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Czechoslovak Mathematical Journal, 43 (116) 1903, Praha 

ON A CLASS OF FUNCTIONAL BOUNDARY VALUE PROBLEMS 

FOR SECOND-ORDER FUNCTIONAL DIFFERENTIAL EQUATIONS 

WITH PARAMETER 

SVATOSLAV STANEK, Olomouc 

(Received December 18, 1991) 

In this paper sufficient conditions concerning only operators Q, F are given for 
the functional differential equation 

y"(t)-Q[y,y'](t)y(t) = F[y,y',ti}(i) 

depending on the parameter /i to admit, for a suitable value of /i, a solution y 
satisfying functional boundary conditions 

«i (v(*i) - v(t)\J\) = 0, y(h) = 0, a2(y(t3) - y(t)\J2) = 0, 

where — oo < t\ < t2 < t3 < oo, a, are continuous functionals and y(0|«A' denotes the 
restriction of y to J,- = (<,-, <,+i) (i = 1, 2). Next, sufficient conditions are given under 
which the above equation has, for a suitable value of the parameter /x, a bounded 
solution y on the halfline (t\yoo) and a\(y(t\) — y(t)\j\) = 0, y(t2) = 0. 

1 . INTRODUCTION 

Let -oo < t\ < t2 < t3 < oo, -oo < a < 6 < o o , J = (t\,t3), J\ = (t\,t2), 
J2 = (*2>*3), / = (a>^) and X (X\; X2) be the Banach space of the C°-functions on 
J (J\\J2) with the norm \\y\\ = rnax{|y(0|; t € J} (||y||i = max{|y(0l; t G Ji} ; 
||y||2 = max{|y(/)|; t G J2})- Consider the functional differential equation 

(i) y"(t) - Q[»,t/](0 • y(t) = F[y,y',n)(t), 

depending on a parameter /i. Here Q: X x X —• K, F:XxXxI—*X are 
continuous operators, Q[y, z](^) > 0 on J for all [y, 2] G K x X. 
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Let a, : X{ —> R (i = 1,2) be continuous increasing (i.e. a,(x) < a,(y) for all 
x,y e Xiy x(t) < y(t) for t G J, - {*2«-i}, x(hi-\) = y(-2t-i) = 0) functional, 
a,(0) = 0. The purpose of this paper is to obtain using the Schauder linearization 
technique and the Schauder fixed point theorem, sufficient conditions imposed on 
the operators Q, F under which equation (1) admits, for a suitable value of the 
parameter /*, a solution y satisfying the functional boundary conditions 

(2) a i (y(t\) - y(t)\j\) = 0, y(t2) = 0, a2(y(t3) - y(t)\j2) = 0, 

where £/(<) J« 0 = 1,2) denotes the restriction oft/ to the interval J,. 
In Section 4, we use BVP (l)-(2) to consider bounded solutions of (1) on the 

halfline (t\,oo) satisfying the functional boundary conditions 

a i ( y ( * i ) - y ( 0 | J i ) = o, y(*2) = 0. 

The paper generalizes the author's results in [l]-[3] and, in a special case, also 
his results in [4]. In [1] the existence of solutions of (1) satisfying for example the 
boundary conditions y(t\) - y(t2) = y(t3) = y(t4)-y(h) = 0 (-oo <t\ <t2 < t3 < 
t4 < *5 < oo) was studied. 

In [2] sufficient conditions for the existence (and uniqueness) of solutions of the 
differential equation 

(3) tf'-q(t)v = f(t,vd>v) 

satisfying the boundary conditions 

(4) y(t\) = y(h) = y(t3) = 0 

(—oo < t\ < t2 <t3 < oo) was established. 
In [4] the author considered the functional differential equation 

y"(0 - ?(02/(0 = /(<, y(0- y(M0) - »'(')> it (M0). /<) 

with boundary conditions 

m n 

]£a.-y(«.-) = o, y(c) = o, £/%y(*j) = o 
i= l j=\ 

(a, > 0, /3j > 0 constants, a = t\ < ... < tm < c < xn < . . . < xx = b). 
In [3]—among other—sufficient conditions for the boundedness of solutions of (3) 

on a halfline (<i,oo) satisfying the boundary conditions y(t\) = y(t2) = 0 (t2 > t\) 
were obtained. 
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A functional boundary value problem depending on one parameter was studied 
also in [5]. In this paper the retarded functional differential equation 

y"-q(t)y = f(t,yt,Li) 

with boundary conditions (4) was considered. 

