
ON A CLASS OF DOUBLY TRANSITIVE GROUPS
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The purpose of this paper is to prove the following theorem"

THEOREM. Let G be a transitive group of permutations on the (finite) set
of letters . Let G be the subgroup of G fixing the letter a in . Suppose
G contains a normal subgroup Q of even order, which is regular on (a).
Then either

a G is a subgroup of the group of semi-linear transformations over a near
field of odd characteristic or

(b) G is an extension of one of the groups SL(2, q), Sz(q) or U(3, q) by a
subgroup of its outer automorphism group. (I 1 A- q, 1 "4- q or 1 -b q8
in these three respective cases (q 2).)

Essentially "half" of this theorem was proved by Suzuki [8], under the
assumption that the quotient group G/Q had odd order. We therefore
consider only the case that G/Q has even order.

Since Q is regular on t2 (a), we may express G as a semidirect product
G Q where G G n G, the subgroup of permutations fixing both a

and f.
For the rest of this paper, all groups considered are finite. We write IX[

for the cardinality of set X. If X is a subset of a group G, we write X c_ G,
and if X is a subgroup of G, we write X _< G. If X

___
G, (X) will denote the

subgroup of G generated by X. If X is a subset of G, X denotes the set of
all conjugate sets {glXgig G}. We will frequently write (X) instead of
the more cumbersome ((Jr, xa Y). This is the normal closure of X in G and
represents the smallest normal subgroup of G containing X. If M is a group
of (right) operators of a group G it will frequently be convenient to proceed
with computations in the semi-direct product GM and also to view GM as a
group of right operators of G, the elements of G acting by conjugation. Ac-
tion of these operators is indicated by exponential notation. Thus if x e G,
g-lxg may be written xg and if is an automorphism of G, we may write

The commutator x-y-xy is written [x, y]. If a is an automorphism of G
and if x e G, then the commutator Ix, ] is assumed to be computed in the
semidirect product G(a), so Ix, r] x-.x. If r is a set of primes, a v-group
is a group whose order involves only primes in r. /ks usual, r’ denotes the
complement of r in the set of all primes. If r consists of a single prime p,
the symbol p (rather than {p} may replace the symbol r in the notation of
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the previous two sentences. Fintdly, Z(G) denotes the center of G, O2(G)
the maximal normal 2-subgroup of G, and O:,(G), the maximal normal 2’-
subgroup of G.
The author gratefully acknowledges Professor Mark Hale, Jr. for a num-

ber of valuable discussions and wishes to thank Professor gonathon Alperin
for permission to refer to an unpublished result of his which appears as Propo-
sition 2 in the next section. The author also wishes to express his thanks to
Professor M. Aschbacher for a number of suggestions which significantly
shortened the proof of the theorem.

1. Some preliminary propositions
The proof of the theorem requires the use of the following propositions.

PROPOSITION 1. Let G be a transitive permutation group on a set of letters. Let G, be the subgroup of G fixing the letter a in . Suppose G, contains a
normal 2-subgroup A such that A is semi-regular on (a). Then G contains
a normal subgroup N such that either

(i) N is a Frobenius group with Frobenius complement A and Frobenius
kernel N1 which is abelian and regular on , or

(iX) N --- SL (2, q), Sz (q) or U(3, q), N is 2-transitive on and
1 q, 1 q: or 1 + q3 respectively, where q is an appropriate power of 2.

This is corollary 3 of [7].
The following proposition is only slightly more general than the corollary

appearing in [6], but this generality is required, and the proof of it given in
[1] is fr more natural than the version in [6].

PROPOSITION 2 (Alperin). If V is an elementary subgroup of order 4 in a
group G and if V O:(G) 1, then there is an involution of G conjugate to
an element of V which commutes with no element of V.
We conclude this section with

PROeOSTION 3. Let G be a group admitting an automorphism r of order
2. Suppose the subgroup Ca(r) contains a unique involution t. Then either
(t c’} is elementary abelian or else tO:,( G) is the unique involution in G/O:,(G).

