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Abstract. Motivated by recent results on non-Kählerian compact complex surfaces
with small second Betti number, we classify those on which a holomorphic foliation (with
singularities) exists.

Introduction. According to Kodaira, a compact connected complex surface S belongs
to the class VII0 if it is minimal and its first Betti number b1(S) is equal to 1. It is still an open
and fundamental problem to get a classification of these surfaces, which are not Kählerian and
hence rather elusive. Let us shortly recall some advances about this problem [Nak], [DOT],
[Tel], in order to place and to motivate our result. Because of the important rôle of the second
Betti number in the following discussion, it is convenient to denote by VIIn0, n ∈ N , the class
of VII0 surfaces S with b2(S) = n, and to set VII+0 = ⊔

n>0 VIIn0.
Surfaces of class VII0

0 have been completely classified in a series of works by Kodaira,
Inoue, Bogomolov, Li-Yau-Zheng and Teleman. Let us henceforth concentrate our attention
to surfaces of class VII+0 .

Around 1977, Kato [Kat] discovered a large collection of VII+0 surfaces, nowadays called
Kato surfaces (a.k.a. surfaces with a global spherical shell). They are, in some sense, general-
izations of the classical Hopf surfaces (which belong to class VII0

0), and a significant number
of papers has been dedicated to them, so that Kato surfaces may be today considered as “well
known” surfaces. No other examples of VII+0 surfaces have been discovered so far, and indeed
some authors courageously conjecture that every VII+0 surface should be a Kato surface. An
important result in that direction has been proved by Nakamura [Na1], [Na2], in some partic-
ular cases, and then Dloussky-Oeljeklaus-Toma [DOT], in the general case: if S is a surface
of class VIIn0 (n > 0) and contains n rational curves, then S is a Kato surface (the converse
also being true, by construction).

That result motivates the search for rational curves on VII+0 surfaces. In recent years,
Teleman developed a general strategy for finding those rational curves, using methods of
gauge theory [Tel]. Up to now, his strategy has been successfull for small values of the second
Betti number: it is proved in [Te1] and [Te2] that every surface of class VII1

0 or VII2
0 contains

at least one rational curve. We shall give in Section 1 more details on this spectacular result.
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As a consequence, we get a complete classification of VII1
0 surfaces: any such surface is

a Kato surface. However, the same conclusion cannot be drawn for VII2
0 surfaces: we need,

for that purpose, to find a second rational curve, besides the one founded by Teleman.
Since the works of Kodaira and Inoue on the subject, holomorphic foliations (possibly

with singularities) have played a distinguished rôle. For instance, the contribution of Inoue to
the classification of VII0

0 surfaces consisted precisely in getting such a classification under the
additional hypothesis that the surface admits a foliation [Ino]. Remark that this is not an ano-
dyne hypothesis, due to the nonalgebraic nature of these surfaces, and only later Bogomolov
[Bog], Li-Yau-Zheng [LYZ] and Teleman [Te0] showed that any VII0

0 surface does admit a
foliation. Our contribution consists in completing the classification of VII2

0 surfaces when a
foliation exists.

THEOREM 0.1. Let S be a surface of class VII2
0 and suppose that S admits a foliation.

Then S is a Kato surface.

It is here worth observing that, conversely, every Kato surface admits a foliation [D-O].
The presence of foliations on Kato surfaces is the guiding principle of [DOT].

Looking at the above discussion, the strategy of the proof of Theorem 0.1 should be
clear: we shall use the foliation on S to get the second rational curve, which actually will
be a leaf of the foliation. This is done in a sequence of steps which involve several different
techniques and ideas from the theory of foliations: residue formulae, leafwise uniformisation,
invariant measures, complete flows, etc. In fact, we think that it may be precisely this mixture
of arguments the interesting part of the paper, rather than its eventual consequences on the
classification of surfaces.

A natural question is about the extension of Theorem 0.1 to surfaces of class VIIn0, n ≥ 3.
Of course, the first obstruction is that we need Teleman’s results on rational curves, which
for the moment are not yet proven for “large” second Betti numbers. But, even assuming
those results, there are very big difficulties in extending our arguments to VIIn0 surfaces when
n ≥ 3: at several places (but especially at the beginning) the condition b2(S) = 2 seems
insurmountable. The point is that the gap between Teleman’s program, which would lead to
possibly only one rational curve, and Nakamura-Dloussky-Oeljeklaus-Toma theorem, which
needs b2(S) rational curves, becomes obviously larger when b2(S) increases.

In spite of these difficulties, we hope that this paper may be read as a further step toward
the general problem of classifying foliated non-Kählerian surfaces, which we begun to study
in [Br5]. It fits perfectly into the general philosophy described at the end of the introduction
of that paper, and the results of that paper will be an essential piece of the proof of Theorem
0.1.

Acknowledgments. This work has been completed during stays at IMPA (Rio de Janeiro) and
CRM (Barcelona), I thank both Institutions for their hospitality.

1. Some preliminary results. In this section we firstly recall some results on VII2
0

surfaces that we shall need, and then we begin the study of foliations on those surfaces.
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1.1. Teleman’s cycle. Let S be a VII2
0 surface. According to [Te2], S contains a cycle

of rational curves. Because a VIIn0 surface can contain at most n rational curves [Na1, (3.5)],
there are two possibilities for such a cycle: either it is composed by two smooth rational curves
C1 and C2, or by only one rational curve C with a point p of transverse selfintersection (a
node). In the former case, by results of Enoki and Nakamura [Na1, (10.3)] S is a Kato surface,
and more precisely either an odd Inoue-Hirzebruch surface (a.k.a. a half-Inoue surface) or
an Enoki surface (a.k.a. an exceptional compactification of an affine line bundle). For our
purposes, we shall therefore consider only the latter case, in which Teleman’s cycle is a single
rational curve C.

