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INTRODUCTION

Let R = K[X1, . . . , Xn;Y1, . . . , Ym] be a polynomial ring in two sets
of variables. Let r, k ≥ 1 be integers, then Ir,s is the Veronese-type ideal
generated on degree r by the set {Xai1

1 . . . X
ain
n |

∑n
j=1 aij = r, 0 ≤ aij ≤ s,

s ∈ {1, . . . , r}} and Jk,s is the Veronese-type ideal generated on degree k

by the set {Y bi1
1 . . . Y

bim
m |

∑m
j=1 bij = k, 0 ≤ bij ≤ s, s ∈ {1, . . . , k}}. In

[10] the author introduced the Veronese bi-type ideals Lq,s =
∑

r+k=q Ir,sJk,s

generated in the same degree q.
For s = 2 the Veronese bi-type ideals are the ideals of the walks of a

bipartite graph with loops. In [9] the author studies the combinatorics of the
integral closure and the normality of Lq,2. More in general, in [10] the same
problem is studied for Lq,s for all s.

In this paper we are interested to study the symmetric algebra of these
classes of monomial ideals. In order to compute the standard invariants we
investigate in which cases these monomial ideals are generated by s-sequences.

In [6] the notion of s-sequences has been employed to compute the in-
variants of the symmetric algebra of finitely generated modules. The proposal
is to compute standard invariants of the symmetric algebra in terms of the
corresponding invariants of special quotients of the ring R. This computation
can be obtained for finitely generated R-modules generated by an s-sequence.

In Section 1 we consider the ideals of Veronese-type Iq,s. We give the
conditions such that Iq,s is generated by an s-sequence. Then we compute
standard algebraic invariants of the symmetric algebra of Iq,s.
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202 Monica La Barbiera 2

The computation of these invariants can be obtained when the ideal Iq,s

is generated by an s-sequence in terms of its annihilator ideals.
In Section 2 we determine the subclasses of Veronese bi-type ideals Lq,s

generated by s-sequences. We establish the theorem: Lq,s is generated by an
s-sequence if and only if q = s(n+m)−1. The technic used to prove this result
is the characterization of the monomial s-sequences by the Gröbner bases. For
s = 1 and q = 2, 3 the ideals obtained are the mixed product ideals I1J1 and
I1J2+I2J1, studied in [11]. Then we give the structure of the annihilator ideals
of Veronese bi-type ideals generated by s-sequences and we achieve formu-
las for the dimension dimR(SymR(Lq,s)), the multiplicity e(SymR(Lq,s)) and
bounds for the Castelnuovo-Mumford regularity regR(SymR(Lq,s)) in terms
of the annihilator ideals as described in [6]. As an application, we verify the
Eisenbud-Goto inequality in the formulation given in [12], for the symmetric
algebra of these ideals generated by s-sequences. In Section 3 we consider the
ideals of the walks of a bipartite graph with loops Iq(G) = Lq,2. We prove
that the ideals Iq(G) generated by an s-sequence are a class of monomial ideals
with linear quotients and we investigate some their algebraic invariants.

1. IDEALS OF VERONESE-TYPE

We recall the theory of s-sequences in order to apply it to our classes
of monomial ideals. Let R be a noetherian ring, M be a finitely generated
R-module and f1, . . . , ft be the generators of M . For every i = 1, . . . , t, we set
Mi−1 = Rf1 + · · · + Rfi−1 and let Ii = Mi−1 :R fi be the colon ideal. Since
Mi/Mi−1 ' R/Ii, so Ii is the annihilator of the cyclic module R/Ii. Ii is
called an annihilator ideal of the sequence f1, . . . , ft.

Let (aij), for i = 1, . . . , t, j = 1, . . . , p, be the relation matrix of M .
The symmetric algebra SymR(M) has a presentation R[T1, . . . , Tt]/J , with
J = (g1, . . . , gp) where gj =

∑t
i=1 aijTi for j = 1, . . . , p. Let S = R[T1, . . . , Tt]

be the polynomial ring and let ≺ be a monomial order on the monomials of
S in the variables Ti such that T1 ≺ T2 ≺ · · · ≺ Tt. With respect to this term
order, if f =

∑
aαTα, where Tα = Tα1

1 · · ·Tαt
t and α = (α1, . . . , αt) ∈ Nt, we

put in≺(f) = aαTα, where Tα is the largest monomial in f such that aα 6= 0.
If we assign degree 1 to each variable Ti and degree 0 to the elements of R,
we have the following facts:

1) J is a graded ideal.
2) The natural epimorphism S → SymR(M) is a graded homomorphism

of graded algebras on R.

Set the monomial ideal in≺(J) = (in≺(f)|f ∈ J). In general

(I1T1, I2T2, . . . , ItTt) ⊆ in≺(J)
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and the two ideal coincide in the linear case.

Definition 1.1. A sequence f1, . . . , ft is an s-sequence for M if

(I1T1, I2T2, . . . , ItTt) = in≺(J).

If I1 ⊆ I2 ⊆ · · · ⊆ It, the sequence is a strong s-sequence.