2 . NOTATION, LEMMAS 

Let (p G C](J) and let u^, v^ be the solutions of the differential equation 

(5) y" = Q[<P,<p')(t)y, 

u^(h) = 0, u'^U) = 1, iv(<2) = 1, «£,(«-) = 0. For (t,s) e J x J define r(t,s; <p) 
and r\(t,s; <p) by 

r(t,s;<p) = u^v^s) - u^v^t) ( = -r(s, t;<p)), 

д 
r\(t,s; <p) = « ; ( í K ( s ) - ^ ( « K ( 0 ( = ňTKM; ?))• 

Then r(t,s; <p) > 0 for all i i -̂  s < t ^ t3, r(t,s; (p) < 0 for all t\ t$ t < s ^ t3, 
r\(t,s; (p) > 1 for all (t,s) G J x J and t 9. s.r'jO,/; <p) = 1 for all t G J (for the 
proof, see e.g. [2]). 

Lemma 1. _4ssu/ne <£> G Cfl(J), h G C°(J x I), h(t, •) is increasing on I for each 
fixed t G J ajjc/ 

(6) /*(/,«) /*(<,&) ^ 0 for all t G «/. 

T/jen tijere is a unique /io G / suc/j tijat t/je differential equation 

(7) y" = Q b , *?'](<) y + !'(<,/•) 

wit ii /1 = /io admits a solution y satisfying (2). Moreover, this solution y is unique. 

P r o o f . The function y(t; fi,c) defined on J x I x R by 

!; / i ,c) = cîi^,(t)-ł- / r(t,s; ^)Л(s,/i)dá 
J<2 

y(<; 
J<2 
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is the general solution of (7) vanishing at the point t = t2. Since 

y(t\ 5 l*,c)-y(t; p,c) = c(u(fi(t\)-u(p(t))+ 

+ / [r(*i,«; <p)-r(t,s; <p)]h(s,n)ds+ / r(t\,s; <p)h(s,n)ds, 

y(h *, /', c) - y(t; /i, c) = c (u^h) - uifi(t))+ 

+ j [ r ( t 3 , * ; y ? ) - r ( M ; y?)]/i(s,/i)ds + / r(t3,s] <p)h(s,n)ds 

and ti^,(<i) - u^(t) < 0 on (t\,t3), u^tz) - t/v,(<) > 0 on (*i,*3), r(t\,s] <p) - r(t,s; 
(p) = r'j(^,s; y?)(<i — 0 < 0 for (t,s) £ J x J, t ^ t\ (where £ lies between t\ and *), 
r(<3,«; <£>)-r(*,.s; <£>) = ^ i ( 7 ^ s ; <P)(h-t) > 0 for (t,s) e J x J, t ^ t3 (where 77 lies 
between <3 and <), we see that the functions p , : / x R —> /?, pj(n,c) = c*,(y(*2i_i ; 
/^c) — 2/(*; /i,c)|•/»•) (i = 1,2) are continuous on / x R, Pi(yc) are increasing on 
/ for each fixed c £ R, pi(/i, •) (p2(/v)) is decreasing (increasing) on R for each 
fixed // G / . Finally, one can check that lim pi(/*,c) > 0, l impi(// ,c) < 0, 

c—• —oo c—*oo 

lim p2(n,c) < 0, lim p2(}i,c) > 0 for each fixed /i G / . Hence there are unique 
c—* — oo c—*oo 

functions c,-: / —• R (i = 1,2) such that 

Pi(/*,c,(/i)) = 0 for all /i G / and i = 1,2, 

and ci(/i) (c2(/x)) is increasing (decreasing) on /. 

To prove that c, (i = 1,2) are continuous functions on / we suppose there are se­
quences {/*„}, {/-"} from / such that lim /in = lim //" = /*o and lim c,(/xn) = X\, 

n — > o o n—<•oo n — • o o 

lim c,-(/iJI) = A2, Ai < A2, for some i G {1,2}. Then 0 = lim p,(/in, c,(//„)) = 
n—>oo n—>oo 

Pi(/*o,Ai), 0 = lim pi(/*n,c,(//„*)) = p,(/-o,A2), which is a contradiction to 
n—>oo 

Pi(/io,Ai)7-pi(/io,A2). 
It remains to prove the existence of a unique po G / such that ci(po) = C2(/*o)-