Proof. Let S be a 2 Sylow subgroup of Ca(r). Then by hypothesis
is the unique involution in S. If S were a full 2-Sylow subgroup of G, then,
by u theorem of Bmuer and Suzuki [3], tO:, (G) would be the unique involution
in G/O:,(G) nd we would be done. Thus we may assume that S is not a 2-
Sylow subgroup of G. Then there exists a r-invariant 2-subgroup $1
(x, S} containing S as a subgroup of index 2. Then [x, r] is a non-identity
element of S. Since r: 1,

x x (x[x, ] x[x, ].
Thus [x, ] t, the unique involution in S. Thus rt tr x-rx. Note
that since x normalizes S, x centralizes t. Thus r is conjugate to rt in Ca(t).
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Now the class is a r-invariant set with as the unique element in the
class fixed by r. Thus we may write

where m (lti 1)/2. Set u tt., i 1,..., m. The groups
(t, t) .are r-invariant dihedral groups and the elements us are inverted by r.

Suppose some us has odd order. Then there are an odd number of con-
jugates of in (t, t:.), and since this set of involutions is invariant under r,
one of them is fixed by r and hence is t. Thus e (t, t) and inverts u.
Then rt centralizes u. Since rt x-lrx, we see that u e Ca(r)
which contains m ts center. Thus centralzes u On the other hand
centrahzes x and nverts u; consequently also inverts us Snce

now both centrahzes and reverts u t follows that the latter has order 1 or 2,
contrary to our initial assumption that u had odd order and u 1 (since

Hence we must suppose that each u has even order. Since r inverts u,
some power of u is an involution fixed by r, as well as by t and t.. Clearly
this involution is t, the unique involution in Ca(r). Thus commutes with
t and t, i 1, m. It follows that all members of commute with
one another and so (t) is a normal elementary 2-subgroup of G. This com-
pletes the proof of proposition 3.

2. Proof of the theorem
Let G be a transitive group of permutations on the set of letters 2. Fix a

letter in 2, and let G, be the subgroup of G fixing . By assumption, G,
contains a normal subgroup Q which is regular on 2 (a). We may then
write G G Q where G Q 1. Also by assumption, Q has even
order, and so the number of letters 121 is odd. For the sake of consistency
with the notation of [8] we write K G. Also by the result in [8], we
shall assume that K has even order. The proof of the theorem now proceeds
by a series of short steps, (A) through (P) below. Induction on !1 and
G is utilized at steps (G), (H) and (J).

(A). O(Q)= 1.

Set A O.(Q). By way of contradiction ssume AI > 1. Then A
is normal in G, and is semi regular on 2 (a). Then G and A satisfy the
hypothesis of Proposition 1, and so either (i) or (ii) or Proposition 1 must
hold. If (ii) holds, N (A o) is 2-transitive on and so no permutation on
2 can centralize the group of permutations N. Thus G/N is faithfully
represented on the automorphism group ofN modulo the inner automorphism
group of N and conclusion (b) of our theorem holds. If (i) holds, then QN
is a 2-transitive Frobenius group which is normal in G. Then there is near-
field corresponding to QN and G, is complement in G to QN and faith-



ON A CLASS OF DOUBLY TRANSITIVE GROUPS 437

fully acts on QN so as to induce automorphisms on the corresponding near-
field. The conclusion of (a) thus holds.
Thus if A is non-trivial we are done. Without loss of generality, then, we

may assume A 1, which is (A).

(B) For each element x K such $ha x has prime order, Co(x) is non-
trivial.

If C(x) 1, when x has prime order, then Q is nilpotent by a fundamen-
tal theorem of Thompson [9]. In that case, since Q has even order, O(Q)
1, and this contradicts (A).
At this point we introduce a "glossary" of subgroups. For each element

x in K set

points in fixed by x (thus
L Staba(12) (clearly Co(x) <_ No((x)) <_ L
N (Co(x) ’) (clearlyN < L)
K point-wise stabilizer of (clearlyK <:1- L, K g K).