Our objective is to find a second rational curve D on S. There will be two possibilities:
either D will be another rational curve with a node q , disjoint from C, or D will be a smooth
rational curve intersecting transversely C at some point q . In the former case, by [Na1, (8.1)]
S is a Kato surface, more precisely an even Inoue-Hirzebruch surface (a.k.a. a hyperbolic
Inoue surface). In the latter case, by [DOT] S is a Kato surface of so-called intermediate type.

By another result of Nakamura [Na2, (1.5)], the surface S can be deformed to a blown-up
primary Hopf surface, in such a way that moreover C is deformed to a smooth elliptic curve.
In particular, S is diffeomorphic to the connected sum of S3 × S1 and two copies of CP 2, and
its fundamental group is infinite cyclic. Denote by

π : S̃ −→ S

the universal covering, and set
C̃ = π−1(C) .

The natural map from π1(C) � Z to π1(S) � Z is an isomorphism [Na1, (9.2)], hence C̃ is
an infinite chain of smooth rational curves in S̃. We fix a generator

ϕ : S̃ −→ S̃

of the group of covering transformations, and we denote by {Cj }j∈Z the rational curves com-
posing C̃, labeled in such a way that

ϕ(Cj ) = Cj+1 .

Following [Na2, (1.7)], we may fix on S two line bundles L1, L2 ∈ Pic(S) such that
(1) L1 · L1 = L2 · L2 = −1, L1 · L2 = 0,
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(2) KS = L1 + L2,
(3) OS(C) = −L1

(here we use the additive notation for tensor products of line bundles). In particular, we see
that

C · C = −1

and therefore Cj · Cj = −3 for every j ∈ Z.
Observe also that

π1(S̃ \ C̃) = 0 .

Indeed, after a Nakamura deformation [Na2, (1.5)] the cycle C becomes a smooth elliptic
curve of selfintersection −1 in a blown-up Hopf surface, and necessarily such an elliptic
curve intersects, at a single point, a rational curve contained in the exceptional divisor of the
blow-up. Therefore, in the surface S we can find a smooth (non-holomorphic) sphereΣ which
intersects C at exactly one point, so that π−1(Σ) is a countable collection of spheres {Σj } in
S̃ with Σj · Ck = δjk . Because π1(S̃ \ C̃) is generated by small cycles turning around the
curves Cj , and these cycles can be chosen inside the spheresΣj , the claim above follows.

We shall denote by ≈ the numerical equivalence between line bundles, i.e., the equality
between their Chern classes. Thus, every line bundle on S is numerically equivalent to a1L1 +
a2L2 for suitable a1, a2 ∈ Z. Remark that from H 1(S,O) � H 1(S,C) it follows that a line
bundle on S is numerically trivial if and only if it is flat, i.e., it can be defined by a locally
constant cocycle.

1.2. Singularities of the foliation. Suppose now that on the surface S we have a
foliation F . We refer to [Br2] for the basic results that we shall use, in particular for the
residue formulae of Baum-Bott and Camacho-Sad.

Let NF be the normal bundle of F , and write

NF ≈ a1L1 + a2L2, a1, a2 ∈ Z .

If Det(F) is the total number of singularities of F , counted with multiplicity, then

Det(F) = c2(S)+KS ·NF +NF · NF = 2 − [a1(a1 + 1)+ a2(a2 + 1)]
[Br2, p. 21] and if Tr(F) is the sum of Baum-Bott residues of those singularities, then

Tr(F) = NF ·NF = −(a2
1 + a2

2)

[Br2, p. 34]. The singular set Sing(F) cannot be empty, otherwise Det(F) = Tr(F) = 0 and
this contradicts the above two formulae. Hence Det(F) ≥ 1, and the first formula immediately
implies

a1, a2 ∈ {−1, 0}
and so

Det(F) = 2 .

Remark that for the moment this does not exclude that F has only one singular point, of
multiplicity 2.

LEMMA 1.1. The curve C is F-invariant.
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PROOF. If not, then we compute the degree of NF on C using the formula in [Br2,
p. 23]:

NF · C = χ(C)+ tang(F , C) .
The arithmetic Euler characteristic χ(C) is here equal to 0, and tang(F , C) > 0 because the
node p gives a strictly positive contribution tang(F , C, p). Hence NF · C > 0. On the other
side,

NF · C = −(a1L1 + a2L2) · L1 = a1 ∈ {−1, 0} ,
giving a contradiction. �

In particular, the node p ∈ C is a singularity of the foliation, and the two local branches
of C through p are separatrices [Br2, p. 9] for that singularity.

LEMMA 1.2. The singularity of F at p has multiplicity 1.

PROOF. If not, then Sing(F) = {p} and p has multiplicity 2. Let (z,w) be local coor-
dinates centered at p such that {zw = 0} is an equation for C. The foliation is generated by a
vector field of the form

A(z,w)z
∂

∂z
+ B(z,w)w

∂

∂w
.

The only way to get multiplicity 2 is, up to a permutation, A(0, 0) �= 0 and B(0, 0) = 0,
∂B
∂w
(0, 0) �= 0. This means that p is a saddle-node singularity, with strong separatrix {w = 0}

and weak separatrix {z = 0}. In suitable formal coordinates, still denoted by (z,w), the
foliation is generated by a vector field of the form [Br2, p. 11]

(1 + νw)z
∂

∂z
+ w2 ∂

∂w
, ν ∈ C .

In the following we shall use this formal normal form to compute some residues, and it is an
easy matter to check the computation even when the formal conjugacy is not convergent (e.g.
use Dulac’s normal form instead of the formal one).

Concerning Camacho-Sad residues [Br2, p. 39] we get

CS(F , {w = 0}, p) = 0 ,

CS(F , {z = 0}, p) = ν ,

CS(F , {zw = 0}, p) = ν + 2 ,

and concerning Baum-Bott residue [Br2, p. 34] we get

BB(F , p) = Res0

{ [(1 + νw) + 2w]2

zw2(1 + νw)
dz ∧ dw

}
= 2(ν + 2) .