If R = K[X1, . . . , Xn] is the polynomial ring over a field K, we can
use the Gröbner bases theory to compute in≺(J). Let ≺ any term order on
K[X1, . . . , Xn;T1, . . . , Tt] with T1 ≺ T2 ≺ · · · ≺ Tt, Xi ≺ Tj for all i and j.
Then for any Gröbner basis G of J ⊂ K[X1, . . . , Xn, T1, . . . , Tt] with respect
to ≺, we have in≺(J) = (in≺(f)|f ∈ G). If the elements of G are linear in the
Ti, then f1, . . . , ft is an s-sequence for M .

Let M = I = (f1, . . . , ft) a monomial ideal of R = K[X1, . . . , Xn]. Set
fij = fi

[fi,fj ]
for i 6= j, where [fi, fj ] is the greatest common divisor of the

monomials fi and fj . J is generated by gij = fijTj − fjiTi for 1 ≤ i < j ≤ t.
The monomial sequence f1, . . . , ft is an s-sequence if and only if gij for 1 ≤ i <
j ≤ t is a Gröbner basis for J for any term order in K[X1, . . . , Xn;T1, . . . , Tt]
with T1 ≺ T2 ≺ · · · ≺ Tt, Xi ≺ Tj for all i,j. Notice that the annihilator ideals
of the monomial sequence f1, . . . , ft are the ideals Ii = (f1i, f2i, . . . , fi−1,i) for
i = 1, . . . , t ([6]).

Remark 1.1 ([6, Lemma 1.4]). From the theory of Gröbner bases, if
f1, . . . , ft is a monomial s-sequence with respect to some admissible term order
≺, then f1, . . . , ft is a s-sequence for any other admissible term order.

The first section of this paper is dedicated to the symmetric algebra of a
class of monomial modules over the polynomial ring R = K[X1, . . . , Xn] that
are ideals. We recall the following definition.

Definition 1.2 ([13]). Let R = K[X1, . . . , Xn] be the polynomial ring over
a field K. The ideal of Veronese-type of degree q is the monomial ideal Iq,s

generated by the set{
X

ai1
1 · · ·Xain

n

∣∣∣ n∑
j=1

aij = q, 0 ≤ aij ≤ s

}
.

Remark 1.2. In general Iq,s ⊆ Iq, where Iq is the Veronese ideal of degree
q of R which is generated by all the monomials in the variables X1, . . . , Xn of
degree q: Iq = (X1, . . . , Xn)q ([14]). If q = 1, 2 or s = q, then Iq,s = Iq.

Example 1.1. R = K[X1, X2, X3], I3,2 = (X2
1X2, X

2
1X3, X1X

2
2 , X2

2X3,
X1X

2
3 , X2X

2
3 , X1X2X3) ⊂ I3, I3,3 = (X3

1 , X3
2 , X3

3 , X2
1X2, X

2
1X3, X1X

2
2 , X2

2X3,
X1X

2
3 , X2X

2
3 , X1X2X3) = I3.
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We give the condition such that the ideal Iq,s is generated by an s-
sequence. First of all we observe that the property to be an s-sequence may
depend on the order of the sequence.

Example 1.2 ([6]). R = K[X1, X2], I2,2 = (X2
1 , X1X2, X

2
2 ); X2

1 , X2
2 , X1X2

is an s-sequence, but X2
1 , X1X2, X

2
2 is not an s-sequence. Let SymR(I2,2) =

R[T1, T2, T3]/J , J = (X2T1 − X1T2, X1T2 − X2T3). Fix T1 ≺ T2 ≺ T3 and
X1 ≺ X2 ≺ Ti, we have in≺(J) = ((X2

1 )T2, (X1, X2)T3) and I1 = (0),
I2 = (X2

1 ), I3 = (X1, X2). Hence X2
1 , X1X2, X

2
2 is a strong s-sequence.

Instead X2
1 , X1X2, X

2
2 is not an s-sequence because in this case in≺(J) =

((X1)T3, (X1)T2, (X2)T1T3). It means that J does not admit a linear Gröbner
basis for any term order in K[X1, X2;T1, T2, T3] with Xi ≺ Tj for all i, j and
T1 ≺ T2 ≺ T3. In fact there are S-pairs S(gij , ghl) that have not a standard
expression with respect G = {gij = fijTj −fjiTi | 1 ≤ i < j ≤ 3} with remain-
der 0: S(g12, g23) = f12f32

[f12,f23]T
2
2 −

f21f23

[f12,f23]T1T3 = X2T
2
2 −X2T1T3, with f1 = X2

1 ,
f2 = X1X2, f3 = X2

2 . There is no gij ∈ G whose initial term divides a term
of S(g12, g23).

Hence in the sequel we will suppose Iq,s = (f1, f2, . . . , ft) where f1 ≺
f2 ≺ · · · ≺ ft with respect to the monomial order ≺Lex on the variables Xi

and X1 ≺ X2 ≺ · · · ≺ Xn.

