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Abstract. The model dealt with is a linear elastic body in frictional contact with
a rigid support. Limit states of such an assemblage are characterized by deformations
and forces such that a small perturbation may introduce a large change in configuration.
The class of limit states considered here is specified by the possibility of superposing a
time constant rigid body velocity field to a static deformation. The problem of finding
such states (i.e., forces and static deformations) for a prescribed rigid body velocity is
formulated, and for the case when the geometrically admissible rigid body displacements
form a linear space an existence result is given. It is proved that under restrictions on the
magnitude of the friction coefficient and in the case that an intuitively clear condition on
the direction of the forces is satisfied, there exist a load multiplier and a corresponding
static displacement.

1. Introduction. The present work is concerned with frictional joints treated from
the point of view of linear elasticity. A frictional joint is an assemblage of bodies inter-
acting through frictional forces. It may be regarded as an abstraction of various elements
encountered in machine design, such as the shrink-fitted shaft and bushing assemblage
or different types of brakes. As a model of such a joint we consider a linear elastic
body in frictional contact with a rigid support. In fact, it is well known that in linear
elasticity the multibody contact problem has the same mathematical structure as the
present one-body problem. The objective is to analyze limit states of frictional joints,
i.e., states where a small perturbation may introduce a large change of configuration.
As a more precise definition of a limit state, the requirement that the forces and the
static deformation are such that a time constant rigid body velocity field can be added
to the deformation, is used. That is, the elastic body moves (or slides) in a steady state
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Fig. 1. A tapered joint

Fig. 2. A shrink-fitted shaft and bushing assemblage

fashion relative to the rigid support. To get insight into the nature of such a definition
two examples are briefly discussed from a qualitative point of view:

First, consider the tapered joint shown in Fig. 1. For a friction coefficient that is large
enough to make the joint self-locking, any force F from zero to infinity may be necessary
to take the joint apart, depending on the previous load history. It is also clear that,
unless the force is zero, the constant limit velocity field required by the definition will
not be present. Rather, the joint will unassemble in a dynamic fashion.

As a second example, consider the shrink-fitted shaft and bushing assemblage in Fig. 2.
Here it is clear that the definition makes sense for small friction coefficients. However, for
large friction coefficients we may still have a "violent" limit state: consider the uncorking
of a bottle.

Thus, the definition above covers a subclass of the situations that one would like to call
limit states of frictional joints. Nevertheless, for this subclass some exact mathematical
statements, which may form a starting point for a more complete theory, are given in this
paper. The problem of finding the forces and the static deformation corresponding to a
given limit velocity is formulated. The existence of a solution is shown under restrictions
on the magnitude of the friction coefficient and the direction of the external force. This
result is in agreement with our intuitive understanding of the problem.
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Following this introduction a statement of the quasistatic contact problem with friction
is given in Sec. 2. The cone of limit velocity fields is then defined in Sec. 3, which leads in
Sec. 4 to a statement of a particular limit state problem where rigid body displacement
is taking place in the direction of the xi-axis. In Sec. 5 a variational formulation is
given. In Sec. 6 a further geometrical specialization is introduced: it is assumed that
the kinematically admissible rigid body displacements form a linear subspace of the
configuration space. This leads to a decoupled formulation. In Sec. 7 we introduce the
proper functional setting. Notably the functional representing the virtual work of the
friction forces has to be carefully examined. In Sec. 8 we give the proof of the existence
of a load multiplier and a displacement.

2. The quasi-static frictional contact problem. Since the interest is in analyzing
constant velocity states, it is sufficient to start from the so-called quasi-static formulation,
where dynamic forces are neglected.

Consider a linear elastic body that occupies a region fI of R3. The boundary of
il consists of disjoint parts St and Sc. The body is subjected to body forces af —
Q(/ii/2,/3) over ft and surface tractions at = a{t\,t2,tz) over St, where a is a scalar
load parameter and f and t are given vector fields. The following classical equations of
linear elasticity are valid:

d<Tjj
dxj + aft = 0 mil, (1)

erj = Eijki-7^ in fl, (2)

cTijVj = atj on St- (3)

Here u = (111,112,113) is the displacement vector, a = {<Jij} is the stress tensor, and Uj
are the components of the outward unit normal vector. Eijki are elasticity constants that
satisfy the usual symmetry and ellipticity conditions. Furthermore, i,j,k,l — 1,2,3, the

summation convention is used, and (0,xi,x2,x3) is the cartesian reference frame.
The boundary part Sc is the contact boundary where the body may come into con-

tact with a rigid support. To state the laws of contact and friction we decompose the
displacement and traction vectors on Sc into normal and tangential components:

(7TV (TijTliTlj, &Ti ®ij@N^ii

Un U'Ti —

Here n, are the components of a unit vector that may be thought of as coinciding with
v, and this is the interpretation preferred in this study. However, such an interpretation
is not unique, as was seen in Klarbring et al. [1], where the kinematic constraint (4)2
below was derived from an exact large deformation constraint by means of linearization.
It was there shown that n, may also be interpreted as pointing in the opposite direction
of the outward unit normal vector of the rigid support. Nevertheless, i/j and n, must be
almost coinciding for the theory to be physically admissible.
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The contact law is taken to be the classical one of Signorini, i.e.,

cat < 0, uN - g < 0, aN(uN - g) = 0 on5c, (4)

where g is the initial gap between the body and the rigid support. Note that there is no
sign restriction for g.

