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Abstract. Letx : M — M be an isometric immersion of a hypersurface M into an (1 + 1)-
dimensional Riemannian manifold M and let p; (i € {1, ..., n}) be the principal curvatures
of M. We denote by E and P the distinguished vector field and the curvature vector field
of M, respectively, in the sense of [8].

If M is structured by a P-parallel connection [7], then it is Einsteinian. In this case, all
the curvature 2-forms are exact and other properties induced by E and P are stated.

The principal curvatures p; are isoparametric functions and the set (pi, ..., p,) defines
an isoparametric system [10].

In the last section, we assume that, in addition, M is endowed with an almost symplectic
structure. Then, the dual 1-form 7 = P of P is symplectic harmonic. If M is compact, then
its 2nd Betti number b, > 1.

Mathematics Subject Classification (2000). 53C25, 53B21, 53D15

1. Preliminaries

Let (M, g) be an n-dimensional Riemannian C*°-manifold and V the Levi—Civita
connection with respect to g. We denote by I'(TM) the set of sections of the tangent
bundle TM and by b : TM — T*M the musical isomorphism defined by g and by
ft: T*M — TM its inverse.

A function p : R" — Ris called isoparametric [10] if |V pl||> and div (V)
are functions of p. Recall Ap = —div(Vp).

More generally, a system of functions F = (py, ..., p,) such that

(1.1) <Vpi.Vpj > = Ay(F),

(12) div(Vpi) = Bi(F),

(1.3) [Vpi. Voil =) CiVpr.
k=1
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@, j,k € {1,...,n}), where A;;, B; and Cl’;. are smooth functions, is said to be an
isoparametric system [10].

Let @ = {ey, ..., e,} be alocal field of adapted vectorial frames over M and let
O* = {0, ..., »"} be its associated coframe.

Then, the soldering form dp (i.e. the canonical vector valued 1-form associated
with @) is expressed by

(1.4) dp=0o' ®e;,

and E. Cartan’s structure equations, written in indexless form, are

(1.5) Ve=0®e,
(1.6) do = -0 Nw,
(1.7) dd = -0 N0+ 0.

In the above equations, 6 and ®, respectively, are the local connection forms
in the tangent bundle TM and the curvature 2-forms of M.

2. Parallel connection

Let x : (M,g) — (M, %) be the immersion of a C™-hypersurface M into an
(n + 1)-dimensional Riemannian manifold M.

Let £(A7I) be the bundle of orthonormal frames @ = {es; A =1, ...,n + 1}
over M and V the Levi—Civita connection with respect to .

We will denote the induced elements on M by suppressing ~ and put N =
e,+1 for the unit normal vector field of M. Then, the second fundamental form /
associated with x is expressed by

n
2.1) | =— < dp, VN>=29;1“®0)".
i=1

We assume (this is always possible) that / is diagonal, i.e. each vector ¢; (i =
1, ..., n) is an eigenvector of /. Then, we may write

2.2) ot = pia,
(no summation over i ), where p; € C*°(M) are the principal curvatures of M.
In[8], Py =E = Z e;and Py =P = Z pie; have been called, respectively,
i=1
the dlstmgmshed vector ﬁeld and the curvature vector field associated with x. More
generally, P, = Z p; e; is called the r-th curvature vector field associated with x,
i=1
and following [9],
1, |1
== pj=—-gE P)
n = n

is the r-th associated mean curvature of M.
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By (2.2) and the structure equation (1.5), one gets
n

(2.3) VN ==Y po e,
i=1

and it is seen that if all the principal curvatures p; are equal, N is an umbilical
section.
Denote by L : T,M — T,M the Weingarten map,i.e. LZ = VzN (L is linear
and self adjoint).
One has
Vp_N=—P,

which shows that all the curvature vector fields P, are (up to the sign) related by
the Weingarten map.

We assume in this paper that M is structured by a P-parallel connection, in the
sense of [6] and [7]. Consequently, the connection forms Gl.j satisfy

2.4) G;j =< P e Nej>= ,oia)j — )iji,

where A denotes the wedge product of vector fields.
On behalf of the structure equations (1.6), we easily get, by (2.4), that

(2.5) do' =7 N,

where 7 = P’ denotes the dual form of P.
Since all the 1-forms o' are exterior recurrent [3], having the same recurrence
form 7, it follows that 7 is closed, i.e. dwr = 0, or equivalently,

(2.6) Y dpinet =0.
i=1

On the other hand, by the structure equations (1.5) and (2.4), one gets
2.7) Vi = pidp — & ® P+ pio' ® N,

(no summation overi), and since Vpe; = ,ol.2 N, it follows that all the vector fields ¢;,
(i =1,...,n) are P-parallel on TM.

Theorem 1. Let x : M — M be an isometric immersion of a hypersurface M into
an (n + 1)-dimensional Riemannian manifold M and let pi i =1, ...,n) be the
principal curvatures associated with x.

