ON A CLASS OF DOUBLY TRANSITIVE GROUPS

BY
ErNEsT SHULT

The purpose of this paper is to prove the following theorem:

TrEOREM. Let G be a transitive group of permulations on the (finite) set
of letters . Let G be the subgroup of G fixing the letter o in Q. Suppose
G contains a normal subgroup Q of even order, which is regular on Q@ — (a).
Then either

(a) @ s a subgroup of the group of semi-linear transformations over a near
Jield of odd characteristic or

(b) G s an extension of one of the groups SL(2, q), Sz(q) or U(3, q) by a
subgroup of its outer automorphism group. (|| =14 ¢, 1 + @dorl+d
©n these three respective cases (¢ = 2").)

Essentially “half” of this theorem was proved by Suzuki [8], under the
assumption that the quotient group G,./Q had odd order. We therefore
consider only the case that G,./Q has even order.

Since @ is regular on @ — (a), we may express G, as a semidirect product
Gup @ where Gos = G, n Gg, the subgroup of permutations fixing both «
and 8.

For the rest of this paper, all groups considered are finite. We write | X |
for the cardinality of set X. If X is a subset of a group @, we write X C G,
and if X is a subgroup of G, we write X < G. If X C @G, (X) will denote the
subgroup of G generated by X. If X is a subset of G, X¢ denotes the set of
all conjugate sets {g'Xg|g ¢ G}. We will frequently write (X°) instead of
the more cumbersome (Uy ¢ xe ¥). This is the normal closure of X in G and
represents the smallest normal subgroup of G containing X. If M is a group
of (right) operators of a group G it will frequently be convenient to proceed
with computations in the semi-direct product GM and also to view GM as a
group of right operators of G, the elements of G acting by conjugation. Ac-
tion of these operators is indicated by exponential notation. Thus if z ¢ G,
g 'zg may be written 2’ and if ¢ is an automorphism of @, we may write

(2°)" = a" = 17",
The commutator 'y sy is written [z, y]. If ¢ is an automorphism of G
and if # € @, then the commutator [z, ¢] is assumed to be computed in the
semidirect product G{c), so [z, o] = z '-2°. If = is a set of primes, a m-group
is a group whose order involves only primes in 7. As usual, =’ denotes the
complement of = in the set of all primes. If 7 consists of a single prime p,
the symbol p (rather than {p}) may replace the symbol = in the notation of
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the previous two sentences. Finally, Z((G) denotes the center of G, Ox(G)
the maximal normal 2-subgroup of G, and Oy (&), the maximal normal 2’-
subgroup of G.

The author gratefully acknowledges Professor Mark Hale, Jr. for a num-
ber of valuable discussions and wishes to thank Professor Jonathon Alperin
for permission to refer to an unpublished result of his which appears as Propo-
sition 2 in the next section. The author also wishes to express his thanks to
Professor M. Aschbacher for a number of suggestions which significantly
shortened the proof of the theorem.

1. Some preliminary propositions

The proof of the theorem requires the use of the following propositions.

PropositioN 1. Let G be a transitive permutation group on a set of letters
Q. Let G4 be the subgroup of G fixing the letter o in Q.  Suppose G, contains a
normal 2-subgroup A such that A is semi-requlor on @ — (a). Then G contains
a normal subgroup N such that either

(i) N 4s a Frobentus group with Frobenius complement A and Frobenius
kernel Ny which 1s abelian and regular on Q, or

(1) N~ 8L(2, ¢), Sz(q) or U(3, q), N is 2-transitive on Q and | Q] =
14 q, 14 ¢ or 1+ ¢ respectively, where q is an appropriate power of 2.

This is corollary 3 of [7].

The following proposition is only slightly more general than the corollary
appearing in [6], but this generality is required, and the proof of it given in
[1] is far more natural than the version in [6].

ProrosiTioN 2 (Alperin). If V 4s an elementary subgroup of order 4 in a
group G and if V n O(G) = 1, then there is an involution t of G conjugate to
an element of V which commutes with no element of V*.

We conclude this section with

PropositioN 3. Lel G be a group admitting an automorphism v of order
2. Suppose the subgroup Cq(1) conlains a unique involution t. Then either
(% is elementary abelian or else t0,(G) s the unique involution in G/04(@Q).