The friction law is that of Coulomb, which can be written as

Wt\ < m|cttv|, (5)
if \(Tt\ < h\&n\ then uj' = 0, on Sc, (6)

if |<tx| = h\(Tn\ > 0 then ut — —Xctt, A > 0, (7)

where /i is the friction coefficient, a superposed dot denotes time derivative, crT =
(<Jti, oti, &tz), and uj- = (uti,ut2,ut3)-

In conclusion, (1) through (7) constitute the quasi-static frictional contact problem.

3. The cone of limit velocity fields. A limit state of the mechanical system is a
state in which a constant rigid velocity field can be superposed onto a static deformation.
In this section we develop the kinematic conditions that must be placed on such a limit
velocity field.

Let
Q = {w\wi=ai+ fiijXj, Pij = -f3ji}

be the set of rigid body velocities. Here a,; and /3,-j are constants. The kinematic contact
condition un — g < 0 must be satisfied both at the instance when the limit velocity is
added to the static deformation and when such a motion has continued for some time.
For a given static deformation we therefore define the cone of limit velocity fields as

K°° = {w e Q | u7v + Awn < g, un < g on Sc, VA > 0, w/0}

= {w e Q | wn < 0 on Sc, w ^ 0},

where is defined similarly to u^. Similar constructions to this, related to different
problems, can be found in Baiocchi et al. [2], and Ciarlet and Necas [3].

A velocity w £ K°° divides Sc into two complementary parts:

S+(w) = {x G Sc | wN < 0},

Sc(w) = {* £ Sc \ wN = 0}.

Obviously, a set S®(w) cannot be completely general. To fix ideas, let it be open and
simply connected, and let ri{ = V;. Then the work of Hlavacek and Necas [4] shows that
S^(w) must be a part of one of the following: a helicoidal surface, a surface of revolution,
a cylinder, a plane, or a sphere. If it is multiply connected it can consist of, for instance,
two cylinders with a common orientation. If n; is taken as pointing in the opposite
direction of the outward unit normal vector of the rigid support, then the corresponding
surface of the rigid support is one of the above-stated geometrical objects.
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4. A limit state problem. Consider a velocity w £ K°° that is added to a static
deformation at time r equal to zero. Then, for r > 0 and x € S+(w) we see from (4)
that crjv(x) = 0. We also have from (5) that <tt(x) = 0. Thus, when stating a problem
defining the static deformation of the body at the limit state we only have to consider
contact and friction conditions on S°(w).

As a particular case of a limit-state problem we will consider a situation when w = kei,
where ei = (1,0,0) is a natural base vector of R3, k € R, k ^ 0 and w £ K°°. This
means that if 5°(w) is an open set and n-i = i/j, then each of its connected parts will be
part of cylindrical or plane surfaces parallel with the ici-axis; see Hlavacek and Necas [4].
Since the constant k enters only as sign(fc) in the following, we set for simplicity k — 1.

Substituting the displacement u = u° +rei, where u° is independent of time, into (2)
and (4) we obtain

M
dxi

cryv < 0, U°N - g < 0, aN(u°N-g)=0 on 5°(w). (9)

Furthermore, the friction law (5) through (7) implies that

<Tt — —ft I ctjv | ei on S°(w). (10)

The problem of finding the fields a and u° and the scalar a such that (1), (3), and
(8) through (10) are satisfied constitutes a limit-state problem that will be considered
in subsequent sections. The given data are f,t, Eijki,Vi,rii, and /x. Note that for the
chosen w, the problem can, at least for a flat S^w), be interpreted as a steady sliding
problem. Generally, this is the case when no rotations are involved, i.e., if f3ij = 0. If
Pij 4" 0, this interpretation is not possible due to the incapability of linear elasticity to
model large rotations.

5. Variational formulations. The problem of the previous section will be formu-
lated as a variational inequality. To that end, let V be a space of sufficiently smooth
functions defined on the closure of J7. The following Green's formula holds for all v G V
and is obtained from (8):

a(un, v) = - f dx + / (TijVjVids, (11)
tJ £1 j J d£i

where the bilinear form is defined as

/ \ f j? dui dyk .a u,v)= / Eijki———— dx.Jn dxj dxi3

The convex set of admissible deformations is defined as

K = {u £ V \ uN - gN < 0 on Tc}.

