+∞, so that u(y, s) = 0. The thesis follows by repeating the previous argument finitely

many times. �
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