Proof. Let S be a 2 Sylow subgroup of Ce(r). Then by hypothesis ¢
is the unique involution in 8. If S were a full 2-Sylow subgroup of G, then,
by a theorem of Brauer and Suzuki [3], 10, () would be the unique involution
in G/0, (G) and we would be done. Thus we may assume that S is not a 2-
Sylow subgroup of G. Then there exists a 7-invariant 2-subgroup S; =
{z, 8) containing S as a subgroup of index 2. Then [z, 7] is a non-identity
element of S. Since 7* = 1,

e =2a" = (2fz, 7])" = 2lz, 7|’
Thus [z, 7] = ¢, the unique involution in S. Thus 7t = tr = 2 'rx. Note
that since # normalizes S, x centralizes . Thus 7 is conjugate to 7t in Ce(2).
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Now the class ¢° is a r-invariant set with ¢ as the unique element in the
class fixed by . Thus we may write

=t 0, b, 8, tm, )

where m = (|| — 1)/2. Set ;= t;#;, ¢ = 1,---, m. The groups
{t; , ;) are r-invariant dihedral groups and the elements u; are inverted by .

Suppose some u; has odd order. Then there are an odd number of con-
jugates of ¢ in {{;, &), and since this set of involutions is invariant under r,
one of them is fixed by = and hence is £. Thus ¢ € {¢;, &) and ¢ inverts u; .
Then ¢ centralizes w;. Since 7t = z 'rz, we see that u?—l e Co(r)
which contains ¢ in its center. Thus ¢ centralzes 45 . On the other hand
t centralizes # and inverts u;; consequently ¢ also inverts w2, Since ¢
now both centralizes and inverts % it follows that thelatter has order 1 or 2,
contrary to our initial assumption that u; had odd order and %; # 1 (since
t; # 1:).

Hence we must suppose that each u; has even order. Since 7 inverts u;,
some power of u; is an involution fixed by 7, as well as by {; and #; . Clearly
this involution is ¢, the unique involution in Ce(7). Thus ¢ commutes with
t;and &7 ,7 =1, .-+, m. It follows that all members of ¢ commute with
one another and so (t°) is a normal elementary 2-subgroup of G. This com-
pletes the proof of proposition 3.

2. Proof of the theorem

Let G be a transitive group of permutations on the set of letters Q. Tix a
letter « in ©, and let G be the subgroup of G fixing «. By assumption, G,
contains a normal subgroup @ which is regular on @ — («). We may then
write Go = G Q where Gosn @ = 1. Also by assumption, @ has even
order, and so the number of letters | @ | is odd. For the sake of consistency
with the notation of [8] we write K = G.s. Also by the result in [8], we
shall assume that K has even order. The proof of the theorem now proceeds
by a series of short steps, (A) through (P) below. Induction on |Q| and
| G| is utilized at steps (G), (H) and (J).

(A). 0Q) = 1.

Set A = 0,(Q). By way of contradiction assume |[A| > 1. Then A
is normal in G, and is semi regular on @ — («). Then G and A satisfy the
hypothesis of Proposition 1, and so either (i) or (ii) or Proposition 1 must
hold. If (ii) holds, N = {4°) is 2-transitive on @ and so no permutation on
Q can centralize the group of permutations N. Thus G/N is faithfully
represented on the automorphism group of N modulo the inner automorphism
group of N and conclusion (b) of our theorem holds. If (i) holds, then QN;
is a 2-transitive Frobenius group which is normal in G. Then there is a near-
field corresponding to QN and G.g is a complement in G to QN; and faith-
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fully acts on @N; so as to induce automorphisms on the corresponding near-
field. The conclusion of (a) thus holds.

Thus if A is non-trivial we are done. Without loss of generality, then, we
may assume A = 1, which is (A).

(B) For each element x ¢ K such that x has prime order, Cq(x) is non-
trivial.

If C¢(z) = 1, when z has prime order, then  is nilpotent by a fundamen-

tal theorem of Thompson [9]. In that case, since @ has even order, 0,(Q)
1, and this contradicts (A).

At this point we introduce a “glossary” of subgroups. For each element
z in K set

Q, = points in Q fized by z (thus @, 2 {a, 8})

L, = Stabe(R) (clearly Co(z) < No({z)) < L,

N, = (Co(z)**) (clearly N, . L)

K., = point-wise stabilizer of Q. (clearly K, <. L., K, < K).