For technical reasons the initial gap is here defined by means of a function g = (g\, g2, g-j)
£ V such that g = g^|rc = Then we may write

K = S + K0
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where
A'o = {u e v | uN < o on rj

is a convex cone with vertex in the origin. Here and in the sequel we use for simplicity
the notation Tc := S®(w).

Assuming sufficient regularity, the complementarity conditions (9) can be equivalently
expressed as the variational inequality

u° 6 I\, / &n(vn — u°N) ds > 0 Vv 6 A'. (12)
Jrc

From (1), (3), (8), (10), (11), and (12) we obtain the following problem:

Find u° £ A' and a £ R such that for all v £ K

a(u°,v — u°) — fr {icr/v(u0)(vi — u'l) ds > a{F,v — u°),

or equivalently, in terms of A'o,

Find u e A'o and a £ R such that for all v € A'0

a(u, v - u) - J"r fj,a/v(u)(v! - uj) ds (P)

> a(F, v - u) + (lg, v - u) - a(g, v - u),

where

(F'v)= / fivi dx + / tlvlds, (lg,v) = / ncjN(g)v\ds
Jsi Jst Jrc

and CTAf(u°), <7tv(u), and ajv(g) are defined by (8). The solutions u" and u are related
as u° = u + g. The force lg may be interpreted as being due to the "shrink-fitting" (if
5<0).

6. Decoupled variational formulations. We will here make a further assumption
on the geometry of the problem which will result in a replacement of the inequality of
problem (P) by a variational inequality related to the displacement and an equation
related to the load multiplier.

It will be assumed that C := Q(1 A'o is a linear subspace of V. It is then clear that any
v £ L has the property that = 0 on Fc. Thus, we can conclude that K°° c £\{0},
implying that it is compatible with our previous particular choice of limit velocity to
make the further geometrical assumption that

C = {v £ V | v = kei for some k £ R}.

Figure 3 shows an example where £ is a one-dimensional subspace as above while K°°
is a ray in this subspace. Furthermore, we set

CL = {v G V / V] dx = 0}Jq
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Fig. 3. An example in which £ is a one-dimensional subspace and
K°° is a ray in this subspace

so that V = © £, where the orthogonality is in the L2-sense. Each element u £ V
may then be decomposed as u = u + re\, with

u = f u\ - t^t I uidx ) ei + U2&2 + u3e3 = Uiei e £J
/■Jfl|fi|

and
1 r

u 1 dx.1^1 In
We now substitute the fields u = u + rei and v = v + sei, where v, u e into problem
(P). Since a(u, v) = a(u, v) and <7jv(u) = <ttv(u) one then obtains

I dsa(u,v — u) — / /io"7v(u)(vi — ui) ds — (s — r) / /z<7/v(u)<
Jrc Jrc

> a(F, v — u) + a(s - r)(F,ei) + (lg, v - u)

+ (s - r)(Zs,ei) - a(g, v — u).

Then, since s is arbitrary, we find that a solution of problem (P) can be constructed from
a solution of the following problem:

Find u 6 A'o fl and atR such that

- naN(u) ds = a(F,ei) + (lg,ei)

and for all v G A'o fl £x (P)d

a(u,v — u) — fr /najv(u)(vi — Hi) ds

> a(F,v-u) + (lg,v-u) -a(g,v-u).
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If (u,a) is a solution of problem (P)cj, (u = u + re\,a) is a solution of problem (P) for
any r £ R. The equation of (P)^ simply expresses global equilibrium in the ei-direction.
Note that a certain nonuniqueness of solutions has appeared. The problem is indifferent
with respect to a rigid body placement in the ei-direction.

Considering the form of H it will prove useful to introduce the functionals F and lg
defined by

<F,v) = (F, v) - (F.e,)(^e'](/-'("))3,
H®1 H(L2(f2))3

n \ _ /; \ /; v (v'el)(L2(a))3
( g'v) ~~ (^9)v) (^g>el) u 112 '

Hei H(L2(Q))3

where (v, u)(L2(n))3 = J^Vimdx and ||ei||^2(0))3 = (ei,e1)(L2(n))3 = |0|. Then it
follows easily that

(F,v) = (F,v) Vve^n/:1,

and, similarly,

(F - F,ei) = (F,ej) = [ fidx+ f txds
Jn Js,

(lg,v) = (lg,v) VveA'n/:1,

{lg -lg,ei) = (lg,ei) = flGN {%) dS .