(C) 2 {a} u {/c()} for all x e K.

First, by our hypothesis on Q, t2 {a} u {} and {a,/} __. . If

so a a" from the regularity of Q. This asserts, a e C(x). Thus

The reverse inclusion is triviM.

(D) If z e K either
<i> 2 and Co(x) 1 or
(ii) fl, I> 2, N is 2-transitive on fl, and N <_ Co(K,). Moreover,

L (K n L)N.

If n, 2, then by (C), Co (z) 1 nd (i) holds.
If t2, > 2, then lso by (C), C (z) > 1. Then C (x) fixes a nd is

regular on 2 (a). Since x e Go, x lso normMizes Q, the unique con-
iugte of Q lying in Ga. AgMn by (C),

and C(z) lies in L,, fixes , nd is transitive on 2 (). I follows that
(Co(x), Cx(x)) is 2-transitive on 2 nd so contains every conjugate of C(x)
lying in L (there is exactly one coniugte for ech point in 2). Thus
(C(z), Cx(x)) Nwhichis 2-transitive. SinceK <= L, [K, C(x)] _<
K, n Q 1. Similarly [K, Cox(x)] 1 nd so N, <_ Co(K). Since N, is
normM 2-transitive subgroup ofL it follows that the sectionL/N is covered
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by K, the subgroup fixing 2 letters.
in (ii) are now proved.

ThusL (Lx n K)N All conclusions

(E) G has no non-trivial normal solvable subgroups.

If N is a minimal normal solvable subgroup of the primitive group G, it
easily follows that hr is elementary abelian and is regular on fl. Then Qhr is
a normal 2-transitive Frobenius subgroup, and so Q has a central involution
inverting N. Then O(Q) is non-trivial against (A).

(F) A 2-Sylow subgroup of Q contains more than one involution.

Let Q denote a 2-Sylow subgroup of Q and suppose s were the unique in-
volution in Q. Suppose a conjugate sg of s commutes with s. Then sg fixes
a, the unique letter left fixed by s, and g also fixes a. By the Brauer-Suzuki
theorem [3], sO,(Q) is the unique involution in Q/O.,(Q). Thus, since
g Ga <_ N(Q), g leaves the coset sO,(Q) invariant, and so s sn where
n 0., (Q). Since s commutes with s, n also commutes with s. On the other
hand sns n-1 since sn sg is an involution. Since n has odd order this
forces n 1 and so sg s. We have just proved that s is not fused in G to
any further involution in Ca(s). Thus Glauberman’s Z* theorem [5] may be
applied, and so Co(s)O.,(G) G. By the Feit Thompson theorem [4], O,.,(G)
is solvable and so by (E), O,.,(G) 1. Then G Co(s) <_ G, which con-
tradicts the assumption that G is transitive on ft and ]fl[ >_ 3 (since Q is
assumed to be non-trivial).

(G) A 2 Sylow subgroup of K is not cyclic.

Let S denote a 2-Sylow subgroup of K. Then SQ has odd index in G.
Assume for the remainder of this paragraph that S is cyclic. If y Sg n Q for
any g G, then y fixes {a, } since y Sg n K. On the other hand, as a
member of Q, y is either the identity element or fixes exactly one letter, be-
cause of the regularity of Q on t2 (a). Thus y 1 and so S n Q i for
all g e G. Now we represent G as a permutation group on the cosets of Q.
A generator of the cyclic group S is then represented as [G: SQ] cycles of length
S since S n Q 1 for all g e G. This is an odd permutation. Now ob-