(C) 9 = {a} u{B?} forallz ¢ K.
First, by our hypothesis on @, @ = {a} U{8% and {a, 8} S Q,. If
Ba € ﬂa; Bam — 6::::” - Ba@
80 ¢ = a® from the regularity of . This asserts, @ ¢ Co(z). Thus
0. C {of u {8°07).

The reverse inclusion is trivial.

(D) Ifzx €K either

(i) 9| =2and|Co(z)| =1or

(i) | Q| > 2, N, is 2-transitive on Q, and N, < Ce(K,). Moreover,
L, = (KnL,)N,.

If | @, | = 2, then by (C), | Co(z) | = 1 and (i) holds.

If | Q.| > 2, then also by (C), | Co(z) | > 1. Then Co(z) fixes  and is

regular on @, — (a). Since z ¢ G5, z also normalizes ¢, the unique con-
jugate of @ lying in G5 . Again by (C),

Q. = {8} u{a""®)

and Cq,(z) les in L, , fixes 8, and is transitive on @, — (8). It follows that
{Co(x), Cq,(z)) is 2-transitive on , and so contains every conjugate of Cqo(x)
lying in L, (there is exactly one conjugate for each point in Q,). Thus
{Co(), Co,(x)) = N, which is 2-transitive. Since K, <. L, [K,, Co()] <
K.n@Q = 1. Similarly [K,, Cy,(z)] = 1 and so N, < Ce(K,). Since N, is
a normal 2-transitive subgroup of L, it follows that the section L,/N, is covered
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by K, the subgroup fixing 2 letters. Thus L, = (L, n K)N,. All conclusions
in (ii) are now proved.

(E) @ has no non-trivial normal solvable subgroups.

If N is a minimal normal solvable subgroup of the primitive group G, it
easily follows that N is elementary abelian and is regular on Q. Then QN is
a normal 2-transitive Frobenius subgroup, and so @ has a central involution
inverting N. Then 0,(Q) is non-trivial against (A).

(F) A 2-Sylow subgroup of Q contains more than one tnvolution.

Let @, denote a 2-Sylow subgroup of Q and suppose s were the unique in-
volution in @, . Suppose a conjugate s° of s commutes with s. Then §° fixes
«, the unique letter left fixed by s, and ¢ also fixes «. By the Brauer-Suzuki
theorem [3], 0, (Q) is the unique involution in @/0x(Q). Thus, since
g ¢ G. < N(Q), g leaves the coset sOx (@) invariant, and so s° = sn where
n €0x(Q). Since s commutes with s, n also commutes with s.  On the other
hand sns = n™" since sn = §° is an involution. Since n has odd order this
forcesn = 1 and so &° = s. We have just proved that s is not fused in G to
any further involution in C¢(s). Thus Glauberman’s Z* theorem [5] may be
applied, and so C¢(s)0x(G) = G. By the Feit Thompson theorem [4], 0z (@)
is solvable and so by (E), 02(@) = 1. Then G = Ce(s) < G, , which con-
tradicts the assumption that G is transitive on @ and | Q] > 3 (since Q is
assumed to be non-trivial).

(G) A 2 Sylow subgroup of K s not cyclic.

Let 8 denote a 2-Sylow subgroup of K. Then 8@ has odd index in G.
Assume for the remainder of this paragraph that S is cyclic. If y € 8’ n Q for
any g ¢ G, then y fixes {o’, 8°} since y ¢ 8 n K°. On the other hand, as a
member of Q, y is either the identity element or fixes exactly one letter, be-
cause of the regularity of Q on @ — (a). Thusy = landso 8 nQ = 1 for
all g e . Now we represent G as a permutation group on the cosets of Q.
A generator of the cyclic group S is then represented as [G: SQ)] cycles of length
| 8] since S°n@Q = 1forall geG. This is an odd permutation. Now ob-
gerve that @° n Gu = @° n Ne(Q) = 1 impliesz ¢ G, and @° = Q. Thus Q
acts on its own cosets by fixing all cosets of @ in N¢(Q) and acting semiregu-
larly on the remaining cosets in [N¢(Q):Q] orbits of length |@|. Since
[Ne(Q):Q] = 0mod | S| and S is non-trivial by assumption, every 2-element
in @ is represented by an even permutation in this representation. Thus we
see that G contains a normal subgroup G of index 2 in G, namely the elements
represented by even permutations in the representation of G on the cosets of
Q. Thus SG; = Gand @ < G,. Since [G:Gi] = 2 and | 2] is odd, Gy is
transitive on Q. Since @ < G it follows that G is a 2-transitive group obeying
the same hypotheses as G. By induction, either Gy contains a normal abelian