In (P)^ we will use these substitutions of right-hand sides. It is a decomposition of the
force into a part that tends to push the body in the ei-direction and a part that is
"orthogonal" to this direction. It is straightforward to verify that (F, v) = fn fjVidx +
fSt tiVids where f = J&, 7i = h ~ ]k\ In hdx ~ |757| ■fc tlds' ^2 = h, 7a = /3, and
t = t.

A further reformulation of the problem will turn out to be useful for our existence
proof in Sec. 8. That is, the equality of (P)d can be merged into the inequality to result

Find (u, a) G (A'() fl £-*-) x R such that for all (v, (3) € (A"o H £x)x R

(PV)
a(u,v — u) — a(F,v — u) — fr u)(i>i — u\)ds

+a(F - F, ei){/3 - a) + jr ^aN{u)ds{/3 - a)

~{lg,v - u) + a(g, v - u) + {lg — lg,e\){fi - a) > 0.

Note that we have dropped the bar-sign for elements u, v e K0 D £_L.

7. Functional setting. In Sec. 8 existence results will be given. For this purpose
we must, however, be more specific about the choice of function spaces and about the
assumptions.

First, C R3 is assumed to be an open bounded Lipschitz domain, and St and Tc
relatively open subsets of dfl with St fl Tc = 0. For the volume forces and surface
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traction fields f and t we require that fi G L2(Q), ti G H~1^2(dfl), and supp t C St-
Also, let Eijki G and Eijki£ij£ki > co^ij^ij for some Cq > 0 and for all symmetric
iij- ^

The space of smooth functions V is replaced by the Hilbert space V — [71/1 (fl)]3, with
norm denoted by | • \v- C and are defined as previously, but with V replaced by V.
For the gap function g we assume that ggV and in addition that daij(g)/dxj £ L2(fl).
The sets K and Kq are replaced by

K = {u G V | (ujv - 5Jv)|rc ^ 0}, K0 = {u 6 V \ un|rc < 0}.

Here the gap function g^ G H1^2(dfl) D L1(9f2) and the inequality (u^ — <?jv)|rc < 0 is
to be interpreted in the following sense: fr (u^ — g^)tpds < 0, \/ip : dil —» R such that
(p > 0, supp (fi c rc, and <p G C(dfl). Then K and A'0 are closed convex cones in V and
K = g + A().

Our purpose is now to make the different terms of (P)^ and (PV) well defined for
u G V. The bilinear form a(•, •) classically satisfies this requirement. However, before
we define the integrals over Tc properly we need several preliminaries.

Essential is the introduction of Va C V defined by

VA = {v G v | G L2(fl)j

with the norm || • \\yA given by

 \ [ d<7ij{\) daik(v) \ l/Jllvlk, = llvllv + [JSI 3xj

and cij(v) = E^kiLet W = Hl/2(dQ) and W' = H^1^2(dfl) denote the trace space
and its dual. Then, if v G H1^), the restriction tr(u) = v|an G W is well defined.
From Green's formula it also follows that ctat(v) G W' if v G Va and that the mapping
Ki 9 v h (jjy (v) G W' is linear and bounded. In particular, for some constant ctr,
depending only on fi and \\Eijki\\L°°(Q) we have

lkjv(v)||vK' < ctr||v||vu Vv G Va- (13)

Similarly, the mapping V 9 v vi |an G W is linear and bounded, and for some constant
ctr, depending only on fl. we have

IM|w < Ctr||v||v VvGV. (14)

Now, if f G (L2(fi))3 let

V(f):={vGyl^+/l=0}-

V(f) is then a closed linear manifold in V and we may introduce the orthoprojection

TTf : V -> V(i).
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For the coefficient of friction fi, we will assume that it is defined on the whole of <9f2,
H : <9f2 —> R, fi > 0 and that ^ G Lip(dO), i.e,

IImIIlip IHlL°°(an) + ̂ 23 dp

i= 1 dxi < 00.
L°°(dn)

If n is initially defined only on Tc then we have to extend it to <90, preferably with smallest
possible Lipschitz norm ||/x||LiP- If Mx) = Mo is constant, then of course ||/i||Lip = Mo-

Since St fl Tc = 0 it is possible to find a function tp G C°°(R3) such that i/i = 1 on a
neighborhood of Tc and i/i = 0 on a neighborhood of St.

We are now ready to replace the functional

/,
(u, v) i—* — I h<tn(u)vi ds

by
V x V 3 (u,v) ' ^ jcxf (u, v) = -(naN{nafu),ipvi)w>iW G R

and so — fr fj,aiv(u)ds is replaced by ja/(u, ei) = — (^<7/v(7Ta/u), ip)w',w- Similarly, the
functional lg is defined by

(lg,v)v,v = {^N{g),i>vi)w,w-

Here and in the sequel, (•, -)b',B will denote the dual pairing in a Banach space B and
its dual B'. For later use we also introduce the a priori estimates

\\iJju\\w < Ci^HV'llLiplMlu' (15)

and
||V"?l|w" < c2(f2)||VI|LiP||9l|w" (16)

valid for all V € Lip(<90), u G W = Hl'2{d9) and q G W' = H~l'2{d9.) with the
constants Ci(0) and C2(0) depending only on 0 (the geometry).