From Camacho-Sad formula C ·C = CS(F , C, p) and C ·C = −1 we get ν = −3, and
consequently BB(F , p) = −2. From Baum-Bott formula we then get NF ·NF = −2, which
in turn implies a1 = a2 = −1. Therefore,

NF · C = −(−L1 − L2) · L1 = −1 .
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On the other side, this degree can be computed also by the formula in [Br2, p. 25]:

NF · C = C · C + Z(F , C) .
In our case, Z(F , C) = Z(F , C, p) = 1 [Br2, p. 38] and C · C = −1, whence NF · C = 0,
which is a contradiction. �

By this lemma (and Det(F) = 2) we have

Sing(F) = {p, q} ,
where both p and q are nondegenerate singularities.

We shall distinguish from now on two possibilities:
(A) q belongs to C.
(B) q does not belong to C.

Case (A) will lead to an intermediate Kato surface, and Case (B) will lead to an even Inoue-
Hirzebruch surface.

2. Numerical class of the normal bundle. We have already seen that NF ≈ a1L1 +
a2L2, with a1 and a2 in {−1, 0}. Here we shall see a more precise statement. Some of our
arguments can be found also in [DOT, §2], but we repeat them for sake of completeness.

2.1. Case (A). First of all we observe that

NF · C = C · C + Z(F , C, p)+ Z(F , C, q) = −1 + 0 + 1 = 0

due to the nondegeneracy of p and q . Therefore, from OS(C) = −L1 we infer a1 = 0, that is

NF ≈ a2L2 , a2 ∈ {−1, 0} .
LEMMA 2.1. In Case (A) we have NF ≈ −L2.

PROOF. By contradiction, suppose that NF is numerically trivial, i.e., flat. Thus, for
a suitable open covering {Uj } of S, the foliation is generated by holomorphic 1-forms ωj ∈
Ω1(Uj ) with ωj = gjkωk on Uj ∩ Uk , where gjk ∈ C∗ and {gjk} is a cocycle defining
NF = F . By differentiating (dωj = gjkdωk) we get a section of KS ⊗ F . This section must
be identically zero: otherwise KS would be numerically equivalent to a non-negative divisor∑
mjDj , mj ≥ 0, the minimality of S would give KS · Dj ≥ 0 and hence KS · KS ≥ 0,

contradicting KS · KS = −2. Therefore, each 1-form ωj is closed, and even exact if we
assume (as we can) that each Uj is contractible:

ωj = dfj , fj ∈ O(Uj ) .
The functions fj are submersions outside p and q , which are Morse-type critical points due
to their nondegeneracy. On Uj ∩ Uk we have

fj = gjkfk + cjk

with cjk ∈ C. The foliation is a so-called transversely affine foliation.
When we pass to the universal covering S̃, the lifted foliation F̃ can be defined by (the

differential of) a global holomorphic function f ∈ O(S̃), with Morse-type singularities at
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Sing(F̃) (developing map). We may choose such a function so that f |C̃ ≡ 0. The covering
transformation ϕ : S̃ → S̃ acts on f in an affine way, and taking into account that C̃ is
ϕ-invariant we get

f ◦ ϕ = λ · f
for some λ ∈ C∗.

Consider now the curve L = {f = 0} ⊂ S̃. Because ϕ(L) = L, its projection to S
is a compact curve L0 ⊂ S. One irreducible component of L0 is the curve C, but there is
(at least) another irreducible componentD, cutting C at q . Using Camacho-Sad formula it is
immediate to see that D is a smooth rational curve of selfintersection −1, but this contradicts
the minimality of S. �

REMARK 2.1. In the non-minimal case, a situation like the one described in the pre-
vious proof exists. Indeed, take S0 of class VII1

0 and of Enoki type. There is on S0 a foliation
F0, tangent to the unique rational curve C0, which is a nodal rational curve with zero self-
intersection. The normal bundle of F0 is numerically trivial. If we blow-up a point on C0,
different from the node, we get a foliation F whose normal bundle is still numerically trivial,
and whose structure is like the one in the previous proof, the only difference being that the
ambient surface S is not minimal.

2.2. Case (B). In this case, where q �∈ C, we have

NF · C = C · C + Z(F , C, p) = −1 ,

from which we infer a1 = −1, that is

NF ≈ −L1 + a2L2 , a2 ∈ {−1, 0} .
LEMMA 2.2. In Case (B) we have NF ≈ −L1 − L2.

PROOF. By contradiction, suppose that NF ≈ −L1, i.e., that NF ⊗ O(−C) = F is
flat. This means that the foliation is generated by logarithmic 1-forms ωj ∈ Ω1(logC)(Uj )
with ωj = gjkωk on Uj ∩ Uk , gjk ∈ C∗ (the logarithmic property comes from the fact that
C is F-invariant). The cocycle {gjk} defines F . By taking differentials we now get a section
of KS ⊗ OS(C) ⊗ F , which, similarly to Case (A), must be identically zero: the canonical
bundle KS cannot be numerically equivalent to a divisor

∑
mjDj − C, mj ≥ 0, because we

would get KS ·KS ≥ −KS · C = −1. Hence, every ωj is a closed logarithmic 1-form.
When we pass to S̃, the foliation F̃ can be therefore defined by a global closed logarith-

mic 1-form ω ∈ Ω1(log C̃)(S̃), with

ϕ∗(ω) = λ · ω
for a suitable λ ∈ C∗.

