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INTRODUCTION

Let R = K[Xy,...,X,;Y1,...,Y,] be a polynomial ring in two sets
of variables. Let r,k > 1 be integers, then I, , is the Veronese-type ideal
generated on degree r by the set {X|" ... X" | dimrai; =1, 0 <a;; <s,
s € {1,...,r}} and Ji s is the Veronese-type ideal generated on degree k
by the set {¥;" ... Y™ | 7™ b = k, 0 < by, < s, 5 € {I,....k}}. In
[10] the author introduced the Veronese bi-type ideals Ly s = >, o IrisTk.s
generated in the same degree q.

For s = 2 the Veronese bi-type ideals are the ideals of the walks of a
bipartite graph with loops. In [9] the author studies the combinatorics of the
integral closure and the normality of L, 2. More in general, in [10] the same
problem is studied for L, , for all s.

In this paper we are interested to study the symmetric algebra of these
classes of monomial ideals. In order to compute the standard invariants we
investigate in which cases these monomial ideals are generated by s-sequences.

In [6] the notion of s-sequences has been employed to compute the in-
variants of the symmetric algebra of finitely generated modules. The proposal
is to compute standard invariants of the symmetric algebra in terms of the
corresponding invariants of special quotients of the ring R. This computation
can be obtained for finitely generated R-modules generated by an s-sequence.

In Section 1 we consider the ideals of Veronese-type I, s. We give the
conditions such that I, s is generated by an s-sequence. Then we compute
standard algebraic invariants of the symmetric algebra of I, .
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202 Monica La Barbiera 2

The computation of these invariants can be obtained when the ideal I, ,
is generated by an s-sequence in terms of its annihilator ideals.

In Section 2 we determine the subclasses of Veronese bi-type ideals L s
generated by s-sequences. We establish the theorem: L, is generated by an
s-sequence if and only if ¢ = s(n+m)—1. The technic used to prove this result
is the characterization of the monomial s-sequences by the Grébner bases. For
s =1 and g = 2,3 the ideals obtained are the mixed product ideals I;J; and
Iy Jo+15Jy, studied in [11]. Then we give the structure of the annihilator ideals
of Veronese bi-type ideals generated by s-sequences and we achieve formu-
las for the dimension dimp(Symp(Lgs)), the multiplicity e(Sympg(Lg,s)) and
bounds for the Castelnuovo-Mumford regularity regr(Sympg(Lgs)) in terms
of the annihilator ideals as described in [6]. As an application, we verify the
Eisenbud-Goto inequality in the formulation given in [12], for the symmetric
algebra of these ideals generated by s-sequences. In Section 3 we consider the
ideals of the walks of a bipartite graph with loops I4(G) = Lg2. We prove
that the ideals I;(G) generated by an s-sequence are a class of monomial ideals
with linear quotients and we investigate some their algebraic invariants.

1. IDEALS OF VERONESE-TYPE

We recall the theory of s-sequences in order to apply it to our classes
of monomial ideals. Let R be a noetherian ring, M be a finitely generated
R-module and fi, ..., f; be the generators of M. For every i =1,...,t, we set
M; 1 =Rfi+---+ Rf;—1 and let 7, = M;_1 :r f; be the colon ideal. Since
M;/M;_1 ~ R/Z;, so Z; is the annihilator of the cyclic module R/Z;. Z; is
called an annihilator ideal of the sequence fi,..., f;.

Let (asj), for i = 1,...,t, j = 1,...,p, be the relation matrix of M.
The symmetric algebra Symp(M) has a presentation R[Th,...,T]/J, with
J=(g1,...,9p) where g; = Z§:1aisz’ forj=1,...,p. Let S = R[T1,...,T}]
be the polynomial ring and let < be a monomial order on the monomials of
S in the variables T; such that Ty < 15 < --- < T;. With respect to this term
order, if f =3 a, T, where T = T{* --- T and o = (aq,...,at) € N, we
put in<(f) = ax T, where T is the largest monomial in f such that a, # 0.
If we assign degree 1 to each variable T; and degree 0 to the elements of R,
we have the following facts:

1) J is a graded ideal.
2) The natural epimorphism S — Symp(M) is a graded homomorphism
of graded algebras on R.

Set the monomial ideal in-(J) = (in<(f)|f € J). In general

(ZlTlaz—ZTQa s 7Itﬂ) g 1n-<(J)
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and the two ideal coincide in the linear case.
Definition 1.1. A sequence fi,..., f: is an s-sequence for M if
(111, LTy, . . ., T/Ty) = ing(J).
If 7; C 7y C - C 1y, the sequence is a strong s-sequence.

If R = K[Xy,...,X,] is the polynomial ring over a field K, we can
use the Grobner bases theory to compute in.(J). Let < any term order on
K[Xq1,...,Xp;Th,...,Ty] with Ty < Ty < --- < T, X; < Tj for all i and j.
Then for any Grébner basis G of J C K[X1,...,X,,T1,...,T;] with respect
to <, we have in<(J) = (in<(f)|f € G). If the elements of G are linear in the
T;, then f1,..., f; is an s-sequence for M.