ON A CLASS OF DOUBLY TRANSITIVE GROUPS 439

transitive subgroup (as in conclusion (a)) or G; contains & normal simple
2-transitive subgroup N; of “Bender type”. The former case contradicts step
(E). In the latter case, since Gi/N; is solvable, N1 <{. @. Then GsN; = G
and it is clear that G.s/(Gas n N1) must be isomorphic to a subgroup of the
outer automorphism group of Ny . In this way case (b) of the conclusion of
the theorem is obtained.

We may thus assume S is non-cyclic.

(H) Let 7 be any involution in K. Then |Q.|is1 + g, 1+ g orl + ¢
where ¢ = 2" > 2 and
N. = N,/(N.n K,) ~ 8L(2, ¢), S2(g) or U(3, ¢),
respectively.

We will let “bar” denote application of the homomorphism L, — L,/K, =
L., the group of permutations of Q. induced by L. , and by restriction apply
this mapping to subgroups of L. .

By (B), since 7 is an involution in K, | Co(7) | > 1 and so case (ii) of (D)
holds. Thus N, is a 2-transitive group of permutations on €,. Since r nor-
malizes a 2-Sylow subgroup of @, necessarily C¢(7) has even order. Since
Co(7) isregular on @, — (@), | @ |is odd. Indeed Co(7) = @ N,Cq(r)” =~
Co(7) 80 that a point stabilizer (G, n N,)™ in N, restricted to Q. contains a
normal subgroup Ce(7)~ of even order which is regular on @, — («). Thus
the hypotheses of the theorem are satisfied with N,, Co(r)” and @, in the
roles of @, Q and Q respectively. Since » # 1 implies | Q.| < | 2|, we may
apply induction to assert that either (a) N, is a group of semilinear transfor-
mations over a near field, or (b) N, is an extension of SL(2, ¢), Sz(q) or
U(8, ¢) by its outer automorphism group.

Consider the former case (a). The subgroup of translations M is normal-
ized by Co(7)™ and is therefore transitive and regular on @, and so Co(7)”™ M
is a Frobenius group. It follows that Cq(7)™ =~ Cq(7) contains a unique in-
volution s.

At this point we can apply Proposition 3, for @ is a group admitting r as an
automorphism of order 2, and such that Co(7) has a unique involution s.
Thus by Proposition 3, either {s°) is a normal 2-subgroup of @, or else sOx (Q)
is the unique involution in G/0x(Q). In the former case, | 0:(@) | > 1 and
this contradicts (A). In the latter case, a 2-Sylow subgroup of @ contains a
unique involution, and this contradicts (F).

Thus we must assume case (b) holds for N, and ©,. Thus N, contains a
normal 2-transitive subgroup M, isomorphic to SL(2, q), Sz(g) or U(3, q).
Thus (M, n Q)™ is regular on @, — (&) and so coincides with Co(7). Thus,
since M, is transitive, M, > (Co(7)*" = N, whence M, = N, is itself simple.
The conclusion of (H) now holds.
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(I) Fiz rasin (H). Choose an involution t = (aB) - - tn N, transposing
aand B. SetV = K n N,, the subgroup of N, fixzing a and 8. The following
hold:

(i) V is abelian, and is normalized by ¢.
(i) V =U X Cy(t), where U~ Z,_,, U is inverted by t.
(iii) U 4s normal in L, n K.

Since ¢ = (af): - normalizes Gus = K and liesin N, , ¢ normalizes V =
N, n K. Then V/(K, n N,) corresponds to the subgroup fixing 2 letters in

N./(K.aN,) = N, >~ SL(2, q), Sz(¢q) or U(3, q).

Thus [t, VI(K, n N,)/(K, n N.) is cyclic of order ¢ — 1, and V/(K,a N,) is
also cyclic of order ¢ — 1 or (¢* — 1)/(3,¢ + 1). By (D)(ii), N. < C(K,)
and so K, n N, is central in N,. Thus V is a cyclic extension of K, n N,,
which lies in its center. It follows that V is abelian. Let W be the 2’-Hall
subgroup of V. Then W covers V/(K, n N,) and

W = [t, W] X Cw(t).

