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Abstract. Let x : M → M̃ be an isometric immersion of a hypersurface M into an (n +1)-
dimensional Riemannian manifold M̃ and let ρi (i ∈ {1, ...,n}) be the principal curvatures
of M. We denote by E and P the distinguished vector field and the curvature vector field
of M, respectively, in the sense of [8].

If M is structured by a P-parallel connection [7], then it is Einsteinian. In this case, all
the curvature 2-forms are exact and other properties induced by E and P are stated.

The principal curvatures ρi are isoparametric functions and the set (ρ1, ..., ρn) defines
an isoparametric system [10].

In the last section, we assume that, in addition, M is endowed with an almost symplectic
structure. Then, the dual 1-form π = P� of P is symplectic harmonic. If M is compact, then
its 2nd Betti number b2 ≥ 1.

Mathematics Subject Classification (2000). 53C25, 53B21, 53D15

1. Preliminaries

Let (M, g) be an n-dimensional Riemannian C∞-manifold and ∇ the Levi–Civita
connection with respect to g. We denote by Γ(TM) the set of sections of the tangent
bundle TM and by � : TM → T ∗M the musical isomorphism defined by g and by
	 : T ∗M → TM its inverse.

A function ρ : Rn → R is called isoparametric [10] if ‖∇ρ‖2 and div (∇ρ)
are functions of ρ. Recall ∆ρ = −div(∇ρ).

More generally, a system of functions F = (ρ1, ..., ρn) such that

<∇ρi,∇ρ j > = Aij(F),(1.1)

div (∇ρi) = Bi(F),(1.2)

[∇ρi,∇ρ j ] =
n∑

k=1

Ck
ij∇ρk,(1.3)
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(i, j, k ∈ {1, ..., n}), where Aij, Bi and Ck
ij are smooth functions, is said to be an

isoparametric system [10].
Let O = {e1, ..., en} be a local field of adapted vectorial frames over M and let

O∗ = {ω1, ..., ωn} be its associated coframe.
Then, the soldering form dp (i.e. the canonical vector valued 1-form associated

with O) is expressed by

dp = ωi ⊗ ei,(1.4)

and E. Cartan’s structure equations, written in indexless form, are

∇e = θ ⊗ e,(1.5)

dω = −θ ∧ ω,(1.6)

dθ = −θ ∧ θ + Θ.(1.7)

In the above equations, θ and Θ, respectively, are the local connection forms
in the tangent bundle TM and the curvature 2-forms of M.

2. Parallel connection

Let x : (M, g) → (M̃, g̃) be the immersion of a C∞-hypersurface M into an
(n + 1)-dimensional Riemannian manifold M̃.

Let B(M̃) be the bundle of orthonormal frames O = {eA; A = 1, ..., n + 1}
over M̃ and ∇̃ the Levi–Civita connection with respect to g̃.

We will denote the induced elements on M by suppressing ˜ and put N =
en+1 for the unit normal vector field of M. Then, the second fundamental form l
associated with x is expressed by

l = − < dp,∇N > =
n∑

i=1

θn+1
i ⊗ ωi .(2.1)

We assume (this is always possible) that l is diagonal, i.e. each vector ei (i =
1, ..., n) is an eigenvector of l. Then, we may write

θn+1
i = ρiω

i,(2.2)

(no summation over i), where ρi ∈ C∞(M) are the principal curvatures of M.

In [8], P0 = E =
n∑

i=1

ei and P1 = P =
n∑

i=1

ρiei have been called, respectively,

the distinguished vector field and the curvature vector field associated with x. More

generally, Pr =
n∑

i=1

ρr
i ei is called the r-th curvature vector field associated with x,

and following [9],

hr = 1

n

n∑
i=1

ρr
i = 1

n
g(E, Pr)

is the r-th associated mean curvature of M.



Einstein hypersurfaces in a Riemannian manifold 73

By (2.2) and the structure equation (1.5), one gets

∇N = −
n∑

i=1

ρiω
i ⊗ ei,(2.3)

and it is seen that if all the principal curvatures ρi are equal, N is an umbilical
section.

Denote by L : TpM → TpM the Weingarten map, i.e. L Z = ∇Z N (L is linear
and self adjoint).

One has
∇Pr−1 N = −Pr ,

which shows that all the curvature vector fields Pr are (up to the sign) related by
the Weingarten map.