Let M =1 = (f1,...,f:) a monomial ideal of R = K[Xy,...,X,]. Set

fij = [flfi}l]} for i # j, where [f;, f;] is the greatest common divisor of the

monomials f; and f;. J is generated by g;; = fi;T; — f;1; for 1 <i < j <t.
The monomial sequence f1, ..., f; is an s-sequence if and only if g;; for 1 <i <
j <t is a Grobner basis for J for any term order in K[X,..., Xy;T1,...,Ti]
with 77 < To < --- < T}, X; < T} for all 7,j. Notice that the annihilator ideals
of the monomial sequence fi, ..., f; are the ideals I; = (f1;, f2i, ..., fi—1,) for
i=1,...,t ([6]).

Remark 1.1 ([6, Lemma 1.4]). From the theory of Grébner bases, if
fi, ..., ft is a monomial s-sequence with respect to some admissible term order
=<, then f1,..., fi is a s-sequence for any other admissible term order.

The first section of this paper is dedicated to the symmetric algebra of a
class of monomial modules over the polynomial ring R = K[X,...,X,] that
are ideals. We recall the following definition.

Definition 1.2 ([13]). Let R = K[X1,..., X,] be the polynomial ring over
a field K. The ideal of Veronese-type of degree ¢ is the monomial ideal I
generated by the set

{Xf” X

n
Zaij =q, 0 <ay SS}.

J=1

Remark 1.2. In general I, ; C I,, where I is the Veronese ideal of degree
q of R which is generated by all the monomials in the variables X1, ..., X, of
degree ¢: Iy = (X1,...,Xp)? ([14]). If g =1,2 or s = g, then I, , = 1.

Ezample 1.1. R = K[X1, X2, X3, I32 = (X? X2, X? X3, X1 X2, X2 X3,
X1X2, XoX3, X1X0X3) C I3, I35 = (X7, X5, X3, X§ X0, X7 X3, X1 X3, X3 X5,
X1X3, X0X2, X1 X0X3) = Is.
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We give the condition such that the ideal I, is generated by an s-
sequence. First of all we observe that the property to be an s-sequence may
depend on the order of the sequence.

Example 1.2 ([6]) R = K[Xl,XQ], 1272 = (X12,X1X2,X22); X127X22,X1X2
is an s-sequence, but X12,X1X2,X22 is not an s-sequence. Let Symp(lz2) =
R[Tl,TQ,Tg]/J, J = (XQTl — XlTQ,XlTQ — X2T3). Fix Th < Ty < T3 and
X1 < X9 < Ty, we have ing(J) = ((X?)Ty, (X1,X2)T3) and Z; = (0),
I, = (X?), I3 = (X1,X2). Hence X? X;1X», X7 is a strong s-sequence.
Instead X?, X7 X2, X2 is not an s-sequence because in this case in(J) =
((X1)T3, (X1)T3, (X2)T1T3). It means that J does not admit a linear Grébner
basis for any term order in K[Xy, Xo;T1,T5, T3] with X; < T} for all ¢,j and
Ty < Ty < T3. In fact there are S-pairs S(gij,gni) that have not a standard
expression with respect G = {g¢;; = fi;T; — [T | 1 < i < j < 3} with remain-
der 0: S(g12,923) = [ffjﬁz]TQQ - [ff;ﬁzz]TlTs = XoT§ — XoT1 T, with f1 = X2,
fo = X1Xo, f3 = X3. There is no g;; € G whose initial term divides a term
of S(g12, g23).

Hence in the sequel we will suppose I, = (f1, f2,..., f:) where f; <
fo < --- < f; with respect to the monomial order <y, on the variables X;
and X7 < X9 <--- < X,,.

LEMMA 1.1. Let R = K[X1,...,Xy] be the polynomial ring over a field
K withn >2and I, C R, 2<q < sn. If [fij, fu] =1 fori < j, h <,
i#h, j#1Lwithi,j,hle{l,... ,t}, then g =sn— 1.

Proof. By hypotheses ¢ < sn. Let f1,..., fi be the generators of I .
Set fij = i for fi, fj with i < j. We have fij = X - X' and fi =
X, X, for fu, fy withh <1, i # h, j # . By the hypothesis [fij, fu] = 1
fori < j, h <l,i# h,j#1l, wehave X;, # X, for all j =1,...,c and
p=1,...,d. This means that there are no other generators f, f; of I, s such
that fp; contains some variables Xj,,..., X;. (that are in f;;). It follows that
if a variable of f;; is of degree k in the monomial f3,, with h # 4, j, then such
variable in the same degree k belongs to any other generators f; for all [ > h
and [ # j. Hence we deduce the structure of the monomials that generate
I, s and satisfying the hypotheses of the lemma. If ¢ = sn — 1 we have f; =
XpX5o X X o = XpXgo XoTUXG, fy = XpX5e XoThXG X,

s fa1 = XfXQS_l e Xn o Xn 1 Xp, = X1S_1X5 X o X Xy

We compute fio = X,—1, fiz3 = Xpu—2, ..., fin = X1, fo3 = Xp—o,
ceey f2n = X1, and so on. Hence flj = fzj = ... = fnj = Xn—j+1 for all
j=2,...,n. Then fi; # fn; because j # [ and [fi;, fu] = 1 as required.