Since h(t,a) <$ 0, h(t,b) ^ 0 on J (cf. (6)) we have y(t\\ a,0)-y(t; a,0) <$ 0, y(*i ; 
6 , 0 ) - y ( * ; 6,0) ^ 0 for t G (*i,*2), y(h; a,0) - y(*; a,0) ^ 0, y(<3; 6,0) - y(*; 
6,0) ^ 0 for / G (<2,<3), and then p,(a,0) ^ 0, Pi(6,0) $> 0 (i = 1,2). Using 
the fact that pi(a, •), pi(6, •) (p2(a, •), P2(6, •)) are decreasing (increasing) on R and 
Pi(a,Ci(a)) = 0, Pi(6,c,(6)) = 0 (i = 1,2), we get cx{a) <: 0, o(6) > 0, c2(a) > 0, 
c2(6) ^ 0, therefore ci(a) — c2(a) ^. 0, ci(6) — c2(6) ^ 0. Since c\(p) — c2(/i) is 
continuous increasing on /, the equation ci(//) — c2(//) = 0 has a unique solution 
on / . • 
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Next, we will suppose that there exist positive constants ro, r\ such that the 
operators Q, F satisfy the following assumptions: 

(Hi) \F[y,y',»](t)\ ^ r0 • Q[y,y'](t) for all t G J and [y,y',n] G D x / , 

where D = {[y,y']; y G Cl(J),||y('>|| ^ r, for » = 0,1}; 

(H2) F[y,y',»\](t) < F[y,y',/«2](0 for all t G J 

and [y,y'] G D,fi\,ft2 G /,/M < ,«2 ; 

(H3) Ffy.y'.aKt) • F[y,y',6](t) < 0 for all t G J and [y,}/] G o; 

(H.j) min{(yl + roB)r,2v/r~\A4 + r0B} ^ ru 

where ,4 = sup{||F[y,y /,/i]||; [y,y',n] G o x / } , 

0 = sup {||Q[y,y']||; [y,y'] G £>}, r = max{t2 - .,, t3 - <2}. 

Lemma 2 . Let assumptions (ti\)-(l\4) be fulfilled for positive constants ro, r\ 
and let ip G Cl(J), \\<p^\\ ^ r, (t = 0,1). 7'hen there exists a unique /t0 G / such 
that the equation 

(8) y" = Q[<P,<p'Kt)y+F[<p,ip',tm 

with /i = /i0 admits a (then unique) solution y satisfying (2) and, moreover, 

(9) ||y<'">|| ^ rt. for t = 0,1. 

P r o o f . Setting h(t,n) = F[<p,<p',f.i](t) for (J,/i) € J x I, the function /i fulfils 
the assumptions of Lemma 1 and hence there is a unique /i0 £ / such that equation 
(8) with /* = /io admits a (then unique) solution y satisfying (2). 

Now we prove \\y\\ ^ r0. Let |j/(f)| = \\y\\ > r0 for some £ € J. If £ G (<i,*3) then 
the function y • signt/(£) has a local maximum at the point t = £, which contradicts 
y"(£) • signt/(£) > 0. The last inequality follows from assumption (Hi). Hence 
£ € {t\,t3}. If £ = t\ (£ = <3) then due to y(*2) = 0 and assumption (Hi) we have 
(y(ti)-y(t)) sign y(tx) > 0 for all* G (*i,*2) ((t/(*3) - y(t)) - sign y(*3) > 0 for all 
t £ (h,t3)), which contradicts ax(y(ti) - y(t)\J\) = 0 (cx2(y(t3) - t/(0|«I2) = 0). 
Thus ||t/|| ^ r0. 

Since a,(y(*2i-i) — 2/(0 |«A) = 0, a, are increasing functionals and a,(0) = 0 
(i = 1,2), there exist £i G (t\,t2), £2 G (t2,t3) such that t/(f2,_i) - t/(&) = 0 and 
therefore j/(?;,•) = 0 for some r/i G (<i,6)> 7/2 € (^2,^3). For the next part of the 
proof of the inequality ||t/|| ^ r\ see e.g. [2] and [4]. D 
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3 . EXISTENCE THEOREM 

T h e o r e m 1. Assume assumptions (Hi)-(H4) are fulfilled for positive constants 
ro and r\. Then there exists po G / such that equation (1) with p = po admits a 
solution y satisfying (2) and (9). 