However, we know that S̃ \ C̃ is simply connected (Subsection 1.1), hence the periods
of ω|S̃\C̃ must vanish and consequently ω has no poles at all along C̃. This is a contradiction
with the construction of ω. �
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REMARK 2.2. At the end, in Case (B) we shall find a second nodal rational curve
D ⊂ S, and the lifted foliation will be defined by a closed logarithmic 1-form with poles
on C̃ ∪ D̃, and with periods additively generated by {λj }, with λ a quadratic irrational (see
[D-O]). But here one finds also that

H1(S̃ \ (C̃ ∪ D̃),R) = R2 ,

and so everything is coherent (the additive group generated by {λj } has rank 2). It is worth
observing that, whereas in Lemma 2.1 we used only the minimality of the surface, in Lemma
2.2 we use a more subtle topological argument. This announces that the proof in Case (B) will
be more difficult than in Case (A).

2.3. The canonical bundle. From now on our attention will be shifted from the nor-
mal bundleNF to the canonical bundleKF . It is therefore convenient to restate Lemmata 2.1
and 2.2 in terms of KF , which is immediate from the adjunction formulaKS = N∗

F ⊗KF .

PROPOSITION 2.1. In Case (A) the line bundle KF ⊗ OS(C) is numerically trivial.
In Case (B) the line bundleKF is numerically trivial.

3. Uniformisation. In this section we pause the proof of Theorem 0.1, and we work
in a much more general setting. Our aim is to prove a uniformisation result analogous to the
one in [Br3], but in a possibly non-Kählerian case, and following a program initiated in [Br5].

3.1. Setting and statement. We consider an arbitrary compact connected complex
surface S equipped with a foliation F . We shall assume that F is uniformisable in the sense
of [Br5, Def. 2.1], which is an innocuous assumption since nonuniformisable foliations are
completely classified in [Br5]. Hence, given a local transversal T ⊂ S◦ = S \ Sing(F) (say,
isomorphic to the disc), we can construct the covering tube

UT
PT−→ T

by glueing together the universal coverings of the leaves cutting T . We shall also assume that
F is relatively minimal in the sense of [Br5, Rem. 2.1], i.e., that there does not exist a smooth
rational curve of negative selfintersection over which the canonical bundle KF has negative
degree. This is also an innocuous assumption (at least, if we allow S to have some quotient
singularities). In that case, the natural map

ΠT : UT → S

sending fibers to leaves is a holomorphic (and not merely meromorphic) immersion. More-
over, we do not need to worry about the definition of “leaves” of F , since they are just the
usual leaves outside Sing(F): there are no vanishing ends.

THEOREM 3.1. Suppose that there exists a holomorphic vector field v on UT , which
is tangent to the fibers of PT and nowhere vanishing. Then UT is a Stein surface.
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Remark that, conversely, if UT is Stein then such a vertical nowhere vanishing vector
field v certainly exists, since the relative tangent bundle of the fibration is topologically and
hence holomorphically trivial.

By the classical results of Nishino and Yamaguchi (see [Br3] and references therein), the
previous theorem has the following corollaries:

(1) If at least one fiber of PT is hyperbolic, then the fiberwise Poincaré metric on UT
has a subharmonic variation; in particular, the parabolic fibers fill a complete pluripolar subset.

(2) If every fiber of PT is parabolic, then UT � T × C.
By functoriality of the Poincaré metric we get the following corollary from (1):

COROLLARY 3.1. Suppose that the hypothesis of Theorem 3.1 is satisfied for every
covering tube associated to F . If at least one leaf of F is hyperbolic, then the leafwise
Poincaré metric induces a (singular) hermitian metric on KF whose curvature is a closed
positive current. In that case, parabolic leaves and singularities fill a complete pluripolar
subset of S.

Of course, it is sufficient to verify the hypothesis of Theorem 3.1 only on a finite number
of tubes, whose union covers S◦.

Remark that Theorem 3.1 does not exclude the algebraic (or Kähler) case already studied
in [Br3]. However, in that paper there is no hypothesis on the holomorphic triviality of the
relative tangent bundle.

3.2. Developing map. Let us firstly recall a one dimensional construction. Suppose
that we have a connected and simply connected complex curve R equipped with a nowhere
vanishing holomorphic vector field v. Pick a point p ∈ R. Then we have a canonically defined
immersion D : R → C as follows. We take on R the holomorphic 1-form β dual to v (i.e.,
β(v) ≡ 1), which is closed and even exact because R is simply connected. Then D is just the
primitive of β, normalized by D(p) = 0. It is an immersion because β is nowhere vanishing.
Incidentally, the Riemann domain R → C can be also understood as the maximal domain
over which the (uncomplete) flow of v, with initial condition at p, is defined.

Turning to Theorem 3.1, the vertical vector field v on UT is exploited in the following
way. For each t ∈ T , by the previous construction we get an immersion Dt : P−1

T (t) → C ;
here the base point on P−1

T (t) is just pT (t), where pT : T → UT is the canonical section of
UT . By gluing together these maps we then get a holomorphic immersion

D : UT → T × C

sending P−1
T (t) to {t} × C. In particular, UT is a Riemann domain over T × C � D × C.

Also this Riemann domain can be understood as the maximal domain over which the flow of
v, with initial condition on T , is defined.

The fact that UT is a Riemann domain over C2 gives a drastic simplification in the proof
of Theorem 3.1, with respect to [Br3]: in order to prove that some manifold is Stein, it is
much simpler when the manifold is presented as a Riemann domain over the Euclidean space,
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or over another Stein manifold. In some sense, we are closer to [Ily] than to [Br3], and indeed
the proof that we shall give is somewhat reminiscent of Il’yashenko’s ideas.

More concretely, by Oka’s Theorem in order to prove that UT is Stein it is sufficient to
prove that it is Hartogs-convex, i.e., that every embedding of a Hartogs figure

Hε = {(z,w) ∈ D2 ; |w| < ε or |z| > 1 − ε }
into UT extends to an embedding of its completion D2 into UT . This is the path that we will
follow.