Let E and P, respectively, be the distinguished vector field and the curvature

vector field of M.
If M is structured by a P-parallel connection, then M is an Einstein hypersur-
face of scalar curvature 2(n — 1) p* (p* = || P||? = constant) and P is an invariant

section for the canonical vector-valued 1-form w; of the set of second-order frames
on M.
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In addition, the following properties hold:

i) Eand P commute and p; represent, up to (n — 1), the divergences of the vector
basis O = {e;} on M (the indices correspond) and are first integrals of P;

ii) all the curvature forms on M are exact 2-forms and P is a recurrent dynamical
system (in the sense of H. Poincaré) on M;

iii) the retracting space corresponding to G)'l.] o, @ is of dimension 3;

iv) the brackets [e;, e;] define infinitesimal conformal transformations of the cur-
vature forms G)'l.] (the indices correspond). O

Proof. 1) Taking the covariant differential of P, one finds, by (2.7),
2.8) VP =) dpi®ei+pdp—1®P+v®N,
i=1
where p> = || P||> and
n
(2.9) v = Zpiza)‘ = Pg.
i=1
Hence, in order that P be also parallel in TM, it is necessary and sufficient that
the differential of the principal curvatures p; satisfy
(2.10) dp; = pimr — p*o'.
One derives that p?> = constant and
(2.11) VP =vQ® N.
Since, in general, tr VZ = div Z, one derives, by (2.7),
n
diver =) g(Veserej) = (n = D,
j=1

i.e. the components of P represent, up to (n — 1), the divergences of the vector
basis O = {e;}.

Taking the covariant differential of the distinguished vector field E, one has,
by (2.7),

(2.12) VE =nhidp—wo®P+7m1®N,
and remarking that v(E) = n(P) = p?, we get, by (2.11),
(2.13) [E, P] =0,

that is, £ and P commute.
Since, by (2.5), we may write

o' Ao Ado' =0,

it follows that all the 2-planes {e;, e¢;} are integrable.
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In addition, one easily finds £Lpp; = 0, i.e. all the principal curvatures p; are
first integrals of P. '

ii) Further, taking the exterior differential of the connection forms le’ , one
obtains, by (2.5) and (2.10),

(2.14) o) =21 N 6] =200 A @

Now, making use of the structure equations (1.7), after a standard calculation,
we get

1
(2.15) e/ = Edeg.

Thus, all the curvature forms are exact.
With respect to the local Riemannian volume element 1 of M and the local star
operator, *, determined by a local orientation of M, one infers, by (2.10),

xdiv P = (div P)n = Lpn =0,

where £ denotes the Lie derivative.

Hence, we may say that P defines a recurrent dynamical system (Poincaré’s
theorem of non-return).

We recall that the Ricci tensor field R and the scalar curvature S are defined by

n

R(Z,Z)) =) g(Rei, )7, e),

i=1

(R is the curvature tensor of V),

S = Zﬁ(ei, e) = Z Ri;,
i=1 i=l

respectively.
By (2.14) and (2.15), one derives R;; = 2(p”> — ,01.2). Consequently, the scalar
curvature of the hypersurface M is given by

S =2(n—1)p*> = constant.

This proves that M is an Einstein hypersurface.
By (2.4), (2.5), (2.10) and (2.14), one derives, after some calculations,

(2.16) Lrw' =0, £p6! =0.

Then, if {ef; i,k =1, ..., n}is abasis of the Lie algebra gl(n, R) acting on R",
the last equations reveal that P is an invariant section for the canonical vector-
valued 1-form

=0 Qe +0l @k

of the set of 2-frames ©>M, i.e. the frames of second order (see also [4]) on M.
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iii) We recall the following definition: let I be an ideal spanned by the linearly
independent elements o' € ©@* and a 2-form ¥ € A2M. Then, following [2], if ¢
is the smallest integer such that

VI A A AW =0,

the retracting space H(I) corresponding to I is of dimension 2¢ + s and has the
Grassmannian coordinate vector ¢4 A ! A ... A &°.
Coming back to the case under discussion, it follows, on behalf of (2.14) and

(2.15), that the retracting space H (1) corresponding to G){ , @', / is of dimension 3.
iv) On the other hand, by (2.7), one finds

(2.17) lei,e;] = pjei — piej,
and taking account of (2.10) and of the fact that G)f are closed, one derives
(2.18) Lie,.e)O] = (pj — p)©)].

Hence, the brackets [e;, e;] define infinitesimal conformal transformations of
the curvature forms ©! (i, j € {1, ..., n}). |

Theorem 2. The vector field P = n* is harmonic and all its components p;
(the principal curvatures of M) are eigenfunctions of A and have, as spectrum,
(n —1)p%.

Moreover, p; are isoparametric functions and the set (pi, ..., py) defines an
isoparametric system on M. O

Proof. Taking the star operator, %, of 71 = P° = p;/, one has by a standard
formula

n
(2.19) KT =Z(—1)f—1p,~w1 A A A A

i=1
Then, using (2.4), one immediatly gets
(2.20) dxm) =0 = ér =0,

(8 is the adjoint of d), which shows that 7 is a harmonic 1-form, or that P is
a harmonic vector field.
Further, since, by (2.10), one has

2.21) Vpi = piP — pei,
and recalling that div ¢; = (n — 1) p;, one derives
(2.22) Api = (n—1)p’pi,

which shows that all the principal curvatures p; of M are eigenfunctions of A
corresponding to the same eigenvalue (n — 1) p>.