Set U = [t, W]. Since ¢ centralizes K, n N, and V = W(K, a N,) it follows
that [, V1 = [t, U] = U,and that Un (K, n N,) = 1. Thus

U~ V(K,aN,)/(K,aN,) ~Z,,.
Now

V=WXK.aN,) = (UXCws(t))(K,nN,).

Since U(K, n N,)/(K, n N,) is a direct factor of V/(K, n N,) with
Cvix.nvy(t) a8 a complement (the seetion V/(K, n N,) is t-isomorphic to
W/ (W n K,)), it follows that

UnCw(t)(K.,nN,) < K,nN,.

But Un (K, aN,) = 1, thus Cw(t)(K, n N,) is a t-invariant direct comple-
ment of U in V and it easily follows that Cv(l) = Cw(¢)(K, n N,) and so
V = U X Cy(t). Thus (i) and (ii) are established.

Now [t, L, n K] < N, n K since ¢ normalizes K and since t e N, |- L.. If
zeLl,nK, thenz' = xk wherek e N,nK = V. Since Visnormalin L, n K,
and W is characteristic in V, W is normal in L, n K. Thus U” is a subgroup
of the abelian group W, and thus is centralized by k = [z, {] ¢ V. Thus for
each element » in U,

(ux)t = (ut)zk = (u—-l)xk —_ ((uz)—l)k = (u:c)—-l

since k centralizes U”. Thus U” is a subgroup of W which is inverted by ¢.
It follows that U® = [t, W] = U. Since z was an arbitrary element in L, n K
we see that U is normal in L, n K and (iii) is proved.

(J) Let up represent any element of prime order in U. Let x be any element
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of L. n K such that Co(x) contains an elemeniary subgroup of order 4. Then:
(1) Cq (x) is a 2-group
(i) @ fizes precisely 2 elements in Q., , namely {a, B}.
(i) « has fived point free action on the group Co(us) which is abelian.
(iv) | Qu, | @s even.

Suppose « is an element of L, n K such that Co(x) contains an elementary
subgroup of order four. Then | Q, | is odd, and by (D) (ii), NV, is doubly tran-
sitive on . , its subgroup Co(z) being a normal subgroup of (N, n G,)” having
even order and regular on @ — («). By induction and the definition of N,
either NV, is a Frobenius group Co(x) N, with Frobenius kernel N, regular on
Q, or N, o~ SL(2, ¢.), Sz2(g,), or U(3, ¢.). The former case is excluded since
Co(a) contains an elementary subgroup of order four. Thus Co(z) is a 2-Sy-
low subgroup of the simple group N,. (i) follows at once.

Next observe that since z is in L. n K, that  normalizes U by (I). Since
U is eyclie, z also normalizes {u) and thus stabilizes Quy. Thatis, L, n K <
Ly, nK.

Next we argue that Cq(uo) has odd order. First, UCq(7) is a Frobenius
group, and so U fixes a and 8 and is semiregular on @, — {a, 8}. From this
it follows that @ n Q, = {a B}. Thus = fixes none of the letters
{8” ] @ € Cq(uo)} which make up Q,, — {a, 8}. Thus r (being an element of
L.,) normalizes @ n N,, = Cqo(uy) and acts without fixed points on Co(up).
Thus Cq(uo) is abelian and has odd order. Thus (iv) holds.

Similarly, for each x ¢ K n L, , z normalizes @ n N, = Co(u). Since Co(x)
is a 2-group by (i) and since Cq(uo) has odd order it follows that x has fixed
point free action on Co{up). Thus (iii) holds.

Statement (ii) follows immediately from the fact that z fixes 8%, a ¢ Cq(uo)
if and only if z centralizes a. In that case ¢ = 1 from (iii) and s0 Q,, n Q, =
{e, B}, proving (ii).

(K) A4 2-Sylow subgroup of K is a generalized quaternion group.

Assume S is not quaternion. Since, by step (G) S is also not cyclic, we
may find involutions =, % 7, in 8 with = central in S. Setting r = =, the
groups L, , N, , K., V, U and {u) of steps (H), (I) and (J) are then defined
in terms of the involution r, central in S. Then

8<C(*)nK, <I.nK <L, nkK.