3.3. Hartogs-convexity. Take a holomorphic embedding

f : Hε → UT .

The composite map D ◦ f : Hε → T × C is an immersion which, of course, can be holomor-
phically extended to D2. This extension, denoted by ̂D ◦ f , is still an immersion. Let G be
the foliation on D2 obtained by pulling-back the vertical foliation on T × C, and note that G
is a nonsingular foliation.

Consider the immersion
ΠT ◦ f : Hε → S .

According to [Iva, Cor.1], this map extends meromorphically to D2 \ Γ , where Γ ⊂ D2 is a
discrete subset of essential singularities. Outside Γ and the indeterminacy pointsΣ ⊂ D2\Γ ,
this extension ̂ΠT ◦ f is still an immersion, which sends leaves of G to leaves of F .

LEMMA 3.1. We have Σ = Γ = ∅.

PROOF. BecauseF is relatively minimal, and because G is nonsingular, the map ̂ΠT ◦ f
cannot have indeterminacy points: indeed, by [Br3, Lemma 1] an indeterminacy point would
produce a rational curve in S over which the canonical bundle KF would have negative de-
gree (see also [Br5, Remark 2.1]). Or, in other words, an indeterminacy point would produce
a vanishing end of some leaf of F , which cannot exist by relative minimality.

Because F is uniformisable, the set of essential singularities is empty too. Indeed, a point
q ∈ Γ would produce a vanishing cycle [Br5, Definition 2.2]: take the image by ̂ΠT ◦ f of a
small cycle around q in the leaf of G through q . �

By this lemma, we have now at our disposal a holomorphic immersion

̂ΠT ◦ f : D2 → S .

Note that this map avoids Sing(F), since G = ( ̂ΠT ◦ f )∗(F) is nonsingular. We shall use the
continuity method to lift such a map to UT , i.e., to find

f̂ : D2 → UT

such that ̂ΠT ◦ f = ΠT ◦ f̂ and f̂ |Hε = f . This gives the Hartogs-convexity.
As a preliminary fact, observe that, up to a small perturbation of our initial f (which

does not affect Hartogs-convexity), we may assume that no horizontal disc of D2 is a leaf of
G. Thus, for every w ∈ D, the disc Dw = D × {w} ⊂ D2 is generically transverse to G, but
may have also some tangency points.
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Suppose that the desired lifting f̂ has been already constructed on

Hε,r = {(z,w) ∈ D2 ; |w| < r or |z| > 1 − ε }
for some r < 1, and take a point p = (z0, w0) with |w0| = r and |z0| ≤ 1 − ε. Let Vp be a

small disc centered at p and contained in the leaf of G through p. By the map ̂ΠT ◦ f , Vp is
sent to a disc Wp inside some leaf of F , which can be lifted to the universal covering of the
leaf, i.e., to some fiber of UT . Of course, such a lifting is usually not unique, and we have to
select the “good” one. Denote by {gα}α∈A the (countable) set of maps gα : Vp → UT such
that

ΠT ◦ gα = ̂ΠT ◦ f |Vp .
Observe now that Vp∩Hε,r is a nonempty open subset of Vp, which however may have several
connected components (when p is a tangency point of G with Dw0 ). On Vp ∩ Hε,r the map

f̂ is defined, and satisfies ̂ΠT ◦ f = ΠT ◦ f̂ , and so for every connected component Ωj of
Vp ∩ Hε,r there exists one and only one gα which extends f̂ |Ωj to the full Vp.

LEMMA 3.2. α does not depend on j .

PROOF. This is a manifestation of the fact that UT is Hausdorff [Br5]. Note that if
q = (z0, w

′
0), |w′

0| < r , is close to p and Vq ⊂ G is close to Vp, then the intersection
Vq ∩ Hε,r becomes connected. Hence, by the argument above, we may find g : Vq → UT

which extends f̂ |Vq∩Hε,r . By taking a limit as q tends to p we then get the conclusion. �

Therefore, we obtain a well defined extension of f̂ to the disc Vp. By repeating this
procedure for every p on {|w| = r} we obtain the extension of f̂ to Hε,r ′ for some r ′ > r .
Hence, if R is the supremum of those r < 1 such that f̂ extends to Hε,r , we find R = 1. This
means precisely that the sought extension to D2 has been found.
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4. Case (A): conclusion. We now return to the proof of Theorem 0.1, and to the
setting and notation of Sections 1 and 2. With the help of Proposition 2.1 and Theorem 3.1,
we can complete the proof of Theorem 0.1 in the Case (A).

First of all, we may suppose that F is uniformisable. Indeed, nonuniformisable foliations
are classified in [Br5], and it follows from that result that the only minimal compact complex
surfaces admitting nonuniformisable foliations are Hopf and Kato surfaces, in which case the
conclusion of Theorem 0.1 holds (and, more precisely, S is an intermediate Kato surface).

We may also suppose that F is relatively minimal. Indeed, in the opposite case we have
on S a rational curveD withKF ·D < 0. This curve cannot coincide with C, forKF ·C = 1.
In fact, it is easy to see thatD must be a smooth rational curve, invariant by F , and cutting C
at the point q . By [DOT] we get, again, that S is an intermediate Kato surface.

Remark that on any intermediate Kato surface there exists an unique foliation [D-O],
which is not uniformisable nor relatively minimal [Br5, p. 737]. Therefore it is not a surprise
that in the following we shall get a contradiction.

By Proposition 2.1, the foliation F̃ on the universal covering S̃ is defined by a holomor-

phic vector field v which vanishes on C̃, and only there. Because any covering tube UT
ΠT→ S

can be lifted to S̃, we can pull-back v to UT , getting a vector field v′ tangent to the fibers. If
T ∩C = ∅, then v′ is nowhere vanishing. If T ∩C �= ∅, say T ∩C = {t0} to fix ideas, then we
can multiply v′ by the function P ∗

T (1/(t − t0)), and again we get a vertical nowhere vanishing
vector field. In conclusion, the hypothesis of Theorem 3.1 is satisfied, for every covering tube.