P r o o f . Let Y be the Banach space of the ^-functions on J with the norm 
\\y\W = IMI + lltfll for y G Y and K = {y; y G Yy\\y^\\ ^ n for i = 0, 1}. A is a 
bounded convex closed subset of Y. Let (p G A'. By Lemma 2 there is a unique /in G / 
such that equation (8) with /* = /*n admits a (then unique) solution y satisfying (2) 
and y G K. Setting T((p) = y we obtain an operator T: A' —• A'. To prove Theorem 1 
it is sufficient to show that T has a fixed point. 

First we prove that T is a continuous operator. Let {yn} C K be a convergent 
sequence, lim yn = y and let zn = T(yn), z = T(y). Then there are sequences 

n—*oo 

{un} C / , {cn} C R and /in G /, CQ G ft such that we have (see the proof of 
Lemma 1) 

zn(t) =cnuyn(t)+ / r(t,s; yn)F[ynyy'n,fin](s)ds for all t G J and n£ N, 
Ji2 

z(*) = c0uy(<)-»- / r(<,s; l/)F[i/,t/',/io](«)ds for all t G J, 
J«2 

and 

ai(*»(*i) - *»(0|-M - <>> <M<2> = 0, a2(zn(<3) - zn(t)\j2) = 0 for all n G N, 

a i ( z ( « , ) - z ( l ) | y i ) = 0 f z(*2) = 0, a 2 ( * ( * 3 ) - * ( 0 W = 0 . 

The sequence {cn} is bounded since lim yri = V and | |2n | | $ ro for all n G N. If 
f l—*oo 

{cn} is not convergent there are convergent subsequences {c*n}, {c rn} and conver­
gent subsequences {/*fcH}, {prn} of {/(„} such that lim ckn = c ^ \ lim crn = c^2), 

n—»oo r»—*oo 

lim jifcn = / i^) , lim prn = / ^ 2 \ ĉ 1^ < c^ and /|( l), /|(2) are either equal or not. 
n—*oo n—• oo 

Then 
(*i(0:=) , i m zkn(t) = c^uy(t)+ I r(t,s;yYF[y,y',p^](s)ds, n^°° Jt2 

(k2(t):=) lim zrn(t) = c^uy(t)+ f r(t,s}y)F[yiy'}pW](s)ds 
»->°° Jt2 

uniformly on J and 

cvi(M'i) - f c ( O ^ i ) = o> *<(«2) = o, 
( ' c*2(ki(t3) - ki(t)\j2) = 0 fori = 1 , 2 . 
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The equalities (t = 1 , 2 ) 

* i ( ' i ) - M O - « ( 0 ( - i ( ' i ) - M ' ) ) + / (r(<i,«;y)-r(M;y)) 
Jt2 

x F[y,y ' , / ' ) ] («)d S + y" ' r (< , , S ; y)F[y,y',fi^](s)ds, 

ki(h) - ki(t) = c(«')(uy(<3) - uy(t)) + / (r(t3,s; y) - r(t,s; y)) 
Jt2 

x F[yiy
f
)fi^](s)ds^J3r(t3)s- y)F[y} y'^^s) d* 

imply (see the proof of Lemma 1) 

* i ( < i ) - * 1 ( 0 > * 2 ( < i ) - M 0 f o r '€(<i,*2> and /* ( 1 )^/* ( 2 ) , 

M ' 3 ) - * 2 ( 0 > * i ( « 3 ) - * i ( 0 f o r te(t2,t3) and / i ( 1 ) t$ / i ( 2 ) , 

which contradicts (10). Hence {cn} is convergent, and let lim cn — c*. If {/Jn} 
n—»-oo 

is not convergent there are convergent subsequences {/K }, {/*; }, lim //, = A(1), 
n n—*oo 

l im /*,•„ = A<2), A<»> < A<2>. T h e n 
n--»oo 

( p i ( 0 : = ) lim zjn(l) = c*uy(t)+ f r(t,s; y)F[y,y',\^](s)ds, 
" - " » j i 2 

(p 2 (0 := ) lim z,„(0 = c*u y (0+ / r(<,5;y)F[y,j,',A(2)](s)dS 
»-<» Jt3 

uniformly on J and 

« i ( p . ( O ) - P i ( O | ^ i ) = 0 , p.(.2) = 0, 

«2(P,(<3) - P.(0|«M = 0 for i = 1,2. 