serve that Q n G Q n hro(Q) I implies x G, and Q Q. Thus Q
acts on its own cosets by fixing all cosets of Q in No(Q) and acting semiregu-
larly on the remaining cosets in [hro(Q):Q] orbits of length Q I. Since
[No(Q):Q] 0 mod S[ and S is non-trivial by assumption, every 2-element
in Q is represented by an even permutation in this representation. Thus we
see that G contains a normal subgroup G1 of index 2 in G, namely the elements
represented by even permutations in the representation of G on the cosets of
Q. Thus SG GandQ g G. Since [G:G] 2and It21 is odd, Gis
transitive on 2. Since Q g G1 it follows that G is a 2-transitive group obeying
the same hypotheses as G. By induction, either G contains a normal abelian
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transitive subgroup (as in conclusion (a)) or G1 contains a normal simple
2-transitive subgroup N1 of "Bender type". The former case contradicts step
(E). In the latter case, since GI/N is solvable, hr <:l- G. Then G,aN1 G
and it is clear that G,a/(G, n N) must be isomorphic to a subgroup of the
outer auomorphism group of N1. In this way case (b) of the conclusion of
the theorem is obtained.
We may thus assume S is non-cyclic.

(H) Let r be any involution in K. Then is 1 - q, 1 - q or 1 q’
where q 2 2 and

fi N/(N K)
__

SL(2, q), Sz(q) or U(3, q),

respectively.

We will let "bar" denote application of the homomorphism L -- L,/KL,, the group of permutations of t induced by L, and by restriction apply
this mapping to subgroups of L.
By (B), since r is an involution in K, C(r) > 1 and so case (ii) of (D)

holds. ThusN is a 2-transitive group of permutations on 12,. Since nor-
malizes a 2-Sylow subgroup of Q, necessarily C(r) has even order. Since
C(r) is regular on t (a), 2 is odd. Indeed C(r) Q n hr C(r)-___
C(r) so that a point stabilizer (G, n N,)- in/ restricted to t contains
normal subgroup C(r)- of even order which is regular on ft (a). Thus
the hypotheses of the theorem are satisfied with N, C(r)- and t in the
roles of G, Q and gt respectively. Since 1 implies ft < 2 I, we may
apply induction to assert that either (a) N is a group of semilinear transfor-
mations over a near field, or (b) N is an extension of SL(2, q), Sz(q) or
U(3, q) by its outer automorphism group.
Consider the former case (a). The subgroup of translations _r is normal-

ized by C(r)- and is therefore transitive and regular on t and so C(r)-
is a Frobenius group. It follows that C(r)- --- C(r) contains a unique in-
volution s.
At this point we can apply Proposition 3, for Q is a group admitting as an

automorphism of order 2, and such that C(r) has a unique involution s.
Thus by Proposition 3, either (s} is a normal 2-subgroup of Q, or else sO.,(Q)
is the unique involution in GlOw., (Q). In the former case, 02(Q) > 1 and
this contradicts (A). In the latter case, a 2-Sylow subgroup of Q contuins a
unique involution, and this contradicts (F).
Thus we must assume case (b) holds for and 2. Thus 2 contains

normal 2-transitive subgroup M isomorphic to SL (2, q), Sz (q) or U(3, q).
Thus (M a Q)- is regular on t (a) and so coincides with C(r). Thus,
since My is transitive,M >_ (C(r) N whence/r is itself simple.
The conclusion of (H) now holds.



440 ERNEST SHULT

(I)
a and
hold:

()
(ii)
(iii)

Fix r as in (H). Choose an involution (a). inN transposing
Set V K n N the subgroup ofN fixing a and . The following

V is abelian, and is normalized by t.
V U X Cv(t), where U _- Zq_l, U is inverted by t.
U is normal in L n K.

Since (at)"’ normalizes G, K and lies in N,, normalizes V
N, n K. Then V/(K, n N,) corresponds to the subgroup fixing 2 letters in

N,/(K, n N,) N, --- SL(2, q), Sz(q) or U(3, q).

Thus [t, V](K n N,)/(K, n N) is cyclic of order q 1, and V/(K, n N,) is
also cyclic of order q 1 or (q 1)/ (3, q + 1). By (D) (ii), hr, _< C(K)
and so K, n N, is central in N. Thus V is a cyclic extension of K, n N,,
which lies in its center. It follows that V is abelian. Let W be the 2’-Hall
subgroup of V. Then W covers V/(K, n At,) and

w It, Wl x (t).