Next, the functional v i—> fn fiVidfl + fr tiV^ds may be replaced by

V 3 v (f>v)(L2(n))3 + (t,v)(W')3,w3 = (f\v)v'.v> F G V,

where f G (L2(0))3 and t G (VK')3 = (_ff"~1/,2(<90))3. As in the previous section, con-
sidering that v = v - (v,ei)(L2(n))3e1/||ei||^L2(n))3 (ei G V C (L2(0))3) we introduce

F G V' and lg G V' defined by

ifS ... /17 /r- _ \ (vi ei)(L2(n))3
ei

(L2(H))3

n \ n \ n \ (v> ei)(£2(n))3(lg,V)v>,V = {lg,v)v>.V ~ (lg,el)v',v-jj [75 —U~-
leili(L2(fi))3
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The same results as in the previous section are valid; so we use (F, v)v,v, (F —F, ei)v,v,
etc., as right-hand sides in the variational problem.

After these rather lengthy preliminaries we are ready to replace the problem (P)^ by
(we drop the bar sign in u and v)

Find u G Kq n £x and a G R such that

ja/(u,ei) = a(F - F,ei)v,v + (lg — lg,ei)v,v
and for all v G K n £x

a(u,v - u) + jaf(u,v - u)

„ > a(F, v — u)v,v + (i9,v - u)v>,v - a(g,v - u)

and (PV) by

Find (u, a) G (Kq n £x) x R such that for all (v, j3) G (Kq n £x) x R

a(u, v - u) - a(F, v - u)v>y + jaf(u, v - u)

+a(F - F,ei)v,v(P - a) - jaf(u,ei)(P - a)
-{lg,v- u)v',v + a(g, V - u) + (lg - lg,ei)v,v{0 - a) > 0.

Before proceeding we will rewrite the functional jaf as follows. We first note that for
all u G V

7TafU = TTqU + aU0

where ctuo = 7raf0 = a7T/0, Uo = n/0. Therefore,

jaf (u, v) = (-fiaN(irafu), ipv^w^w

= (~iJ,aN(iTou},ipvi)w',w + a(-naN(TvfO),i>vi)w',w

= jo(u,v) + q(L/)M, v)v,v

where we have introduced the functional jo and Ldefined by

Jo(u,v) = {-naN(n0u),ipVi)W\W,

(L f^,v)V',v = (—

Moreover, L f:IJ is defined by

/T \ n \ n \ (vi ei)(L2(Q))3(L/,a»v)v",v = {Lf^,v)v,v ~ (L/)M,ei)i",v-jj—jj2 •
lleill(L2(n))3

We now obtain the following problems:

Find u G Kq fl £x and a G R such that

jo(u,ei) = a(F - F - (L/,M - L/,M),ei)v,v + (lg —lg,ei)v,v
and for all v G K D £x (P)d

a(u, v — u) + j0(u,v- u)

, > a(F - L/)/x, v - u)v,v + - u)y/,y - a(g,v - u),
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' Find (u, a) G (Kq Pi £x) x R such that, for all (v,/3) G (.Kq fl £x) x R

a(u, v - u) - a(F - L/i/x, v - u)v,v + jo(u,v - u)

+q(F - F - (L- Lf^),ei)vy((3 - a) - j0(u,ei)(/3 - a)
-(lg,v- u)v>y + a(g, v - u) + (?9 - lg,ei)vy(P - a) > 0.

Introducing the notation U = (u, a), V = (v, /?), and

.4(W, V) = a(u,v) + j0(u,v) - a(F - Lf^,v)v-y

+ a(F - F - (L/ijU - L/iM),ei)v",v/S-io(u,ei)/3,

F(V) = (igiv)vy ~a(g,v) - (/9 - lg,ei}v<y/3,

Problem (PV) takes the form

Find U G (KqH Cx) x R such that for all V G (A'o n £x) x R
A{uy-u) > Tiy-u).

(PV)

(PV)

It is clear that A is a bilinear, nonsymmetric, and continuous functional on the closed
convex cone (Kq fl £x) x R and that T is a bounded linear functional on V x R.