Observe now that F has at least one hyperbolic leaf: the one contained in C, which is
isomorphic to the projective line minus three points. We stress that here we are using the
relative minimality (see again [Br5, p. 737]). Therefore, from Corollary 3.1 we deduce that
KF is pseudoeffective.

Following [Tom, Remark 8] and [Lam], recall now that the pseudoeffectivity of a line
bundle on a class VII0 surface implies that the line bundle is numerically equivalent to an
effective one. In our case, we therefore get that KF is numerically equivalent to OS(αC) for
some α ≥ 0 (we assume that C is the only curve on S, otherwise S is already a Kato surface).
On the other side, KF is numerically equivalent to OS(−C). This is a contradiction, because
OS(C) is not numerically trivial.

5. Case (B): first integral. From now on we shall consider only Case (B). The proof,
in this case, becomes more elaborate. A first step consists in the construction of a plurisub-
harmonic first integral for F̃ on S̃.

As in Case (A), we may assume that F is uniformisable and relatively minimal. Note,
however, that contrary to Case (A) the model that we are looking for (one of the two foliations
on an Inoue-Hirzebruch surface [D-O]) is uniformisable and relatively minimal [Br5, p. 737].
This explains, perhaps, why Case (B) is more difficult than Case (A).

By the same argument already used in Case (A), Proposition 2.1 implies that we are in
the domain of application of Theorem 3.1 and Corollary 3.1.
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5.1. Existence of parabolic leaves. The nodal curve C contains a parabolic leaf of
F , isomorphic to C∗. Besides that, we have:

PROPOSITION 5.1. There exists at least one parabolic leaf in S \ C.

PROOF. By contradiction, suppose that all the leaves outside C are hyperbolic. The
standard Brody-type argument [Br3, Proposition 2] shows that the leafwise Poincaré metric
is then continuous, as a hermitian metric on KF with poles on C ∪ {q}.

By Corollary 3.1, the curvature of this metric is a closed positive currentΩ . This current
is exact, because KF is numerically trivial, and therefore by [Tom, Remark 8] and [Lam] the
algebraic component of its Siu decomposition is trivial.

A stronger regularity holds: Ω is absolutely continuous (i.e., its coefficients are abso-
lutely continuous measures w.r.t. the Lebesgue measure). This can be seen by checking that
the proof of such a statement given in [Br4] is valid on any compact complex surface, and not
only on projective ones (there are just some local computations and Stokes theorem). There-
fore the pointwise wedge product Ω ∧ Ω is well-defined, and it is an absolutely continuous
positive measure on S whose total mass is not greater than [Ω]2, [·] denoting the cohomology
class. See [Dem, Corollary 7.6]. But this cohomology class is trivial, hence the total mass of
Ω ∧Ω must be zero and therefore

Ω ∧Ω ≡ 0 .

We are now in the position of applying [Br3, Proposition 6], which produces a holomor-
phic Monge-Ampère foliation G in the Kernel of Ω , transverse to F along hyperbolic leaves.
In particular, the point q is an isolated tangency point between F and G, which is an evident
absurdity because the tangency set between two foliations is always of pure dimension 1. This
contradiction completes the proof. �

5.2. Invariant measure and first integral. Let L ⊂ S \ C be a parabolic leaf of
F . By the usual Ahlfors-type procedure [Br1], we can associate to L a (nontrivial!) closed
positive current T invariant by the foliation (also called an invariant transverse measure). Note
that, even if in [Br1] the ambient manifold is supposed Kählerian, the arguments given in [Br1,
p. 197–198] for the construction of the closed positive current do not use the closedness of
the Kähler form, and they hold on any compact Hermitian manifold. We shall assume that
C is the only compact curve on S (otherwise, S is already a Kato surface), so that the Siu
decomposition of T is

T = T0 + νδC, ν ≥ 0 ,

where T0 is an exact positive current, by [Tom, Remark 8] and [Lam]. Of course, T0 is still
invariant by the foliation.

Note that T0 is nontrivial too. Indeed, the curve C can be analytically collapsed to one
point, giving a surface S′ with a singular point p′. The parabolic curve L projects to S′ to
a parabolic curve L′ outside p′, and the direct image of T on S′ is a closed positive current
T ′ associated to L′ (and hence nontrivial). This current T ′ cannot be supported only on {p′},
whence T cannot be supported only on C.
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Denote by T̃0 the lifting of T0 to S̃. By [Tom, Proposition 4], T̃0 is ddc-exact. More
precisely, there exists a plurisubharmonic function F on S̃ such that

T̃0 = ddcF , F ◦ ϕ = F + c

for some real constant c ( �= 0 because T0 �≡ 0). Take care to the fact that F could be highly
irregular. The fact that T0 is F-invariant reflects into the fact that F is harmonic (or −∞)
along the leaves of F̃ .

PROPOSITION 5.2. The function F is constant along the leaves of F̃ .

PROOF. Take a point in S̃ outside Sing(F̃) and let (z1, z2) be local coordinates such that
the foliation is expressed by dz1 = 0. The current T̃0 is locally written as

∑
j,k Aj,kidzj∧dz̄k ,

where Aj,k are (complex) measures. The F̃-invariance means that Aj,k ≡ 0 for (j, k) �=
(1, 1), and in turn this means that the (distributional) partial derivatives Fzj ,z̄k are equal to
zero when (j, k) �= (1, 1). It follows that Fz2 is a holomorphic function.

In a more intrinsic way, the (1, 0)-differential ∂F , restricted to the leaves, is a (a priori
irregular) section of KF̃ . The previous local computation shows that this section is actually a
holomorphic one (by Hartogs, it is sufficient to check the holomorphicity outside the singular
points). Such a section descends to the quotient S, because ∂F is ϕ-invariant. We therefore
obtain a holomorphic section β of KF .