Let ¢ < sn — 1. If we consider the generators f; = X{Xj--- X 2X3

n—1»

fi=XPX5 - XpU2X0, fo= XiX5 - XoT8X0 o, fi = XiX5 - X002 X

n—1




5 On a class of monomial ideals generated by s-sequences 205

then f;; = XZ:%XZ_I and fp; = X§:§X§_2. Hence (fi;, fu] # 1, a contradic-
tion. It follows that ¢ =sn —1. O

THEOREM 1.1. Let R = K[X1,...,X,] be the polynomial ring over a field
K with n > 2. I, s is generated by an s-sequence if and only if ¢ = sn — 1.

Proof. Let I, s = (f1, f2,..., ft) and suppose that fi, f2,..., fi is an s-
sequence. We prove that [f;;, f] = 1 for i < j, h <, i # h, j # | with
i,7,h, 1 €{1,... t}.

The s-sequence property implies that G = {g;; = fi;T; — f3Ti | 1 <
i < j <t} is a Grobner basis for J. In particular, S(gi;, gn) has a standard
expression with respect to G with remainder 0. We have

fishn Tt

i fud " Ui i)
We suppose that ¢ < j, h < [, i # h, j # . As S(gij,gn) has a stan-
dard expression with respect to G there exists g, such that in_(g,,) divides
in<(S(9ij, gni))-

1) If I > j then inL(gyp) | p2Le

S(gij» gn) = T.T).

(fig> Sl
The first case is fj | [}:’;lfcfl], then [fij, fu] | fji- But, as we have
[[fl]vfhl]afjl] = 17 it follows [fij)fhl] =1

The second case is f | [J{W;Z]’ where f,; = ing(g,) with » < j and
175

r < h. We can write
fiifnl fijfin fiifuifir
S(gisgn) = =5 9nTi + i
(95 g Falfis fu] ™" [fijs fni] Trilfizs [l
Then [Jéij,?:,]TjTh is divided by f;;. Hence [fij, fu] | fin. But, as we have
([fij» fua)s fin] = 1, it follows [fij, fr] = 1.

IT) If I < j then ing (97“17) | [J];lj:]}l:ﬂ'

The first case is fi; | []{"?‘J;f:l], then [fij, fu] | fin. But, as we have
ij

([fij, fril, fin] = 1, it follows [f;, fu] = 1.
The second case is f, | JiiJin , where f.p, =in<(g.n). We can write

[fij>fni]
fijfin frifii T 4 fij finfnr

S(Gijs gn) = w7 1LjGrn — i+ =
(915 9m) Senlfigs fra] 7 [fijs fni] frnlfijs ful]
Then %@TT is divided by fzj Hence frh[fij,fhl] ‘ flhf}”«. But as
we have [[fz’j,fhl]7flh] =1, frh | flh and [fij7fhl] | fhr' By the structure of
Jroooo fo 3 [fig, ful | frr with v < b then [fi;, fu] = 1.
Hence in any case we have [f;j, fny] = 1 in the hypothesis i < j, h <,
i#h,j#1withi, j,hle{l,...,t}. It follows ¢ = sn — 1 by Lemma 1.1.

T,T), — T.T,.

T;T,.
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Conversely, let ¢ = sn — 1. I, ; is generated by n monomials fi,..., fn:
fi= XiXs- X3 X3U fo = XiX3 - XoTUXS, f3 = XiX5 - X3ThX3
X5 oo fumt = XEX5TH XS LXS XS fu = XPTUXG XD ,XE X
We compute fio = Xp-1, fis = Xn—2, ..o, fin = X1; fo3 = Xp—2, ..,

foan = X1, and so on. It follows that f;; # fx because j # . Then [fi;, fu] =1
fori <j, h<l,i#h,j#lwithi,jh,l€{l,...,n}. By [6, Proposition 1.7],
fi,..., fn is an s-sequence. [

Emample 1.3. R = K[Xl,XQ,Xg], 1713 = (X%XSX:;,X?X%X%,X%X%
X2 X3 X0 X3, X2X2X3, X1X5X3). Set fi = X3X3X3, fo = X3X3X2, f3 =
XIQXS)XZ%? f4 = X§X2X§)a f5 = X12X22X§’, f6 = X1X§X§’7 where fl <<
fe with respect to the Lex order and X; < Xy < X3. Let G = {g;; =

fii T — f7Ti | 1 < i < j <6} fi,..., fe is not an s-sequence because J
does not admit a linear Grobner basis for any term order in R[T1,...,Tg]
with X; < T} for all 4,5 and 77 < --- < Tg. In fact there are S-pairs

S(9ij, gn1) that have not a standard expression with respect G with remain-
der 0: S(ga5,936) = [}{;255’%;} T5Ts — [f??f}ﬁ} ToTs = X3T3T5 — X3T5Ts. There is
no g;; € G whose initial term divides a term of S(g25, g36)-

Remark 1.3. A particular case is s = 1: I, is the square-free Veronese
ideal of degree g generated by all the square-free monomials in the variables
X1,...,X, of degree q. I, 1 is generated by an s-sequence if and only if ¢ = n—1
as proved in [11].

Now we solve the problem to compute standard algebraic invariants of
the symmetric algebra of Veronese-type ideals generated by s-sequences.