Some comments are in order regarding the introduction of the projection operator iTaf
and the function ij). Assume that (u, a) solves problem (P)d- It is then easy to verify
that

a(u, v — u) +jaf(u, v - u) > a(F, v — u)V>y

for all v G K. Therefore, by Green's formula it follows that (in the sense of distributions)

+ afi = 0 in f2, (17)
d<Tij{u)

dxj

i.e., that 7rQ/u = u. Using this it also follows that

Oij(u)vj = ati on St, (18)

crij(u)=0 on dfl\(St U Tc), (19)

ct/v(u) < 0, uN - g < 0, <7jv(u)(uat - g) = 0 on Tc, (20)

<rT(u) = -/KXjv(u)ei on Tc. (21)

The function ip is introduced in order to get a proper definition of a functional correspond-
ing to the integral fr fj,ajy(u)vids. It is important to note that, by (17) and (19), the
values of ja/(u,v) = -(^aN(-Kaf\i),il)Vi)w^w and jQ/(u,ei) = -(naN(Trafu),^)w',w
are unchanged if is replaced by another function satisfying the same conditions. There-
fore the class of solutions (u,a) and (P),j is independent of the particular choice of%l>.

The splitting of naf into two parts producing the functional Lis made in order to
give a formulation in terms of a bilinear form (.A). We do not attempt or find useful any
physical interpretation of L



LIMIT STATES OF FRACTIONAL JOINTS 81

8. An existence result. In this section we will formulate and prove an existence
theorem for the problem (PV). We first state the following lemma.

Lemma 1. There exists a constant Ck > 0 such that

a(v,v) > cfc||v||^ (22)

holds for all v € Kq fl C~ as well as for all v 6 (jL, where Q1' is the orthogonal
complement of Q in the //'-norm.

Proof. The sets Kq fl C - C V and Q C V are both convex closed cones of V, with
vertex in the origin, and (A'o f~l £±) DQ = {0}, Q1 fl Q = {0}. Thus, the lemma follows
from Korn's inequality; see Necas and Hlavacek [5].

We will also need the following general result for abstract inequalities in Banach spaces,
which has been formulated by Cocu [6]. A proof in a more general situation can be found
in [7] or [8],

Theorem 1. Let B be a reflexive Banach space, C C B & nonempty closed convex
subset of B, and let

G:CxC-)R

be a function such that
(i) G(u,u) >0 Vu € C.

(ii) The set {t> € C \ G(u, v) < 0} is convex for every fixed u G C.
(iii) The set {u G C \ G(u, v) > 0} is weakly sequentially closed for every fixed v € C.
(iv) There exists a bounded subset D c B and an element v{) G D fl C such that

G(u,vo) < 0 for all u £ C\D.
Then there exists at least one vector uq E D C\ C satisfying the inequality

G(u0, v) > 0 € C.

In order to apply this theorem we first estimate jo(u, u). By (15) and (16)

|jo(u,u)| = | - (lmtn(tt0u),iI)Ui)w',w\ < ||mct(7Tou)||||-0^i||m^

< Ci(fi)C2(fi)||V||Lip|HlLiplK7r0u)||w'||Ui||y.

Now, using (13) and (14) we get

L?'o(u,u)| < c1(fi)c2(n)ctrctr||V'||Lip||MllLip||7r()u||^||u||v.

By definition H^uHi/, = ||7rou||y and, since no is an orthogonal projection, 117Tou11v <
||u||i/. Therefore,

|jo(u,u)| < 4||u||y, (23)

where A = ci(0)c2(r2)ctrctr||-0||Lip||m||Lip- Similarly, we get

Uo(u,ei)| < c1(0)c2(n)ctr||V'||Lip||MllLip||u||v||e1||H/
< j4||u||v||ei||v = ||u||v,
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i.e.,
|jo(u,ei)| < v4|0| ||u||y. (24)

For the functional A we now have, using (23), (24), and Lemma 1, the following inequality
for all U G (A'o fl £x) x R :

A(UM) > (cfc - A)\\u\\2v - |a| |ju||v||F - LfJ\v,

+ a2(F - F - (Lftli - L/,^), ei)v,v - -4|^| ||u||vM,

i.e.,
A{U,U) > cn||u||v + c22a2 - 2ci2|q| ||u||y (25)

where we have introduced the notation

cn = cfc - A,

c22 = (F - F - (Lf4l - Lftll,ei}v>,v,

c12 = I{I|F-L/,m|^+A|0|}.

Now, a necessary and sufficient condition that there exist an e > 0 such that

cu 11u112 + c22a2 - 2ci2|a| ||u||v > £{|ju||2 + a2}

for all 11u11 v, a, is that Cn > 0, c22 > 0, and cnc22 — cf2 > 0, i.e., that

c^, - A > 0, (F — F - (L/iM - L/:M), e\)v,v > 0 (26)

and that

(Cfc - ^4){F - F — (L/iM - L/iM),ei>^ > ±{||F - L/,p||v"' + ^|ft|}2. (27)

Under the assumptions (26) and (27) we have, with £■ > 0,

A(UM)>£\\U\\2VxR (28)

for all U G (A'o fl £x) x R.
We are now ready to formulate the main result of our paper, stating that problem

(PV) has at least one solution.