Because KF is numerically trivial, and moreover S contains no divisor homologous to
zero, we have only two possibilities: either β is identically zero, or β is nowhere vanishing,
in which case KF is holomorphically trivial. But we shall see in the next section that the
holomorphic class of KF can be easily computed, and it is not the trivial one. Hence β ≡ 0.
By construction, this precisely means that F is constant along the leaves. �

REMARK 5.1. On an Inoue-Hirzebruch surface we have two foliations, Fh and Fp,
which are transverse to each other outside the rational curves [D-O]. The leaves of Fh outside
the rational curves are all hyperbolic, whereas the ones of Fp are all parabolic. The foliation
F̃p has a plurisubharmonic first integral like our F above (something like − log(−G), where
G is the Green function [D-O], [Tom]), but not the foliation F̃h. In our arguments above, we
have “lost” the foliation Fh when we wrote that the nonalgebraic part T0 of the Siu decom-
position of T is nontrivial: the only parabolic leaf of Fh outside C is contained in the second
rational curveD, and that leaf can generate only the current δD .

6. Case (B): completeness. Here we shall use the plurisubharmonic first integral F
to prove that F̃ is generated by a complete vector field.

6.1. Some qualitative remarks. Let us firstly discuss some properties of the foliation
F̃ .

By Proposition 2.1, F̃ is generated by a holomorphic vector field v which vanishes only
at Sing(F̃) and which satisfies

ϕ∗(v) = λ · v
for a suitable λ ∈ C∗ (representing the holomorphic class of KF ). Let us compute it.
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We label the singularities of F̃ as

{pj , qj }j∈Z

where pj = Cj ∩ Cj+1, so that ϕ(pj ) = pj+1, and qj ∈ π−1(q) are chosen so that
ϕ(qj ) = qj+1. The vector field v|Cj has two zeroes, pj and pj−1, and the two correspond-
ing eigenvalues of the linear part of v|Cj are necessarily one the opposite of the other. We
may normalize v in such a way that v|C0 has eigenvalues +1 at p0 and −1 at p−1. From
ϕ∗(v) = λ · v and ϕ(Cj ) = Cj+1 we then deduce that v|Cj has eigenvalues λj at pj and −λj
at pj−1. Hence, the two eigenvalues of v at pj are λj and −λj+1, so that −λ is the quotient
of them.

This quotient can be computed via the Camacho-Sad formula on C. Indeed, C · C is
equal to CS(F , C, p), which in turn is equal to 2 − λ− 1/λ, and so we get that λ is a solution
of

λ+ 1

λ
− 3 = 0 .

There are two solutions, one smaller and one bigger than 1, but up to changing ϕ with ϕ−1 we
may assume

λ = 3 + √
5

2
> 1 .

Remark that λ is a quadratic irrational, hence a vector field generating the foliation
around p can be linearized, by Siegel’s theorem. This permits to understand the structure
of F around C, as we now explain.

Choose local coordinates (z,w) centered at p such that F is generated by z ∂
∂z

− λw ∂
∂w

.
We have there the real first integral H = |z|λ · |w|. However, such a first integral does
not extend to a neighbourhood of C, due to a monodromy along a path γ ⊂ C generating
π1(C) � Z.

More precisely, on a neighbourhood U of C we have a real codimension one foliation
H, singular along C, whose leaves are the closures of the leaves of F . Around p, such a
foliation is given by the level sets of H . Take the transversals T1 = {w = 1, |z| < 1} and
T2 = {z = 1, |w| < 1} (we may assume that the domain of the local chart contains the closed
unit bidisc). Then the level set {H = c} intersects T1 along the circle of radius c1/λ and T2

along the circle of radius c. In other words, the Dulac-type holonomy of H from T1 to T2 is
r �→ rλ, r being the radius. Note that this holonomy is highly contracting, since λ > 1.
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The holonomy of H along the generator γ ⊂ C is obtained by composing the previous
Dulac-type holonomy from T1 to T2 with the holonomy along a path in C \ {p} from T2 to T1.
This second factor is a diffeomorphism at 0 (in the radial coordinate), and so its composition
with r �→ rλ is still a highly contracting map. In conclusion, the structure of H is the one
drawn in the picture above: the leaves of H tend to C when “travelling in the anticlockwise
sense”.

Now, in our pictures of the universal covering S̃, this anticlockwise sense corresponds to
“travelling to the right”. We thus see that, when we go to the right, the leaves of H̃ (which
is a foliation defined on Ũ = π−1(U)) stay close to C̃, or even tend to C̃ if we use on Ũ a
ϕ-invariant metric.

More formally, and returning to the foliation F̃ , whose leaves on Ũ are still dense in
the ones of H̃, here is the statement that we shall actually use. We denote by P a compact
fundamental domain for the action of ϕ on S̃.

LEMMA 6.1. For every x ∈ S̃ \ C̃ sufficiently close to C̃ there exists nx ∈ Z such that,
if Lx is the leaf of F̃ through x, then

Lx ∩ ϕ−n(P) �= ∅ for every n ≥ nx .

Let us now turn to the plurisubharmonic first integral F , which has not been used so far.
Recall that F ◦ ϕ = F + c, where c is a nonzero real constant.



FOLIATED NON-KÄHLERIAN SURFACES 457

LEMMA 6.2. The function F tends to −∞ to the left:
max
ϕn(P)

F → −∞ as n → +∞ .

In particular, if L ⊂ S̃ \ C̃ is a leaf of F̃ over which F is not −∞, then L cannot accumulate
to the left: there exists nL ∈ Z such that

L ∩ ϕn(P) = ∅ for every n ≥ nL .