ProposITION 1.1. Let R = K[Xq,...,X,] be the polynomial ring over a
field K and Isn—1,s = (f1,---, fn). Then the annihilator ideals of fi,..., f, are

Il = (O), Ii = (Xn—i-i-l) fOT 1= 2, oy

Proof. Let Isyn—15 = (f1,...,fn) with fi < ... < fur f1 = X{X5---
Xi X3l o= X{X5 - XoTUX5S, fa= X3 X5 XS0 X5 1 X5, fa1 =
XeXsh XS XS XS fo= XPTMXS - X2, X3 X3, Hence we observe
that I,,—1 s is generated by mhy, ..., mhy,, where m = Xf_lXS_l . -Xfleffl
and h; = Xl"')if—l\—i”'Xn fori =1,...,n. Then I,,_; = (h1,...,hy) is
the square free Veronese ideal of degree n — 1. Hence the annihilator ideals of

the sequence fi,..., f, are the same of the sequence hy,...,h, [11, Proposi-
tion 2.1]. O

THEOREM 1.2. Let R = K[Xy,...,X,] be the polynomial ring over a
field K and Ips—1,. Then
1) dim(Symp(Ins—1,5)) =n+1;
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2) e(SymR(Im,LS)) = Z;:f (n;’l) +2;
3) reg(Symp(Ins—1,5)) <n— 1.

Proof. 1) By Proposition 1.1in4(J) = ((Xn-1)T2, (Xn-2)T5, ..., (X1)Ty)
and it is generated by a regular sequence. We obtain dim(Sympz([ps—1.5)) =
n+n—(n—1)=n+1

2) By [6, Proposition 2.4] e(Sympg(Ins—1,5)) = D 1<y <...ci<n €L/ (Ziy
., Z;,)) with dim(R/(Z;,, . ..,Z;,)) = d —r where d = dim(Sympg(Ips—1,5)) =

n + 1 and 1 < r < n. By Proposition 1.1, the annihilator ideals of the
generators of I,s_1 s are the same of I,,_;. Then by [11, Theorem 2.1], we
obtain e(Symp(Ins—1,5)) = > 7= 2 (" i D +e.

3) reg(Symg(Ins—1,s)) = reg(R[T1,...,T,])/J) < reg(R[I1,...,Ty]/
in(J)), where in4(J) = ((Xn-1)T3, (Xn-2)T5,...,(X1)T,). By Proposition
1.1 in4(J) is generated by a regular sequence of elements of degree 2, then
R[Th,...,T,]/in<(J) has a 2-linear resolution and projective dimension n — 1
equal to the number of the generators of in<(J) ([5]): 0 — Sb»—1(—2(n —
1) — - — S%(—6) — SP2(—4) — S (-2) — S — S/ing(J) — 0, where
S = R[T1,...,T,]. Then reg(R[T},...,T,])/inx(J))=n—-1. O

2. IDEALS OF VERONESE BI-TYPE

In this section we consider the class of monomial ideals of Veronese bi-
type in the polynomial ring R = K[X1,...,X,; Y1,..., Y.

Definition 2.1 ([10]). Let R = K[Xy,...,X,;Y1,...,Yy] be the poly-

nomial ring over a field K in two sets of variables. We define the ideals of
Veronese bi-type of degree ¢ as the monomial ideals of R

Lys= Y IeJes, rk>1,
r+k=q
where I, ¢ is the ideal of Veronese-type of degree r in the variables X1,..., X,
and Jj s is the ideal of Veronese-type of degree k in the variables Yi,...,Y,,.

Ezample 2.1. Let R = K[X1, X2;Y1,Y3] be a polynomial ring. 1) Ly =
LioJip = I1Jy = (XaY1, X1Yo, XoY1, X0Y2); 2) Lyo = I30J12 + L12J32 +
Lodag = IsoJy + L1 Jso + Jo = (X3XoY1, X2XoYo, X1X3Y1, X1X3Ya, X3
VYo Xo¥PYa XINVE XoV1VE XPVE XPVY, XV X3P X3VE X
X1XoV2, X1 XoV2, X1 XoV1V)),

Remark 2.1. For s=1and ¢=2,3 we have L, = ETJrk:q IaJga, ok >
1, a square-free monomial ideal, more precisely a mixed product ideal ([14]).

Now our aim is to investigate in which cases L4, is generated by an
s-sequence. In the sequel we will suppose L = (f1, fo,..., ft) where f; <
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fo < .-+ < fy with respect to the monomial order <., on the variables
Xiyeo, X3 Y1, Ypand Xy < Xo < <X, <Y1 <YYo <+ <V

LEMMA 2.1. Let R = K[X1,...,X; Y1,..., Y] be the polynomial ring
over a field K and Lqs C R. If [fij, frul =1 fori < j, h <l, i # h, j # | with
i,7,h, L €{1,...,t}, then ¢ = s(n+m) — 1.