Theorem 2. Assume that our parameters satisfy the inequalities (26) and (27). Then
there is at least one vector U = (u, a) £ (A'o fl £1) x R such that

A(U,V-U) >Tiy-U)

for all V = (v,/3) 6 (A'o n£x) x R.
Proof. Let, in Theorem 1, B = V x R, C = (A'0 H £±) x R and let G be defined by

G(U, V) = A(U, V-U)- T{V - U).
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It is clear that G(14,14) = 0 for all U so that condition (i) of Theorem 1 is satisfied.
Condition (ii) is satisfied since G(U, V) is linear in V. Choosing Vo = 0 we have

G(U, 0) = -A(U,U) + F{U) < s\\U\\2VxR + H^IIvxrIIWIIvxr-

Taking D — {14 € V x R | ||W||vxR < H-^IIvxr/s} we conclude that (iv) is valid. It
remains to verify condition (iii). We introduce the notation Q = Q x R. Pq-.Vx R —>
Q C V x R denotes the orthogonal projection onto the subspace Q. Now, given a vector
V and a sequence {Un}^L\ C (Kn D £J_) x R such that G(l4n,V) = A(Uni V — I4n) —
T(V — Un) > 0 and Un U, we are to show that G(U, V) = A(U,V — U) -^(V-U) > 0.
Since A{Un, V) —> A(U, V) and J-(Un) —* T{U) it suffices to show that

A(UM) < liminf A(Un,Un)
n—>oc

for every sequence {Un}^Ll C (A'q fl £x) x R converging weakly towards U € V x R.

Lemma 2. If Qx = QL x {0} D {Un}%Lx and if Un — U (weakly), then

A(UM) < lim inf A(Un ,Un).
n—>oc

Proof. By Lemma 1, a(u„,u„) > Cfc||u„||y. From the estimates in (23), (24), which
are valid for arbitrary u £ V, we conclude that (28) is still valid under the assumptions
(26), (27), i.e.,

A(U,U) > zM?
for all U G QL. Now Q1 C V x R is a linear subspace, whence we conclude that Cauchy's
inequality is valid for the symmetric part of the bilinear form, i.e., that

\(A(Un,U) + A(UMn)) < VA(U,U)VA(Un,Un

Taking limits we get

A{U,U) < yjA(U,U) liminf y/A{Un,Un),
n—*oc

i.e.,
A(U,U) < liminf A(Un,Un)-

n—►oo

Now let {Un} C (A'o n £x) x R and Un U. Take Zn =Un— Pq14ti with Zn 6 QL =
Q± x {0} and PqUti € Q. Since Q is finite dimensional

PqU„ —> PqU (strongly)

and
— Z=U- PqU (weakly).

Therefore, we get

A(Un,l4n) = A(Zn + PqUh, Zn + PQUn)
= A(Zn, Zn) + A(Pq14u, Pq14u) + A(Zn, Pq14u) + A(PQl4n, Zn)



84 LARS-ERIK ANDERSSON and ANDERS KLARBRING

where A{Zn,PQUn) -> A(Z,PQU), A{PaUn,Zn) -> A{PqU,Z), and A{PQUn,PQUn)
—* A(PqU,PqU). We conclude, by Lemma 2, that

liminf A{Un,Un) = liminf A(Zn, Zn) + A(PqU, PqW) + -4(.2, PoW) + A(PaU, 2)
n—>oc n—>oo

> _4(Z, 2) + A(PeW, PeW) + A(Z, PqU) + «4(PSW, Z)
= A(Z + PQU, Z + PQU) = A{U,U),

i.e., that

A{U,U) < liminf A{Un,Un).

We have proved that condition (iii) of Theorem 1 is satisfied. It follows that there exists
U e (A'o fl C-1) x R such that for all V £ (A'o fl £x) x R we have

G{U, V) = A(U, V-U)- F{V -U)> 0.

This completes the proof of Theorem 2.

From (26), (27) and the fact that A contains the factor ||/i||Lip and that ||L/,M —
L/,m||v" < CIHkip we get the following corollary.

Corollary 1. If (F-F,ei)v,v > 0 and Cfc(F-F,ei)v,v > j||F-L/.^llv then there
exists a 8 > 0 such that the problem (PV) has a solution whenever 0 < ||/.t||Lip < S.