This last containment follows from (u,) being characteristic in U and step (I)
(iii). Now any non-identity element in the fours group {(r,, ) satisfies the
hypotheses of the element z in step (J). By (J) (iii) it follows that
{1, 19)Cq(1o) i8 a Frobenius group with Frobenius complement {(r; , 7). This
is clearly impossible since {(r;, 72) i8 a fours-group.

(L) For each element uy of prime order in U, there exists an element v = v(uo)
in K which inverts uo , that is v U0 = ug .
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By step (B), Co(uo) > {1}. Then by (D)(ii) N, is 2-transitive on Q,,
and N,, centralizes K,, which contains uo. Thus Cs(us) is 2-transitive on
@, . In particular we know that Ce(up) is not contained in ¢/, . Now

G = (. u QK1Q,

where ¢ = (af)- - i8 the involution of step (I) lying in ¥, and normalizing K.
From the regularity of Q, elements in QK have a unique expression in the
form zvty, z e Q, ve K, y ¢ Q. Since Cg(up) is not contained in G., we can
find such an element vty in Cs(us). Then zviy can be written as

(wvty) ™ = "™ (up tue)y™® = "°v"“%ug ty™°

and the uniqueness of the expression implies v = v™us> = up'vus’. Then
—1 - . . . . .
v v = up' so v inverts uo as promised. (This step was lifted from Suzuki

8].)
(M) N./(K,nN,) = SL(2,4) or U(3, 4).

For each prime p dividing | U | = ¢ — 1, we will write u, for an element of
order p in U, and let U, be an 8, subgroup of U. The element » in K which
inverts up = u, in step (L) can be assumed to be a 2-element by raising » to
an appropriate odd power. We will write v, for v to indicate that this element
depends on u, .

Now since U is cyelie, {u,) is characteristic in U which is normal in L, n K
by (I)(iii). Since 8 < C(r)nK < L.n K, it follows that 8 normalizes (u,),
for each choice of p, as well as normalizing U. Clearly 8§ is a 2-Sylow sub-
group of Nx({u,)), and v, is a 2-element in Ng((u,)) which inverts u,. Thus
every element of U is inverted by an element in S. Conjugation by elements
of S induce automorphisms of

N, = N./(N.nK,) =~ 8L(2, q), 82(g) or U(3, ¢),
which may invert any of the non-identity p-elements of its subgroup
U= (UX(K.aN,))/(K.,nN,) >~Z,,.

Since these automorphisms correspond to field automorphisms of GF(q) we
see that S/Cs(U) is cyclic. By step (K), S is generalized quaternion, and
80 S/[8, S]has exponent 2. Thus S/Cs(U) =~ Z,, and the involution in this
section must invert every element of prime order in U. It follows that this
involution must invert every p-Sylow subgroup of U, and hence must invert
U itself. On the other hand the involution in S/Cs(U) must act now as a
field automorphism of GF(q) which inverts every non identity element of the
multiplicative group GF(¢)* = GF(q) — (0). It {follows from this that ¢ = 4.
Thus
N./(N.nK,) ~ SL(2,4) or U(3, 4).

(N) A 2-Sylow subgroup of Co(r) s a 2-Sylow subgroup of Q.
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Now Cqo(7) is a 2-Sylow subgroup of either SL(2, 4) or U(3, 4). Thus
Co(7) has order 4 or 4*. 1In either case, all involutions in Co(7) belong to its
center T = Z(Cq(7)) which is a four-group.

Suppose Co(r) is not a full 2-Sylow subgroup of §. Then @ contains a
r-invariant 2-group S, containing Co(7) as a subgroup of index 2, and Sy =
(x,Co(7)). Thenz" = zc wherec = 1,and ¢ e Cg(7). From r* = 1, it easily
follows that ¢ is an involution and therefore lies in 7%. Now conjugation by =
induces an automorphism on T X {r), which is elementary of order 8. Since
2 € Co(r), 2 centralizes T X {r) and so this automorphism has order 2. Con-
sequently  centralizes ¢ = [z, 7]. This fact is critical in what follows,

Let # be any involution in 7™ and consider the class §, which is r-invariant.
This class decomposes as

8= (0T + {t, 8} + (b, 88} + -+ + {tn, (),

where t; , - - -, t., are representatives in ¢¢ of the r-orbits of length 2. Setting
w; = Liti,1=1,2, ---, m, we see that both ¢; and r invert u; .