Proof. Let Lys = (f1,..., ft). Set fij = [fzf—lf]] forf;, f; with @ < j. We

have f;; = X?lil -..XZH"wYZ” YZZ’Z In the same way for fp, f; with h <[,
i # h j# 1 wehave fy = X, XYY", By the hypothesis
[fijs fm] = 1fori < j, h <, i h, j# 1. Then it follows that X; # X, for
allj=1,...,w,p=1,...,z,and Y}, #Y} forallj=1,...,2,p=1,...,u.
This means that there are no other generators fy, f; of Ly, such that fy;
contains one of the variables of f;;. It follows that if a variable of f;; is in
degree N in the monomial fj, with h # 4, j, then such variable in degree N
belongs to any other generators f; for all [ > h and [ # j. In the same way of

the Lemma 1.1 we deduce the structure of the monomials that generate L g:
fr=X{X5 - Xp o Xp 1 X3YYs - Yo Yo,
fo=XTX5 - X5 o X5 ( XpYPYS - Y;L:llynsfu
f3=XPX5 - X o X0\ XoYPYs YTV (Yo

fn+m—1 = Xlng_l o 'X2—2XTSL—1X7SLY1SY28 T erz—1ynsw
frtm = Xf_1X§ EED. GEPD. GEED. 60 €10 T IEEED (IR S

THEOREM 2.1. Let R = K[X1,...,Xn; Y1,. .., Y] be the polynomial ring
over a field K. Ly ¢ is generated by an s-sequence if and only if ¢ = s(n+m)—1.

Proof. Let Lys = (fi1, f2,..., ft) and suppose that fi, fa,..., f; is an
s-sequence. We prove that [fi;, fu] = 1 for i < j, h <, i # h, j # | with
i,7,h, 1 €{1,... t}.

The s-sequence property implies that G = {g;; = fi;T; — f;Ti | 1 <i <
j <t} is a Grobner basis for J. This means that S(g;j, gn;) has a standard
expression with respect to G with remainder 0. We have

fishn Tt

S(gij» gn1) = figs fral h [fijs ful]

We suppose that ¢ < j, h < I, i # h, j # . As S(gij,gn) has a stan-
dard expression with respect to G, there exists g,, such that in-(g,p,) divides

in~(S(gij, gn1))-

;.
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I) If [ > j then in.(g,p) | [}:’;”J;Z].
The first case is fu | 2547, then [fij, fu] | f- But, as we have [[f, ful, f51] =
1, it follows [fij7 fhl] = 1.
The second case is f | [Jf’flfcfl], where f,; = in<(g,) with r < j and
ijs
r < h. We can write
S(gis gni) = fiifn T + fiifin T fiifnifir .

 Falfijs fuil Uigs Fdl 77" Fualfigs Sl

Then []{ffj;ﬁ:l}l“jTh is divided by f;;. Hence [fij, fu] | fin. But, as we have
i

[[fij; fhl]a flh] = 1, it fOHOWS [fij7 fhl] =1.

II) If I < j then in<(grp) | [J{fj}l:ﬂ

The first case is f;; | [f;;,l;‘l:z]’ then [fij, fu] | fin- But, as we have [[fij, fu], fin] =

1, it follows [fij, fhl] =1.

The second case is f,, | [}?;J;f:l], where f.;, = in<(g,;). We can write
fijfin Inifji fij finfur
S(gij gnt) = =2 g, — T, + 29I o
(9:3- 9nt) frulfijs fhil 3grh [fijs fra] ™ : fenlfijs f) 77"

Then %TJT is divided by fi;. Hence fun[fijs fu] | finfar. But as

we have [[fij, ful, finl = 1, fen | fin and [fij, fri] | frr. By the structure of
fi, oo foy i [fij, fr] | fre with 7 < h, then [fi;, fu] = 1. Hence in any
case we have [fi;, fr] = 1 in the hypothesis i < j, h < I, i # h, j # | with
i,7,h, 1 €{1,...,t}. It follows ¢ = s(n +m) — 1 by Lemma 2.1.

Conversely, let ¢ = s(n +m) — 1. The generators of L, s are

fi=X{X5 X5 o Xo  XSYPYs Y YT

fo=X{X5 - X o X5 ( XpYPYs - YY)
f3 = XfX;’ Tt XZ—QXfL—leLYfo T Yriilzyrfb—lynsw

frtm—1 = X{X571 - Xp o Xo  XRYPYS Y Yy,
Fotm = X{THX5 - X0 o X XOYTYS Y Y
We compute fio = Y1, fi3 = Y2, ..o, fim = Y1, fiym+1 = Xu, fimi2 =
Xn-1, oo frem = X1, fo3 = Yoo, oo, fom = Y1, fomi1 = X, fomie =
Xn-1, .-+, fon+m = X1 and so on. Hence f;; # fn because j # [. Then
[fijoful = 1fori<j, h<l,i#h, j#1withijhle{l,...,n+m}. By
[6, Proposition 1.7] it follows that fi,..., fn+m is an s-sequence. [

Example 2.2. R = K[Xl,XQ; Yl, Yg], L372:(X12Y1,X1X2Y1,X22Y1,X1Y12,
XoY2, X2Yo, X1XoY2, X3Ys, X1Y1Ya,, XoY1Ys, X1YF, XoV$). Let G = {g;j; =
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fis Ty — [T | 1 < i < j < 12}; fi,..., fi2 is not an s-sequence because J
does not admit a linear Grobner basis for any term order in R[TY,...,T12]
with X; < T3, Y; < Tj for all 4,5 and Ty < --- < Ty2. In fact, there are
S-pairs S(gij, gn;) that have not a standard expression with respect G' with

remainder O: S(g16,gg7) == []{11;7]}7227] TQTG - [}[16617]}2277] T1T7 == Y2T2T6 - YVQT1T7.