Set U [t, W]. Since centralizes K, n N, and V W(K, n hr,) it follows
that[t,V] [t, U] U, andthatUn(K, nN,) 1. Thus

U --. [t, V](K n N,)/(K, n N,) --- Zq_l.
Now

V W(K, n N,) (U X C,(t))(K, n N,).

Since U(K, n N,)/(K, n N,) is a direct factor of V/(K, n N,) with
Cw(:,n,)(t) as a complement (the section V/(K, fl N,) is t-isomorphic to
W/ W n K,) it follows that

U n C(t)(K, n N,) <_ K, n N,.

But U n (K, n hr,) 1, thus C,(t)(K, n N) is a t-invariant direct comple-
ment of U in V and it easily follows that C,(t) C,(t)(K, n hr,) and so
V U C,(t). Thus (i) and (ii) are established.
Now [t, L, n K] <_ hr, n K since normalizes K and since e N, <1- L,. If

x e L, n K, then x x/ where k e N, n K V. Since V is normal inL n K,
and W is characteristic in V, W is normal in L, n K. Thus U is a subgroup
of the abelian group W, and thus is centralized by k [x, t] V. Thus for
each element u in U,

(u)’= (u’) (u-)= ((u)-) (u)-
since/ centralizes Ut Thus U" is a subgroup of W which is inverted by t.
It follows that U [t, W] U. Since x was an arbitrary element in L, n K
we see that U is normal in L, n K and (iii) is proved.

(J) Let Uo represent any element of prime order in U. Let x be any element
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of L n K such that C(x) contains an elementary subgroup of order 4. Then:
(i) C (x) is a 2-group
(ii) x fixes precisely 2 elements in uo namely {a, }.
(iii) x has fixed point free action on the group C(uo) which is abelian.
(iv) o is even.

Suppose x is an element of L, o K such that C(x) contains an elementary
subgroup of order four. Then 112 is odd, and by (D) (ii), is doubly tran-
sitive on 12, its subgroup C(x) being a normal subgroup of (Nx o G)- having
even order and regular on 2 (a). By induction and the definition of Nx,
eitherN is a Frobenius group C(x) N with Frobenius kernel/ regular on

orN
__

SL(2, q), Sz(qx), or U(3, q). The former case is excluded since
C(a) contains an elementary subgroup of order four. Thus C(x) is a 2-Sy-
low subgroup of the simple group fr. (i) follows at once.
Next observe that since x is in L, o K, that x normalizes U by (I). Since

U is cyclic, x also normalizes (u0) and thus stabilizes 12u0. That is, L n K _<_
LuoK.
Next we argue that C(uo) has odd order. First, UC(r) is a Frobenius

group, and so U fixes a and/ and is semiregular on {a, }. From this
it follows that n {a, f}. Thus fixes none of the letters
{/ a e C(u0)} which make up , {a, B}. Thus (being an element of
Lu,) normalizes Q o hrs, C(uo) and acts without fixed points on C(uo).
Thus C(uo) is abelian and has odd order. Thus (iv) holds.

Similarly, for each x K L,, x normalizes Q N,, C(uo). Since C(x)
is a 2-group by (i) and since C(uo) has odd order it follows that x has fixed
point free ction on C(u0). Thua (iii) holds.

Statement (ii) follows immediately from the fact that x fixes, a C(uo)
if and only if x centralizes a. In that case a 1 from (iii) and so o 2
a,/}, proving (ii).

(K) A 2-Sylow subgroup of K is a generalized quaternion group.

Assume S is not quaternion. Since, by step (G) S is also not cyclic, we
may find involutions . in S with central in S. Setting , the
groups L,, N,, K,, V, U and (u0) of steps (H), (I) and (J) are then defined
in terms of the involution , central in S. Then

S <_ C(r) oK, <_. L, oK <_ L,o oK.