PROOF. We have maxϕn(P) F = maxP F + nc and so F tends to −∞ when travelling
either to the left or to the right, depending on the sign of c. However, the fact that there is an
open set of leaves which stay close to C̃ when travelling to the right (Lemma 6.1), and the
fact that F is constant on these leaves, excludes F → −∞ to the right. �

Remark that the polar set {F = −∞} is not empty: by the maximum principle, F must
be constant on the chain of compact curves C̃, and F ◦ ϕ = F + c, c �= 0, implies

F |C̃ = −∞ .

In principle, however, {F = −∞} could be much larger than C̃, and could be a non-analytic
subset of S̃. Remark also that, by construction, F has vanishing Lelong number except, possi-
bly, at the singular points of the foliation (in fact, by intersection theory [Dem], even at those
points the Lelong number must be zero); hence the eventual analyticity of {F = −∞} cannot
be detected by Siu’s theorem. A posteriori, the polar set of F will be composed by C̃ and a
second chain of rational curves D̃.

6.2. Completeness of the flow. We can now prove that our vector field v on S̃ is
complete. The argument is somewhat reminiscent of [DOT, §3], but we shall need also our
uniformisation result Theorem 3.1 (basically, to get rid of the poles of F ).

PROPOSITION 6.1. The flow of v is complete.

PROOF. Over the compact fundamental domain P ⊂ S̃ we can find ε > 0 such that the
local flow

ψ : D(ε)× P → S̃

is well defined. From ϕ∗(v) = λ · v it follows that also on D(λnε)× ϕ−n(P) the local flow is
well defined, for every n ∈ Z. Since λ > 1, we get a well defined local flow on

D(ε)×
⋃
n≥0

ϕ−n(P) .

Take now a leaf L of F̃ not contained in {F = −∞}. Up to a translation by ϕ, we may
assume, by Lemma 6.2, that L is contained in

⋃
n≥0 ϕ

−n(P). Hence the local flow of v|L is
defined on the uniformly thick domain D(ε)× L, and from this fact the completeness of v|L
immediately follows.

In particular, any leaf outside the polar set of F is parabolic. Obviously, the set {F �=
−∞} is not pluripolar, and so by Theorem 3.1 we deduce that every leaf is parabolic, even
those contained in the poles of F .
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Take now a covering tube UT . Again by Theorem 3.1, we haveUT � T ×C. The vector
field v lifts to UT to a vector field of the form

h(z,w)
∂

∂w
,

where h is holomorphic and nowhere vanishing, z ∈ T , w ∈ C. There is a large set of fibers
(with pluripolar complement) over which this vector field is complete, and this means that
on those fibers the function h is constant. Of course, this in turn implies that h is constant
on every fiber, i.e., h depends only on the variable z and so the lifted vector field on UT is
complete. This holds for every covering tube, whence the completeness of v. �

7. Case (B): conclusion. Having proved the completeness of v, we can now conclude
the proof of Theorem 0.1 also in Case (B).

The equivariance property ϕ∗(v) = λ · v with λ ∈ R allows to define, for every ϑ ∈
[0, 2π), a real one dimensional foliation Lϑ on S, tangent to F and singular only at Sing(F):
just take the unparametrized trajectories on S̃ given by the flow of v restricted to the real time
R · eiϑ ⊂ C, and project them to S. Actually, this can be done even without the completeness
of v, for the local flow is already sufficient.

Let us look at the singularity q ∈ Sing(F) outside C. The quotient of the eigenvalues of
that singularity can be computed via Baum-Bott formula: we already know that NF · NF =
−2 (Lemma 2.2), and moreover BB(F , p) = (1 − λ)2/(−λ) = −1, hence BB(F , q) = −1
and the quotient of eigenvalues at q is the same as at p, namely −λ.

In particular, the vector field v is linearizable at any qj , and we can choose ϑ ∈ [0, 2π)
such that L = Lϑ coincides, around q and in suitable coordinates, with the real trajectories of
the vector field

i

(
z
∂

∂z
− λw

∂

∂w

)
.

Remark that every round ball centered at q is completely invariant by L. The leaves of L in
the two separatrices are circles, whereas the ones outside the separatrices are real lines, each
one dense in a torus {|z| = c1, |w| = c2}.

Let now L be the leaf of F containing the separatrix {w = 0}. The completeness of v
implies the following two capital properties:

(1) L is isomorphic to C∗.
(2) L|L is a foliation by circles.

Consider now the second end of L, i.e., the one which does not correspond to {w = 0}. The
structure of L around q implies that, if this second end accumulates to q , then necessarily it
corresponds to the second separatrix {z = 0}. In that case, the closure of L is a rational curve
with a node at q , and by [Na1, (8.1)] the surface S is an even Inoue-Hirzebruch surface.

Suppose now that the second end of L does not accumulate to q , and let us reach a
contradiction.

Since L intersects a neighbourhood of q only along {w = 0}, the same L cannot accu-
mulate to itself (i.e., L is properly embedded in S \ limL, where limL = L \ L). Recall



FOLIATED NON-KÄHLERIAN SURFACES 459

now the discussion in Subsection 6.1 about the structure of F around C: it follows from that
discussion that every leaf of F passing close to C certainly accumulates to itself, being dense
in a real hypersurface. Hence, our L does not accumulate to C.

The second end of L being of parabolic type (and transcendental), we may associate to
it a closed positive current T ′ invariant by F as in Subsection 5.2. By the previous considera-
tions, we have

Supp(T ′) ∩ C = ∅ .
However, as in Subsection 5.2 this current T ′ has a plurisubharmonic potential F ′ on S̃, and
we already observed that necessarily

F ′|C̃ = −∞ .

This is in evident contradiction with Supp(T ′) ∩ C = ∅, which implies that F ′ is plurihar-
monic, and hence finite, on a neighbourhood of C̃. This completes the proof.
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