There is no g;; € G whose initial term divides a term of S(gi6, g27)-

As in Section 1 we use the theory of s-sequences to compute standard
invariants of the symmetric algebra of the monomials ideals L, s generated by
an s-sequence.

PROPOSITION 2.1. Let R = K[Xy,...,X,;Y1,..., Y] be a polynomial
ring over a field K in two sets of variables and Ly s for ¢ = s(n+m)—1. Then
the annihilator ideals of the generators of Ly s are Ty = (0), Z; = (Yp—iy1) for
i=2,...,m, T = (Xpntm—it1) fori=m-+1,... ., m+n.

Proof. Let ¢ = s(n+m)—1. Lys = (f1,..., fotm) with fi <+ < froim
and

fi=X5X5 X o Xy XoYPYs Y Yt
fo=X5X5 - X3 o Xy ( XSYPYs - YY)
f3=X7X5 - X o X, (XpYPY5 - Yni__lgyéqyrfp

froom—1 = XX X5 o X5 XSYPYS Y Y,
Jrom = X{TX5 - X5 o X5 XSYPYS Y Y

The annihilator ideals of the sequence f1, ..., fo4ym are Z; = (fii, foi, .-, fi—1,i)

fori=1,...,n+m. Fori = 1we have Z; = (0). By the structure of the mono-

mials f1,..., fa+m we have Zo = (fi12) = (Yim-1), s = (f13, f23) = (Yim—2),
B Im = <f1m7 ceey fm—l,m) = (Y1)7 Im—i—l = (fl,m-l-l? ceey fm,m+1) = (X'ﬂ)7
vy Ingm = (fl,m—m, ceey fn—i-m—l,n—i-m) = (Xl) U

THEOREM 2.2. Let R = K[X1,...,Xn; Y1,...,Yy,] be the polynomial ring
over a field K in two sets of variables and Ly s for ¢ = s(n+m) — 1. Then
1) dim(Symp(Lgs)) =n+m+1;
—9 _
2) e(Symp(Lys)) = 252 (") 42
3) reg(Symp(Lgs)) <n+m — 1.

Proof. 1) By Proposition 2.1, we have 7; = (0), Z; = (Yjm—it1) for
i=2,....m, Z; = (Xptm—it1) for i = m+1,...,m +n. Then inL(J) is
generated by a regular sequence. We obtain dim(Sympg(Lgs)) =n+m+n+
m—(n+m-—1)=n+m+1.
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2) By [6, Proposition 2.4], e(Symp(Lqs)) = Zl§i1<m<%§n+m e(R/
(Ziys ..., ZLy,)) with dim(R/(Z;,, . . ., Z;,)) = d—r, where d = dim(Sympg(Lgs)) =
n+m+1and 1 <r <n+m. By Proposition 2.1, H = (Z;,,...,Z;,) is gene-
rated by a regular sequence of variables of R. Hence R/H is Cohen-Macaulay
and has an 1-linear resolution, the projective dimension is equal to the number
of the generators of H ([5]). Then e(R/H) = 1 by Huneke-Miller formula ([8]).

Set d = dim(R/(Z;,,-..,Zi,)) = n+m+ 1 —r, then e(Symp(Lys))
is given by the sum of the terms e(R/(0)) = 1 for r = 1 and d’ = n + m,
Z?;r;”e(R/Ij) =14---+1lforr=2andd =n+m—1,

n+m—1

>o<ir<ignim €/ (i, L)) =1+ -+ Lforr=3 and d' =n+m — 2,
("5
Z2Si1<i2<i3§n+m e(R/(IiNIizv 13)) =1+---+ 1, forr =4 and d’ = n+m-—3,
"5
and so on up to
Z2§i1<---<in+m,2§n+m e(R/(Iila s 7Iin+m—2)) = 1 +o 1, forr=n+m-1

("33

and d' =2, e(R/(Z2,Z3,- - ,Ip+m)) = 1 for r =n+m and d' = 1.

Hence we obtain e(Symp(Lgs)) = Z?:_IQ ("Hj@_l) + 2.

3) reg(Symp(Lqs)) = reg(R[T1,...,Thym]/J) < reg(R[T1,. .., Thim]/
iny(J)), where in4(J) = ((Yin—1)T2, ..., (Y1) T, (Xn) Tont1, (Xn—1) T2 - - -,
(X1)Th+m). By Proposition 2.1, inL(J) is generated by a regular sequence
of elements of degree 2, then R[T1,...,T,]/in<(J) has a 2-linear resolution
and projective dimension n +m — 1 equal to the number of the generators of
ing(J) ([5]): 0 — Sbr+m—1(=2(n+m — 1)) — --- — S»(—6) — S*2(—4) —
S01(—2) — S — S/iny(J) — 0, where S = R[T1, ..., Tpim].

Then reg(R[T1, ..., Thtm|/in<(J)) =n+m—1. O

As an application of the previous results, now we verify the Conjecture
that is formulated in [11].

Conjecture. Let R = K[Xy,...,X,], Sympz(M) be the symmetric al-
gebra of a graded module M generated on R by an s-sequence of elements of
the same degree. Then

reg(Symp(M)) < e(Symp(M)) — codim(Symp(M)).