This last containment follows from (u0) being characteristic in U and step (I)
(iii). Now any non-identity element in the fours group (, ) satisfies the
hypotheses of the element x in step (J). By (J) (iii) it follows that
(, r)C(uo) is a Frobenius group with Frobenius complement (r, ). This
is clearly impossible since (, ) is a fours-group.

(L) For each element Uo of prime order in U, there exists an element v V(Uo)
--1in K which inverts uo, that is v-uo v uo
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By step (B), CQ(uo) > {1}. Then by (D)(ii) N is 2-transitive on 12u0
andN centralizesK which contains u0. Thus Ca(uo) is 2-transitive on

0 In particular we know that Ca(uo) is not contained in G,. Now

G G, u QKtQ,

where (a)... is the involution of step (I) lying inN and normalizing K.
From the regularity of Q, elements in QKtQ have a unique expression in the
form xvty, x Q, v K, y Q. Since Ca(uo) is not contained in G, we can
find such an element xvty in Ca(uo). Then xvty can be written as

xvty ,o x’v’ u-Ituo)y’* x’v’u-2ty’
and the uniqueness of the expression implies v v"u u-Ivu1. Then

--1v-u0 v u0 so v inverts u0 as promised. (This step was lifted from Suzuki
[8].)

(M) N,/(K, n N) SL(2, 4) or U(3, 4).

For each prime p dividing U q 1, we will writeu for an element of
order p in U, and let U be an S subgroup of U. The element v in K which
inverts u0 u in step (L) can be assumed to be a 2-element by raising v to
an appropriate odd power. We will write v for v to indicate that this element
depends on u.
Now since U is cyclic, (u) is characteristic in U which is normal inL n K

by (I)(iii). Since S C(r) n K <:L K, it follows that Snormalizes (u),
for each choice of p, as well as normalizing U. Clearly S is a 2-Sylow sub-
group of N((u)), and v is a 2-element in hr((u)) which inverts u. Thus
every element of U is inverted by an element in S. Conjugation by elements
of S induce automorphisms of

N/(N n K) --. SL(2, q), Sz(q) or U(3, q),

which may invert any of the non-identity p-elements of its subgroup

I (U X (K, n N,))/(K, n N,) Z_,

Since these automorphisms correspond to field automorphisms of GF(q) we
see that S/Cs(U) is cyclic. By step (K), S is generalized quuternion, and
so S/IS, S] has exponent 2. Thus S/Cs(U) --- Z., and the involution in this
section must invert every elemen of prime order in U. It follows that this
involution must invert every p-Sylow subgroup of U, and hence must invert
U itself. On the other hand the involution in S/Cs(U) must act now as a
field automorphism of GF (q) which inverts every non identity element of the
multiplicative group GF(q)* GF(q) (0). It follows from this that q 4.
Thus

N/(N K,) --_ SL(2, 4) or U(3, 4).

(N) A 2-Sylow subgroup of CQ(r) is a 2-Sylow subgroup of Q.
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Now Co(r) is a 2-Sylow subgroup, of either SL(2, 4) or U(3, 4). Thus
CQ(r) has order 4 or 43. In either case, all involutions in CQ(r) belong to its
center T Z(C(r)) which is a four-group.
Suppose C(r) is not a full 2-Sylow subgroup of Q. Then Q contains a

r-invariant 2-group So containing C(r) as a subgroup of index 2, and S0
(x,C(r)). Thenx xcwherec 1, andceCQ(r). Fromr 1, iteasily
follows that c is an involution and therefore lies in T. Now conjugation by x
induces an automorphism on T X (r}, which is elementary of order 8. Since
x e C(r), x centralizes T X (r) and so this automorphism has order 2. Con-
sequently x centralizes c Ix, r]. This fact is critical in what follows.