As above we may verify 

P 2 ( < i ) - p 2 ( 0 > P i ( M - P i ( 0 for all t€(tut2), 

p 2 ( « 3 ) - p 2 ( 0 > P i ( ' 3 ) - p i ( 0 for all < e ( . 2 , < 3 ) , 

which contradicts (11). Hence {/»„} is convergent, and let lim /*„ = /.*. Then 
n—>oo 

(z'(t) :=)jlim -„(0 = c*« y (0+ / r(t,s; y)F[y,y',S)(s)ds 
J t 2 
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uniformly on J, and consequently, z* is a solution of the differential equation 

w" = Q[v,l/)(t)w + F[y,!/yf](t) 

and 

« i ( - • ( / . ) - z * ( 0 | . M = 0 , z'(t2) = 0, a2(z*{h)-z'(t)\j2)=0. 

By Lemma 2 it is necessary that z = z* and /*o = /**• Since lim -rn (0 = z^Ht) 
II—+OO 

uniformly on J for i = 0, 1, we have z = lim zn = lim T(yn) = F(y) and therefore 
n—*oo n—•oo 

T is a continuous operator. Let t^ G /v and F(<p) = y. Then the equality 

y"(0 = Q[<p, ^'](0 y(0 + IW< /i0](0 

holds on J for some /*o G I, thus ||y"|| ^ 4̂ + r$B (:= r2) and K C L = {y; 
y G C2(J)y \\y^\\ ^ r, for i = 0, 1,2}. Since L is a compact subset of Y, Iv is a 
relative compact subset of Y. 

By the Schauder fixed point theorem there is a fixed point of T. This completes 
the proof. • 

R e m a r k 1. If cx\(z) = a2(z) = ~(*2), then Theorem 1 in [2] and Theorem 1 in 
[4] (where m = n = 1) follow from Theorem 1. 

Let t\ < x\ < t2 < X2 < t3. If c\\(z) = z(x\), Q2(-r) = -?(-c2), then Theorem 1 in 
[1] follows from Theorem 1. 

E x a m p l e 1. Consider the functional differential equation 

(12) y"(t) = y(0exp {|y(y'(0)l} + £cos (t + y1(y(t))) + / i 

on the interval J = (0,t3), where t3 ^ 2\/l + e . Let f2 G (O,^)- Assumptions 

(H0-(H 4) are fulfilled with r0 = 1, n = 2x/TTe and I = ( - ± , | ) . Let a,(z) = 

/o 22 3(s)d5 for * G C°((0,*2)) and a2(z) = max{z(0; t G (*2, ^ ( ^ + t3))} for -r G 

C°((£2,<3)). Then by Theorem 1 there is /io £ (~2> 2 ) SUCu that equation (12) with 

f.i = /fo admits a solution y satisfying 

çt-2 

J0 

and 

(2/(<i) ~ y(*))3d* = 0,y(l2) = 0, rnax {y(ť3) - y(t); t € (ť2, $(h + h)) } = 0 

Hvll^i, | |y'|K -vT+í. 
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4. BOUNDED SOLUTIONS ON A HALFLINE 

In this section BVP (l)-(2) is applied to the investigation of bounded solutions of 
a functional differential equation of type (1) with functional boundary conditions 

(13) «\(y(t\)-y(t)\j\) = 0,y(t2) = 0. 

Let Y be the space of bounded C°-functions on the halfline (ti,oo) with the 
topology of uniform convergence on compact subintervals of (ti,oo). Consider the 
functional differential equation 

(H) y,,(t)-V[y,y'](t)y(t) = V[y,y',fi](t), 

where U : Y x Y —• Y,V:YxYxI —• Y are continuous operators, U[y, z](t) > 0 
for all / ^ t\ and [y, z] G Y x Y. Further we shall assume that there exists an 
increasing sequence {xn} C R, x\ > t2, Hm xn = oo such that the functions 

n—>oo 

U[y,z](t),V[y,z,n](t) are defined on (t\,xn) only by the restrictions of y, z to the 
interval (t\, xn) (n = 1,2, . . . ) , that is 

U: Yn x Yn —+ Yn, V:YnxYnxI—>Yn (n = 1,2,...), 

where Yn is the Banach space of the C°-functions on (t\,xn) with the sup norm. The 
differential equation y" - q(t,y,j/)y = f(t,y,yf,/i), where q G C°((<i,co) x R2), 
f G C°((/i,oo) x R2 x 1), is a special case of (14). 