PROPOSITION 2.2. Let R = K[X1,...,X,] be the polynomial ring over a
field K and Is,—1 5. Then the Conjecture is true for the symmetric algebra of
Isn—1,s and we have:

reg(Symp(Isn—15)) < e(Symp(Isn—1,s)) — codim(Symp(Lsn—1.5))-
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+

Proof. Let I s for ¢ = sn—1. reg(Symp(lys)) <n—1< (27;12 (";1)
2)=(2n)+(n+1) = e(Symp(Iy,s)) - (2n) +dim(Symp (Iy,5)) < e(Symp(Ig,s))—
embdim(Symp(/y,s)) +dim(Symp(Iy.s)), as embdim(Sympg(ly,s)) < n+n =2n

and codim(Symp(ly,s)) = embdim(Symp(I, ) — dim(Symp(I,s)). O

PROPOSITION 2.3. Let R = K[Xy,...,Xn; Y1,...,Yy,] be the polynomial
ring over a field K in two sets of variables and Ly for ¢ = s(n +m) — 1.
Then the Conjecture is true for the symmetric algebra of Ly and we have:

reg(Symp(Lq,s)) < e(Symp(Ly,s)) — codim(Symp(Lg,s))-

Proof. Let ¢ = s(n+ m) — 1. Then reg(Sympg(Lgs)) < n+ m —
1< 2 (M) +2) = (2n 4 2m) + (n+ m+ 1) = e(Symp(Ly,s)) —
(2n 4+ 2m) + dim(Symp(Lys)) < e(Symp(Lgs)) — embdim(Symp(Lgs)) +
dim(Symp(Lg,s)) = e(Symp(Lq,s)) — codim(Symp(Lg,s)). U

3. APPLICATIONS

For s = 2, the ideals L, are associated to the walks of length ¢ — 1 of
the strong quasi-bipartite graphs with loops ([9]).

Definition 3.1 ([9]). A graph G with loops is a strong quasi-bipartite if
all the vertices of V are joined to all the vertices of V5 and for each vertex of
V' there is a loop.

Definition 3.2. Let G be a strong quasi-bipartite graph. A walk of length
¢ in G is an alternating sequence w = {v;,, li,, Vi, liy, - - s Vig_ys bigs v, }, where
v;; is a vertex of G and li; = {vijfl,wj} is the edge joining v;;,_, and v;; or a
loop if vi; | =v;;, 1 <1y <dp <--- <jg <.

Ezample 3.1. Let G be a strong quasi-bipartite graph on vertices {1, z;
y1,y2}. A walk of length 2 is

w = {x1,l1,21,l2,y1},

where Iy = {x1, 21} is the loop on z1 and ly = {z1,y1} is the edge joining x;
and y1. (A walk w in G cannot have the edges {z;,z;}, with ¢ # j and {ys, y}
with s # ¢, because G is bipartite.)

Let G be a quasi-bipartite graph on vertex set {z1,...,Zn; Y1, Ym}-
The generalized ideal I,(G) associated with G is the ideal of the polynomial
ring R = K[Xy,...,X,;Y1,..., Y] generated by the monomials of degree g
corresponding to the walks of length ¢—1. Hence the generalized ideal I,(G) is
generated by all the monomials of degree ¢ > 3 corresponding to the walks of
length ¢—1 and the variables in each generator of I,(G) have at most degree 2.
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Therefore,
I(G)=Lgo= Y IaJsa, forg>3([9).
r+s=q
Ezample 3.2. Let R = K[X1, X2; Y1, Y2] be a polynomial ring over a field
K and G be the strong quasi-bipartite graph on vertices x1, s, y1, yo:
X1 X2

Y1 Y2

I3(G) = o+ I i = (X1Y1Ys, XoY1 Yo, X0 Y3, X0V, X1 Y5, XoVE, X1 X0V,
X1XoYo, X2Y1, X3, X3Y1, X3Y3).

I(G) = Isp i+ Js o+ 1o = (X2XoY1, X2 XY, X1 X3V, X1X2Ys, X1Y2Ya,
XoY2Ya, XiV1Y5, XoV1YZ, XTYE, XiV1Ya, X7YZ, X5V, X3Y5, X3Y1Ya,

X1 XoYE, X1 XoYE, X1 XoY1Y5).

Remark 3.1. For ¢ = 2 the ideal L,2 does not describe the edge ideal
I(G) = I3(G) of a strong quasi-bipartite graph. In fact, if we consider the
strong quasi-bipartite graph on vertices x1, x2,y1, y2 then I(G) = (X1Y1, X1Y3,
XoY1, XoYo, X2, X3, Y2, YF), but Las = (X1Y1, X1Y2, XoYi, X2Ys). Hence
I(G) # Lap.

The following result classifies the ideals I,(G) that are generated by an
s-sequence.

THEOREM 3.1. Let G be a quasi-bipartite graph on the vertex set {x1, ...,
TniYls--->Ym}. The generalized ideal 1,(G) is generated by an s-sequence if
and only if ¢ =2(n+m) — 1.

Proof. One has I,(G) = Ly2 ([9]), then by Theorem 2.1 the proof is
complete. [

Remark 3.2. The generators of I,(G) that form an s-sequence correspond
in the quasi-bipartite graph G to the walks of length 2(n+m) —2. We observe
that the maximal length of the walks on G is 2(m +n) — 1.