Now suppose some u; has odd order, 1 <7 < m. Then {;, ;) is a r-invari-
ant dihedral group containing an odd number of members of ¢§. Thus 7 cen-
tralizes one of these involutions, and this involution, then, is an element ¢; in
T*. Thus ¢; inverts u; and so rc; centralizes u;. Since U transitively per-
mutes the three elements of 7%, we can find an element % in U such that
¢“ =¢;. Then, since U is centralized by 7, we see thatz; = z* = u "2y also
normalizes Cq(7), that

u

oy, 7l =", 7] =[x, 7] = c* =¢; and [m1,¢;] = [z,¢c]* = 1" = 1.

. . . —1
Since 7¢; = 7™ centralizes u;, r centralizes 2; u; ;. Then
Ty Uj xl"l € CQ(T)

which contains ¢, as a central element. Thus, since ¢; commutes with 2, u; 2,
a8 well as x; , we see that ¢; also commutes with ©; . This contradicts the fact
¢; inverts u; (since #; has odd order by assumption, and is non-trivial because
b = 6.

Thus we must assume that u; has even order for7 = 1, .-+, m. Since u; is
always a non-identity element, some power of u; is an involution z; fixed by 7.
Then z; ¢ T*. In addition, ¢; and ¢ both commute with z;. Thus we see that
every element #§ commutes with at least one element of T®. Since this con-
clusion holds for each involution ¢ chosen in T* we see from Proposition 2,
that T n 0,(@) > {1}. But this contradicts step (A).

Thus we must have that Co(7) is a full 2-Sylow subgroup of Q.

(0) Cql7) 78 not a full 2-Sylow subgroup of Q.

We prove this by showing that the assumption that it is a full S,-subgroup
of @ leads to an imposgible situation concerning the fusion of involutions in a
2-Sylow subgroup of G.
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Assume, ag in (N), that Co(7) is a full 2-Sylow subgroup of @ and as before
gset T = Z(Cq(7)), an elementary group of order 4 containing all of the in-
volutions in Co(7). Let S be a 2-Sylow subgroup of K lying in C(7). Then
S normalizes Co(7) and it is easy to see that the semidirect product S* =
8Ce(7) is a full 2-Sylow subgroup of G.

Suppose w is an involution in S*. Then w lies in (r) X Cq(7), since
S*/C¢(7) =~ 8 is generalized quaternion. Then clearly w ¢{r) X T. Thus
(ry X T = W(8*). Now S induces an automorphism of order 2 on 7T fixing
the involution 2z, say, in 7. Then clearly

(P Xy =~z X 2,

comprises the center of S*. By the Burnside theorem on fusion, all elements
of this group which are conjugate in G are conjugate in N¢(S*). But since
S* < (G, and Co(7) is semiregular on @ — (a), a is the unique letter in Q left
fixed by 8* Thus Ne(8*) < (G, and so N¢(S*) normalizes @ and hence
normalizes @ n Z(8*) = {(z). Thus 2, is not fused to r or 7z in G, and so,
conjugating by U, we see that = is not fused to any element of 7 in G.

If  were not fused to any further involutions in S*, then by the Z*-theorem
of Glauberman [5), G = Ce(7)0x(G). But 0»(GF) = 1by the Feit Thompson
theorem [4] and step (E). Then G = Cg(7). DBut this is absurd since 7 = 1,
r fixes o and B, and @ is transitive on Q.

Thus  must be fused to some further involution in @,(S*) = (r) X T, but
is not fused to involutions in 7. Thus = is fused in @ to an element 7z, lying
in the coset rT. From the action of U on ©;(8*), it follows that = is conju-
gate to rz1. Since both of these elements lie in Z(S*), it follows that 7 is
conjugate to 7z1. Since both of these elements lie in Z(8*), the theorem of
Burnside tells us that an element in N ¢(S8*) induces, by conjugation, an auto-
morphism of Z(8*) which transposes r and 72, but fixes 2z, . Such an auto-
morphism clearly has order 2 and this statement contradicts the fact that S*
has odd index in N(S8*) (since 8* is a 2-Sylow subgroup of G).

This contradiction proves the step, and in fact proves

(P) The theorem holds.
This follows at once from the incompatibility of steps (N) and (O).
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