Suppose there are positive constants r0, r\ such that the operators U, V satisfy 
the following assumptions: 

(Ci) |V[y,y',/i](OI ^ r0U[y9f/](t) for all t > t\ and [y,j/,fi] G H x I, where 
// = { [y , t f ' ] ; y€C 1 ( (< 1 , oo ) ) > | ^ ) ( < ) | ^ r . for t^t\,i = o,iy, 

(C2) V[y,i/,/4i](0 < V[y,i/,fi2](t) for all t> t\, [y,i/] G H and / i l f /i2 G I, 

/<i < /<2j 

(C3) V[y, }/,a](t)V[y, y7, fc](/) ̂  0 for all t > t\ and [y, t/] G / / ; 
(C4) 2v/r0\A4 + r0B ^ r\, where A = sup{sup |V[y, j/,fi](t)\; [y, t/,//] G 

Hxl),B = sup{sup |C/[y,t/](0h [2/,2/] G / / ) ! 

Lemma 3. Assume assumptions (Ci)-(C4) are fulfilled with positive constants 
ro, r\. Then for any xn (n = 1, 2, . . .) tijere exists a //n G / sucij tijat equation (14) 
ivitij /* = /in admits a solution yn defined on the interval (t\,xn) and satisfying the 
boundary conditions 

(15) a, (yn(<i) - yn(t)\j\) = 0, yn(h) = 0, yn(xn) = 0 (n = 1,2,...), 
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and, moreover, 

( MOUn), |j/n(OKn, 
^ ( O K A + roJS for te(tuxn), ( n = l , 2 , . . . ) . 

P r o o f . Tbe proof follows immediately from Theorem 1 if we set t% = xn and 

« 2 ( -0 = z(t2). The last inequality in (16) is evident. • 

T h e o r e m 2. Assume assumptions (Ci)- (C4) are fulfilled with positive constants 

r0 , r\. Then there exists a po G I such that equation (14) with p = po admits a 

solution y satisfying (13) an J 

(17) |y(Ol^o, |y '(0l^n for t>tx. 

P r o o f . According to Lemma 3 there exists a sequence {yn} of solutions of 

equation (14) with // = pn(E I) on the intervals (t\,xn) satisfying (15) and (16). 

Using the Ascoli-Arzela theorem, a diagonal process of Cantor and the fact tha t {pn} 

is a bounded sequence, we may assume without loss of generality that {yn(t)} and 

{2/n(0} a r e - o c a - ly uniformly convergent on ( / i ,oo) and {pn} is convergent. Setting 

liin yn(t) = y(t) for t E (1*1,00) and lim pn = po, then y is a solution of equation 
n — • o o n — • o o 

(14) with p = po satisfying (13) and (17). • 

E x a m p l e 2 . Consider the functional differential equation 

(18) y"(t) = 6717/(0 exp { \y(t + (sin l)2)|} + In ( e + \i/(y/i)\) arctan t + ( l + y 2 ( 0 ) / ' . 

The assumptions of Theorem 2 are satisfied with /j ^ 1, r0 = 1, ri = e 3 and 

I — (—2K, 0). Therefore there exists a po G (—2K, 0) such that equation (18) with 

p — po has a solution y defined on (<i,oo), and (13) and |y(0l ^ -> .2/(01 ^ e 3 f ° r 

t ^ t\ hold. 

References 

[1] S. Stanek: On a class of five-point boundary value problems in second-order functional 
differential equations with parameter, Acta Math. Hungar, to appear. 

[2] S. Stanek: Three-point boundary value problem for nonlinear second-order differential 
equations with parameter, Czech. Math. J. 42 (117) (1992), 241-256. 

[3] S. Stanek: On the boundedness of solutions of nonlinear second-order differential equa­
tions with parameter, Arch. Math. (Brno) 27(1991), 229-241. 

[4] S. Stanek: Multi-point boundary value problem for a class of functional differential 
equations with parameter, Math. Slovaca J^2 (1992), no. 1, 85-96. 

[5] S. Stanek: Three-point boundary value problem of retarded functional differential equa­
tion of the second order with parameter, Acta UPO, Fac. rer. Nat. 97 Math. XXIX. 
(1990), 107-121. 

Author's address: Department of Math. Analysis, Palacky University, tf. Svobody 26, 
771 46 Olomouc, Czech Republic. 

348 