We assume in this paper that M is structured by a P-parallel connection, in the
sense of [6] and [7]. Consequently, the connection forms θ j

i satisfy

θ
j

i =< P, ei ∧ e j >= ρiω
j − ρ jω

i ,(2.4)

where ∧ denotes the wedge product of vector fields.
On behalf of the structure equations (1.6), we easily get, by (2.4), that

dωi = π ∧ ωi ,(2.5)

where π = P� denotes the dual form of P.
Since all the 1-forms ωi are exterior recurrent [3], having the same recurrence

form π, it follows that π is closed, i.e. dπ = 0, or equivalently,

n∑
i=1

dρi ∧ ωi = 0.(2.6)

On the other hand, by the structure equations (1.5) and (2.4), one gets

∇ρi = ρidp − ωi ⊗ P + ρiω
i ⊗ N,(2.7)

(no summation over i), and since ∇Pei = ρ2
i N, it follows that all the vector fields ei ,

(i = 1, ..., n) are P-parallel on TM.

Theorem 1. Let x : M → M̃ be an isometric immersion of a hypersurface M into
an (n + 1)-dimensional Riemannian manifold M̃ and let ρi (i = 1, ..., n) be the
principal curvatures associated with x.

Let E and P, respectively, be the distinguished vector field and the curvature
vector field of M.

If M is structured by a P-parallel connection, then M is an Einstein hypersur-
face of scalar curvature 2(n −1)ρ2 (ρ2 = ||P||2 = constant) and P is an invariant
section for the canonical vector-valued 1-formω2 of the set of second-order frames
on M.
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In addition, the following properties hold:

i) E and P commute and ρi represent, up to (n −1), the divergences of the vector
basis O = {ei} on M (the indices correspond) and are first integrals of P;

ii) all the curvature forms on M are exact 2-forms and P is a recurrent dynamical
system (in the sense of H. Poincaré) on M;

iii) the retracting space corresponding to Θ
j
i , ω

i, ω j is of dimension 3;
iv) the brackets [ei, e j] define infinitesimal conformal transformations of the cur-

vature forms Θ
j
i (the indices correspond). ��

Proof. i) Taking the covariant differential of P, one finds, by (2.7),

∇ P =
n∑

i=1

dρi ⊗ ei + ρ2dp − π ⊗ P + v⊗ N,(2.8)

where ρ2 = ‖P‖2 and

v =
n∑

i=1

ρ2
i ω

i = P�2 .(2.9)

Hence, in order that P be also parallel in TM, it is necessary and sufficient that
the differential of the principal curvatures ρi satisfy

dρi = ρiπ − ρ2ωi .(2.10)

One derives that ρ2 = constant and

∇ P = v⊗ N.(2.11)

Since, in general, tr ∇Z = div Z , one derives, by (2.7),

div ei =
n∑

j=1

g(∇e j ei, e j) = (n − 1)ρi,

i.e. the components of P represent, up to (n − 1), the divergences of the vector
basis O = {ei}.

Taking the covariant differential of the distinguished vector field E, one has,
by (2.7),

∇E = nh1dp − ω⊗ P + π ⊗ N,(2.12)

and remarking that v(E) = π(P) = ρ2, we get, by (2.11),

[E, P] = 0,(2.13)

that is, E and P commute.
Since, by (2.5), we may write

ωi ∧ ω j ∧ dωi = 0,

it follows that all the 2-planes {ei, e j} are integrable.
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In addition, one easily finds LPρi = 0, i.e. all the principal curvatures ρi are
first integrals of P.

ii) Further, taking the exterior differential of the connection forms θ j
i , one

obtains, by (2.5) and (2.10),

dθ j
i = 2π ∧ θ j

i − 2ρ2ωi ∧ ω j .(2.14)

Now, making use of the structure equations (1.7), after a standard calculation,
we get

Θ
j
i = 1

2
dθ j

i .(2.15)

Thus, all the curvature forms are exact.
With respect to the local Riemannian volume element η of M and the local star

operator, ∗, determined by a local orientation of M, one infers, by (2.10),

∗div P = (div P)η = LPη = 0,

where L denotes the Lie derivative.
Hence, we may say that P defines a recurrent dynamical system (Poincaré’s

theorem of non-return).
We recall that the Ricci tensor field R and the scalar curvature S are defined by

R(Z, Z ′) =
n∑

i=1

g
(
R(ei, Z)Z ′, ei

)
,

(R is the curvature tensor of ∇),

S =
n∑

i=1

R(ei, ei) =
n∑

i=1

Rii ,

respectively.
By (2.14) and (2.15), one derives Rii = 2(ρ2 − ρ2

i ). Consequently, the scalar
curvature of the hypersurface M is given by

S = 2(n − 1)ρ2 = constant.