Let to be any involution in T and consider the class t0, which is r-invariant.
This class decomposes as

too (t0 n T) -+-{t, t;} + {t., t;}-F’"-F {t,,,, t,},
where ta, ..., t,,, are representatives in t0 of the v-orbits of length 2. Setting
u t t., i 1, 2, ..., m, we see that both t and r invert u.
Now suppose someu has odd order, 1 <_ j _< m. Then (t, t}) is a r-invari-

ant dihedral group containing an odd number of members of to. Thus r een-
trali,es one of these involutions, and his involution, then, is an element c in
Ta. Thus c inverts u and so rc centralizes u. Since U transitively per-
mutes the three elements of T*, we can find an element u in U such tha
c" c. Then, since U is centralized by r, we see that xx x" u-xu also
normalizes C (r), that

[xx,r] Ix",r]-- [x,r] c" c and [x,c] Ix, c]" 1" 1.

Since rc r" centralizes ui, centralizes x ux. Then

xi U i e

which contains c as a central element. Thus, since c commutesth x u x-as well as x, we see that c also commutesth u. This contradicts the fact
c inverts u (since u has odd order by assumption, and is non-tri@al because

t;).
Thus we must nssume tha u has even order for i 1, ..., m. Since u is

lwys non-ideniy element, some power of u isn involution zed by r.

Then z T. In nddition, t and t both eommue wih. Thus we seeha
every elemen t eommues wih les one element of T. Since his con-
elusion holds for eeh involution t0 chosen in T we see from Proposiion 2,
that T n O(Q) > 1}. Bu his contradicts sep (A).
Thus we must hve th C() is full 2-Sylow subgroup of Q.

(0) C(r) is not a full 2-Sylow subgroup of Q.

We prove this by showing that the assumption that it is a full S-subgroup
of Q leads to an impossible situation concerning the fusion of involutions in a
2-Sylow subgroup of G.
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Assume, as in (N), that C(r) is a full 2-Sylow subgroup of Q and as before
set T Z(C(r)), an elementary group of order 4 containing all of the in-
volutions in C(r). Let S be a 2-Sylow subgroup of K lying in C(r). Then
S normalizes C(r) and it is easy to see that the semidirect product S*
SC(r) is a full 2-Sylow subgroup of G.
Suppose w is an involution in S*. Then w lies in (r) X C(r), since

S*/C(r) ----- S is generalized quaternion. Then clearly w (r) T. Thus
(r) X T 2(S*). Now S induces an automorphism of order 2 on T fixing
the involution z, say, in T. Then clearly

comprises the center of S*. By the Burnside theorem on fusion, all elements
of this group which are conjugate in G are conjugate in Na(S*). But since
S* <_ G, and C(r) is semiregular on 2 (a), a is the unique letter in 12 left
fixed by S*. Thus Na(S*) <_ G, and so Na(S*) normalizes Q and hence
normalizes Q r Z(S*) (z). Thus z is not fused to r or rz in G, and so,
conjugating by U, we see that r is not fused to any element of T in G.

If r were not fused to any further involutions in S*, then by the Z*-theorem
of Glauberman [5], G Ca(r)O,(G). But O,(G) I by the Felt Thompson
theorem [4] and step (E). Then G Cq(r). But this is absurd since r - 1,
r fixes a and , and G is transitive on 12.
Thus r must be fused to some further involution in 12(S*) (r) T, but

is not fused to involutions in T. Thus r is fused in G to n element rz lying
in the coset fT. From the action of U on (S*), it follows that r is conju-
gate to rz. Since both of these elements lie in Z(S*), it follows that r is
conjugate to rz. Since both of these elements lie in Z(S*), the theorem of
Burnside tells us that an element in Na(S*) induces, by conjugation, an auto-
morphism of Z(S*) which transposes r and rz, but fixes z. Such an auto-
morphism clearly has order 2 and this statement contradicts the fact that S*
has odd index in hr(S*) (since S* is a 2-Sylow subgroup of G).

This contradiction proves the step, and in fact proves

P The theorem holds.

This follows at once from the incompatibility of steps (N) and (0).
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