Ezample 3.3. Let R = K[X1, X2; Y1, Y2] be a polynomial ring over a field
K and G be the strong quasi-bipartite graph on the vertices x1, xs, y1, yo:
X1 X2

Y1 Y2
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The walks of length 6 correspond to the generators of the generalized ideal of
degree q = 7:

[7(G) = LipJs ot IspJap = (XTX3YPYs, XPXIYIYS, XP X0 VPV, X X3VPYY)
that is the generalized ideal of G generated by an s-sequence.

Now we give a good property for the ideals I,(G) generated by a s-
sequence. More precisely we prove that they have linear quotients.

Definition 3.3. Let L be a monomial ideal of R = K[Xq,...,X,; Y1,
.., Y] and G(L) be its unique set of minimal generators. L has linear
quotients if there is an ordering uy,...,u; of monomials belonging to G(L)
with degu; < --- < degus such that for each 2 < j < t the colon ideal
(ut,...,uj—1) : u; is generated by a subset of {X1,..., Xpn;Y1,..., Y}

It is known that if a monomial ideal generated in the same degree has
linear quotients, then it has a linear resolution ([2]).

Definition 3.4. Let L be a monomial ideal of R with linear quotients
with respect to the ordering uq, ..., u; of the monomials of G(L). We denote
by ¢j(L) the number of the variables which is required to generate the ideal
(w1, ..., uj—1) s uj. Set (L) = maxa<j<iqj(L).

The integer ¢(L) is independent of the choice of the ordering of the
generators that gives linear quotients ([4]).

Definition 3.5. Let L be a monomial ideal of R. A vertex cover of L is a
subset W of {X1,...,Xp;Y1,...,Y,} such that each v € G(L) is divided by
some variables of W. Denote by h(I) the minimal cardinality of the vertex
covers of L.

THEOREM 3.2. Let G be a quasi-bipartite graph on the vertex set {x1, ...,
TniYls--->Ym}. The generalized ideals 1,(G), for ¢ = 2(n+m)—1, have linear
quotients.

Proof. Let ¢ = s(n +m) — 1. The generators of I,(G) are
fi = XPX5 - Xp o Xo ( XoYPYE - Y2

m—1-

Jo=XPX3 o Xo o Xp  XOYPYS Yo Y,
Jo=XPX3 o X0 o Xg ( XOYPYS o YooY 1Yo,

Fatm—1 = X{Xo - X0 o X0 | XQVPYS Y2 Y2
Frm = X1 X3 - X0 o X0 XOVEYS - Yo Yo
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We compute
Iy = (f1) : (f2) = Yin—1),
I3 = (f1, f2) : (f3) = (Yim—2),

Im = (f17f27"'7fm—1) : (fm) = (Y1)7
Im+1 - (f17f27 .- 7fm) : (fm+1) - (Xn)7

Litn = (fl7 Jo,oos fm+n—1) : (fm+n) = (Xl)
Hence I,(G) has linear quotients. O

COROLLARY 3.1. Let R = K[Xy,...,Xp; Y1,..., Y] with n,m > 1 and
I,(G) with g =2(n+m) — 1. Then

1) dimp(R/14(G)) =n+m —1;

2) pdp(R/1,(G)) = 2;

3) depthr(R/I4(G)) =n+m —2;

4) regn(R/I,(G)) = 2(n +m — 1).

Proof. Let ¢ = 2(n +m) — 1 and I;(G) be ideal of R. By the proof of
Theorem 3.2 we have ¢(/;(G)) = 1. The minimal cardinality of the vertex
covers of I4(G) is h(I4(G)) = 1, W = {X;} being a minimal vertex cover of
I,(G). It follows that

1) dimp(R/I4(G)) =n+m —1 ([4]).

2) The length of the minimal free resolution of R/I,(G) over R is equal
to q(I4(G)) + 1 ([7, Corollary 1.6]). Hence pdg(R/I,(G)) = 2.

3) As a consequence of 1) and 2) we compute depthr(R/I,(G)) = n+
m —pdr(R/I;(G)) =n+m —2.

4) I,(G) is a monomial ideal generated in degree ¢ that has linear quo-
tients, then I,(G) has linear resolution ([2]). Hence regr(R/I4(G)) =q—1=
2(m+m)—1-1=2(n+m—-1). O

Ezample 3.4. Let R = K[X1, X2; Y1, Y2] be a polynomial ring over a field
K and G be the strong quasi-bipartite graph on the vertices 1, 22, y1, y2 (see
Example 3.3). I;(G) = (X2X2Y2Ys, X2X2V1VE X2XoVEY2, X1 X2Y2YE),
Set fi = X2X2Y2Yy, fo = X2XEVIYVE, f3 = XIXoV2Y2, fi = X1 X2V2Y2,
The linear quotients are: Zy = (f1) : (f2) = (Y1), Zz = (f1, f2) : (f3) = (X2),
Iy = (f1, fo, f3) + (fa) = (Xa). Then ¢(I7(G)) = maxo<i<a{q:(I7(G))} = 1.
The minimal cardinality of a vertex cover of I7(G) is h(I7(G)) =1 and W =
{X;} is a such vertex cover. Then

1) dimg(R/I7(G)) = 3;

2) pdp(R/1(G)) = 2.
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3) depthp(R/I7(G)) = 2;
4) regr(R/17(G)) = 6.
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