This proves that M is an Einstein hypersurface.
By (2.4), (2.5), (2.10) and (2.14), one derives, after some calculations,

LPω
i = 0, LPθ

j
i = 0.(2.16)

Then, if {ek
i ; i, k = 1, ..., n} is a basis of the Lie algebra gl(n,R) acting on Rn ,

the last equations reveal that P is an invariant section for the canonical vector-
valued 1-form

ω2 = ωi ⊗ ei + θ i
k ⊗ ek

i

of the set of 2-frames O2 M, i.e. the frames of second order (see also [4]) on M.
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iii) We recall the following definition: let � be an ideal spanned by the linearly
independent elements ωi ∈ O∗ and a 2-form ψ ∈ ∧2 M. Then, following [2], if q
is the smallest integer such that

ψq+1 ∧ ω1 ∧ ... ∧ ωs = 0,

the retracting space H(� ) corresponding to � is of dimension 2q + s and has the
Grassmannian coordinate vector φq ∧ ω1 ∧ ... ∧ ωs.

Coming back to the case under discussion, it follows, on behalf of (2.14) and
(2.15), that the retracting space H(� ) corresponding to Θ

j
i , ω

i, ω j is of dimension 3.
iv) On the other hand, by (2.7), one finds

[ei, e j ] = ρ j ei − ρi e j,(2.17)

and taking account of (2.10) and of the fact that Θ
j
i are closed, one derives

L[ei ,e j ]Θ
j
i = (ρ j − ρi)Θ

j
i .(2.18)

Hence, the brackets [ei, e j] define infinitesimal conformal transformations of
the curvature forms Θ

j
i (i, j ∈ {1, ..., n}). ��

Theorem 2. The vector field P = π	 is harmonic and all its components ρi

(the principal curvatures of M) are eigenfunctions of ∆ and have, as spectrum,
(n − 1)ρ2.

Moreover, ρi are isoparametric functions and the set (ρ1, ..., ρn) defines an
isoparametric system on M. ��
Proof. Taking the star operator, ∗, of π = P� = ρiω

i , one has by a standard
formula

∗π =
n∑

i=1

(−1)i−1ρiω
1 ∧ ... ∧ ω̂i ∧ ... ∧ ωn.(2.19)

Then, using (2.4), one immediatly gets

d(∗π) = 0 ⇒ δπ = 0,(2.20)

(δ is the adjoint of d), which shows that π is a harmonic 1-form, or that P is
a harmonic vector field.

Further, since, by (2.10), one has

∇ρi = ρi P − ρ2ei,(2.21)

and recalling that div ei = (n − 1)ρi , one derives

∆ρi = (n − 1)ρ2ρi,(2.22)

which shows that all the principal curvatures ρi of M are eigenfunctions of ∆

corresponding to the same eigenvalue (n − 1)ρ2.
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Hence, following a known definition, (n − 1)ρ2 is in the spectrum of ∆ on
∧1 M and {ρi} form the eigenspace of the eigenvalue (n − 1)ρ2.

Further, one has
||∇ρi ||2 = ρ2(ρ2 − ρ2

i

)
.

Therefore, according to [10], it follows that ρi are isoparametric functions.
Moreover, since π = P�, one gets by (2.21) that π(∇ρi) = 0, from which we

derive
< ∇ρi,∇ρ j >= −ρ2ρiρ j

and
[∇ρi,∇ρ j] = ρ2(ρi∇ρ j − ρ j∇ρi)+ ρiρ j

(
ρ3

i − ρ3
j

)
N.

Accordingly, by references to (1.1)–(1.3), one may say that the principal cur-
vatures define an isoparametric system on M. ��

3. Almost symplectic structure

We assume in this section that M is of even dimension, say n = 2m, and consider
the almost symplectic form

Ω =
m∑

a=1

ωa ∧ ωa∗
, a∗ = a + m.