Einstein hypersurfaces in a Riemannian manifold 77

Hence, following a known definition, (n — 1)p? is in the spectrum of A on
A'M and {p;} form the eigenspace of the eigenvalue (n — 1)p>.
Further, one has

IVoill> = 0*(0* = 7).
Therefore, according to [10], it follows that p; are isoparametric functions.
Moreover, since 7 = P”, one gets by (2.21) that 7(Vp;) = 0, from which we
derive
< Vpi,Vp; >=—p*pip;
and
Vo, Vo:l= 0%0:Vo: Rvay 003 3
[Voi. Vol = p*(0iVpj — piVei) + piej(0] — p;)N.
Accordingly, by references to (1.1)—(1.3), one may say that the principal cur-
vatures define an isoparametric system on M. O

3. Almost symplectic structure

We assume in this section that M is of even dimension, say n = 2m, and consider
the almost symplectic form

m
.
Q= E o A", at =a+m.
a=1

Taking the exterior differential of €2, one finds, by (2.5),
3.1) dQ2 =27 A Q.

This proves that M is endowed with a conformal symplectic structure CSp(m;R)
having 7 as a covector of Lee (see also [6], [7]).

Denoting now, as usual, by Q" : TM — T*M, Z — —izQ = "Z, Z <
['(TM), the symplectic isomorphism and, in order to simplify, setting " P = y, one
derives

(3.2) dy =21 Ny + 20
Next, after a short calculation, we find
(3.3) d(LpQ) =207 A Q.

Hence, by reference to [6], [7], P defines a relative conformal transformation
of Q.

It should also be noted that, by (3.1) and (3.3) and taking account that p? =
constant, one may state that £ and p?Q are homologous.

Therefore, if M is compact, then its Betti number of order 2, b, > 1.

Since the eigenvalue corresponding to the eigenfunctions p; is positive, we may
assume that M is compact.
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More generally, let X = Zim: , X%4e, € T(TM) be any tangent vector field and
denote « = X" and B = —"X. By (2.7), we have

VX =dX* ®es+g(X, P)dp —a @ P+ X pso’ @ N.
If we assume that the differential of the components of X satisfy

dX4 = xaw“* + t?,
dxe = Xgr® + ta)“*,

Xq, Xgr, 1 € C°°(M), then, since
m
B=ixQ =) (X0 — X" ),
a=1

one derives, by (2.5),
dB =7 N B+ 2,

which infers df + tr = 0, i.e. the existence of such X implies that 7 is an exact
form.
By a straightforward calculation, we find

LxQ=2gP, X)+HQ2—7 AB.
By exterior differentiation, one gets
dLxQ) =df+20t+ fHim) AR, f=g(P, X);

the above equation shows that the vector field X defines a relative conformal
transformation of 2.
Moreover, since  is an exact form, then, by reference to [1], X also defines
a weak automorphism of 2.
Further, recall that the Poisson bracket (u, v)» of two Pfaffians u and v is
defined by
(u, v)p = ipe,nR2,

[u?, v¥] is called the associated vector field of (u, v)p.
Coming back to the case under discussion, one finds, by (2.7),

(a)a’ a)a*)j’ = i[ea,ea,*]g2 = paa)a + pa*a)a*a
(no summation), and taking the Lie derivative, one derives, by (2.5) and (2.10),
Lieg.e,12 = 0.

Hence, the structure 2-form 2 is invariant by the vector fields associated with
the Poisson brackets (o, w“*) P.

Finally, we recall that if u € A'M is any 1-form and % and 8, respectively,
denote the symplectic adjoint operator and the symplectic differentiation operator,
then one has

= 1 2m—1 3 o R
U= ——-—unQ , 0 = *d%u.
Qm —1)!
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In the case under discussion, we quickly find 57 = 0.
This shows that 7 is also a symplectic harmonic form.

Summing up, we state the following:

Theorem 3. If the Einstein hypersurface M defined in Sect. 2 is endowed with

an almost symplectic structure defined by the 2-form 2, then this structure is

necessarily conformal symplectic, having m = P’ as the associated Lee covector.
This structure induces the following properties:

i) the curvature vector field P defines a relative conformal transformation of 2
and LpQ and p*Q are homologous;
ii) if X is any vector field such that its components X¢, X* satisfy

dxX¢ = xaa)“* +t0?, dX© = Xpe® + ta)”*,

(Xa, Xgx, t € C®°M, a € {1, ...,m}, a* = a+ m), then i is an exact form and
X defines a weak automorphism of Q2;
iii) Q isinvariant by the associated vector fields of the Poisson brackets (0, * ) p;
iv) m is symplectic harmonic. O
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