Some important comments relating to this corollary are as follows: (i) the fact that
a "small" friction coefficient is needed is in agreement with previous results on fric-
tional contact; see for instance Klarbring [9]. In fact, for large frictional coefficients it-
can be anticipated that the limit state corresponds to a chattering motion of stick-
slip type instead of the constant velocity state considered here, (ii) The condition
Ck(F - F,ei)v,v > ^||F - L/iM||y, which implies (F - F,ei)v,y > 0, means, firstly,
that there must be a force resultant in the ei-direction in order to have a sliding in this
direction and, secondly, it is a condition on the direction of the forces: for given geometry
and constitutive constants a large "tangential" component F — F promotes satisfaction
of the condition, while a large "normal" component F counteracts it. An illustration is
given in Fig. 4.

Some comments on nonuniqueness follow. As found in Sec. 6 it is clear that if (u, a)
is a solution of problem (P), then, for any r, (u + rei,a) is also a solution. In problem
(P)d and subsequent reformulations this indeterminacy has been filtered away. However,
also problem (PV) (and consequently also (P)d) exhibit nonuniqueness. Let U — (u, a)
be a solution of (PV). Then U' = (u + uq, a), where uq G Qn£± and u + uq G KqDC1
is also a solution since „4((uq, 0), V) = 0 for all V. In summary, if a solution (u, a) of the
limit-state problem has been found, all geometrically admissible displacement states that
can be reached from u by a rigid body placement are, together with a, a new solution.
Further, we have to leave as an open question whether the multitude of solutions might-
be even larger.
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(b)

Fig. 4. The force direction in (b) is more likely to satisfy the
conditions of Corollary 1 than that in (a).

9. A yield theory. It is appropriate in this context to make a reference to the so-
called yield theory, see Fremond [10], for assessment of limit loads of mechanical systems.
Given the strength of individual members of the system the yield theory can be used
to obtain a set of external loadings that are potentially withstandable by the system.
When used for members displaying a standard (i.e., associated) perfectly plastic behavior
it is possible to show that a force that is potentially withstandable is also absolutely
withstandable. Here we will indicate an extension of the yield theory to frictional joints.
This will be done under the assumption of sufficient regularity.

Let £7* be a set of sufficiently smooth tangential contact stresses. The set of load
parameters a such that the load is potentially withstandable is denoted by V. We have

' a £ V if and only if there exist u £ K and

crT G {tt e | |tt| < on 5,.}

such that for all v 6 K

- a(u, v - u) - fSc aTi(uTi - vTi) ds > a/(v - u).

Note the typical characteristics of a yield theory that the conditions on the velocity,
present in the formulation (5) through (7) of Coulomb's friction law, do not enter (Y).
This is what makes the load only potentially withstandable.

Friction is a nonassociated phenomenon and therefore one expects a difference between
potentially and absolutely withstandable forces. To investigate this consider again the
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example shown in Fig. 1. Here, an extension of the yield theory would imply that
for friction coefficients above the self-locking limit the potentially withstandable forces
belong to the set (—00,00), while the absolutely withstandable forces belong to the set
(—oo,0]. On the other hand, for friction coefficients below the self-locking limit the two
sets coincide and are given as (—00,0]. Whether the magnitude of the friction coefficient
indicated by the self-locking limit has a relation to the smallness indicated in Theorem
1 is not known.

Extensions of the yield theory in the case of rigid-plastic bodies with frictional bound-
ary conditions have been given by Drucker [11], Collins [12], and Telega [13].

10. Discussion. The paper introduces a class of limit-state problems for frictional
systems. The detailed analysis is carried out for a particular problem obtained by making
two partly related assumptions. The first assumption is that the limit velocity has a
particular form. The second assumption is that the set of kinematically admissible rigid
body displacements form a one-dimensional subspace of the configuration space. Both
of these assumptions could obviously be changed in various ways without considerably
changing the structure of the problem. For instance, under the same assumption on the
limit velocity the set of kinematically admissible rigid body displacements could form a
two-dimensional subspace. Another alternative would be letting the limit velocity be for
instance a helical motion. What is typical for all such extensions, and what makes the
technique of proof possible, is Lemma 1.

A related problem to the one discussed here has been considered by Gastaldi and Mar-
tins [14]. In that paper the same particular limit velocity field is considered, but the set
of kinematically admissible rigid body displacements is a half-space. In this case Lemma
1 does not hold, but on the other hand, the compatibility condition, represented in the
case of this paper by the equality of problem (P)d, will not involve the displacement field:
it will be represented by simple global equilibrium conditions; so a and the admissible
direction of the forces are obtained as a separate equilibrium problem. Because of this
Gastaldi and Martins are able to give an existence proof without access to Lemma 1.
However, there is a class of intermediate situations not covered by the considerations in
this paper nor the study of Gastaldi and Martins. The mathematical analysis of these
problems must be considered as open questions, but can most likely be treated by an
application of the general Theorem 1.
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