Taking the exterior differential of Ω, one finds, by (2.5),

dΩ = 2π ∧ Ω.(3.1)

This proves that M is endowed with a conformal symplectic structure CSp(m;R)
having π as a covector of Lee (see also [6], [7]).

Denoting now, as usual, by Ω� : TM → T ∗M, Z �→ −iZΩ = �Z, Z ∈
Γ(TM), the symplectic isomorphism and, in order to simplify, setting �P = γ , one
derives

dγ = 2π ∧ γ + 2ρ2Ω.(3.2)

Next, after a short calculation, we find

d(LPΩ) = 2ρ2π ∧ Ω.(3.3)

Hence, by reference to [6], [7], P defines a relative conformal transformation
of Ω.

It should also be noted that, by (3.1) and (3.3) and taking account that ρ2 =
constant, one may state that LPΩ and ρ2Ω are homologous.

Therefore, if M is compact, then its Betti number of order 2, b2 ≥ 1.
Since the eigenvalue corresponding to the eigenfunctionsρi is positive, we may

assume that M is compact.
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More generally, let X = ∑2m
A=1 X AeA ∈ Γ(TM) be any tangent vector field and

denote α = X� and β = − �X. By (2.7), we have

∇X = dX A ⊗ eA + g(X, P)dp − α⊗ P + X AρAω
A ⊗ N.

If we assume that the differential of the components of X satisfy{
dXa = xaω

a∗ + tωa,

dXa∗ = xa∗ωa + tωa∗
,

xa, xa∗ , t ∈ C∞(M), then, since

β = iXΩ =
m∑

a=1

(Xaωa∗ − Xa∗
ωa),

one derives, by (2.5),
dβ = π ∧ β + 2tΩ,

which infers dt + tπ = 0, i.e. the existence of such X implies that π is an exact
form.

By a straightforward calculation, we find

LXΩ = 2(g(P, X)+ t)Ω − π ∧ β.
By exterior differentiation, one gets

d(LXΩ) = (d f + 2(t + f )π) ∧ Ω, f = g(P, X);
the above equation shows that the vector field X defines a relative conformal
transformation of Ω.

Moreover, since π is an exact form, then, by reference to [1], X also defines
a weak automorphism of Ω.

Further, recall that the Poisson bracket (u, v)P of two Pfaffians u and v is
defined by

(u, v)P = i[u	,v	]Ω,

[u	, v	] is called the associated vector field of (u, v)P .
Coming back to the case under discussion, one finds, by (2.7),

(ωa, ωa∗
)P = i[ea,ea∗ ]Ω = ρaω

a + ρa∗ωa∗
,

(no summation), and taking the Lie derivative, one derives, by (2.5) and (2.10),

L[ea,ea∗ ]Ω = 0.

Hence, the structure 2-form Ω is invariant by the vector fields associated with
the Poisson brackets (ωa, ωa∗

)P .
Finally, we recall that if u ∈ ∧1 M is any 1-form and ∗̃ and δ̃, respectively,

denote the symplectic adjoint operator and the symplectic differentiation operator,
then one has

∗̃u = 1

(2m − 1)!u ∧ Ω2m−1, δ̃ = ∗̃d∗̃u.
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In the case under discussion, we quickly find δ̃π = 0.
This shows that π is also a symplectic harmonic form.

Summing up, we state the following:

Theorem 3. If the Einstein hypersurface M defined in Sect. 2 is endowed with
an almost symplectic structure defined by the 2-form Ω, then this structure is
necessarily conformal symplectic, having π = P� as the associated Lee covector.

This structure induces the following properties:

i) the curvature vector field P defines a relative conformal transformation of Ω

and LPΩ and ρ2Ω are homologous;
ii) if X is any vector field such that its components Xa, Xa∗

satisfy

dXa = xaω
a∗ + tωa, dXa∗ = xa∗ωa + tωa∗

,

(xa, xa∗ , t ∈ C∞M, a ∈ {1, ...,m}, a∗ = a + m), then π is an exact form and
X defines a weak automorphism of Ω;

iii) Ω is invariant by the associated vector fields of the Poisson brackets (ωa, ωa∗
)P ;

iv) π is symplectic harmonic. ��
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