Lemma 1.1. Let R = K[X1, . . . , Xn] be the polynomial ring over a field
K with n > 2 and Iq,s ⊂ R, 2 ≤ q ≤ sn. If [fij , fhl] = 1 for i < j, h < l,
i 6= h, j 6= l with i, j, h, l ∈ {1, . . . , t}, then q = sn− 1.

Proof. By hypotheses q ≤ sn. Let f1, . . . , ft be the generators of Iq,s.
Set fij = fi

[fi,fj ]
for fi, fj with i < j. We have fij = X

ai1
i1

· · ·Xaic
ic

and fhl =

X
bh1
h1

· · ·Xbhd
hd

for fh, fl with h < l, i 6= h, j 6= l. By the hypothesis [fij , fhl] = 1
for i < j, h < l, i 6= h, j 6= l, we have Xij 6= Xhp for all j = 1, . . . , c and
p = 1, . . . , d. This means that there are no other generators fh, fl of Iq,s such
that fhl contains some variables Xi1 , . . . , Xic (that are in fij). It follows that
if a variable of fij is of degree k in the monomial fh, with h 6= i, j, then such
variable in the same degree k belongs to any other generators fl for all l > h
and l 6= j. Hence we deduce the structure of the monomials that generate
Iq,s and satisfying the hypotheses of the lemma. If q = sn − 1 we have f1 =
Xs

1Xs
2 · · ·Xs

n−1X
s−1
n , f2 = Xs

1Xs
2 · · ·X

s−1
n−1X

s
n, f3 = Xs

1Xs
2 · · ·X

s−1
n−2X

s
n−1X

s
n,

. . . , fn−1 = Xs
1Xs−1

2 · · ·Xs
n−2X

s
n−1X

s
n, fn = Xs−1

1 Xs
2 · · ·Xs

n−2X
s
n−1X

s
n.

We compute f12 = Xn−1, f13 = Xn−2, . . ., f1n = X1, f23 = Xn−2,
. . ., f2n = X1, and so on. Hence f1j = f2j = . . . = fnj = Xn−j+1 for all
j = 2, . . . , n. Then fij 6= fhl because j 6= l and [fij , fhl] = 1 as required.

Let q < sn− 1. If we consider the generators fi = Xs
1Xs

2 · · ·X
s−2
n−3X

s
n−1,

fj = Xs
1Xs

2 · · ·X
2s−2
n−4 Xs

n, fh = Xs
1Xs

2 · · ·X
s−2
n−3X

s
n−2, fl = Xs

1Xs
2 · · ·X

2s−2
n−4 Xs

n−1,
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then fij = Xs−2
n−3X

s
n−1 and fhl = Xs−2

n−3X
s
n−2. Hence [fij , fhl] 6= 1, a contradic-

tion. It follows that q = sn− 1. �

Theorem 1.1. Let R = K[X1, . . . , Xn] be the polynomial ring over a field
K with n > 2. Iq,s is generated by an s-sequence if and only if q = sn− 1.

Proof. Let Iq,s = (f1, f2, . . . , ft) and suppose that f1, f2, . . . , ft is an s-
sequence. We prove that [fij , fhl] = 1 for i < j, h < l, i 6= h, j 6= l with
i, j, h, l ∈ {1, . . . , t}.

The s-sequence property implies that G = {gij = fijTj − fjiTi | 1 ≤
i < j ≤ t} is a Gröbner basis for J . In particular, S(gij , ghl) has a standard
expression with respect to G with remainder 0. We have

S(gij , ghl) =
fijflh

[fij , fhl]
TjTh −

fhlfji

[fij , fhl]
TiTl.

We suppose that i < j, h < l, i 6= h, j 6= l. As S(gij , ghl) has a stan-
dard expression with respect to G there exists grp such that in≺(grp) divides
in≺(S(gij , ghl)).

I) If l > j then in≺(grp) | fhlfji

[fij ,fhl]
.

The first case is fhl |
fhlfji

[fij ,fhl]
, then [fij , fhl] | fji. But, as we have

[[fij , fhl], fji] = 1, it follows [fij , fhl] = 1.
The second case is frl |

fhlfji

[fij ,fhl]
, where frl = in≺(grl) with r < j and

r < h. We can write

S(gij , ghl) = − fjifhl

frl[fij , fhl]
grlTi +

fijflh

[fij , fhl]
TjTh −

fjifhlflr

frl[fij , fhl]
TiTr.

Then fijflh

[fij ,fhl]
TjTh is divided by fij . Hence [fij , fhl] | flh. But, as we have

[[fij , fhl], flh] = 1, it follows [fij , fhl] = 1.
II) If l < j then in≺(grp) | fijflh

[fij ,fhl]
.

The first case is fij | fijflh

[fij ,fhl]
, then [fij , fhl] | flh. But, as we have

[[fij , fhl], flh] = 1, it follows [fij , fhl] = 1.
The second case is frh |

fijflh

[fij ,fhl]
, where frh = in≺(grh). We can write

S(gij , ghl) =
fijflh

frh[fij , fhl]
Tjgrh −

fhlfji

[fij , fhl]
TiTl +

fijflhfhr

frh[fij , fhl]
TjTr.

Then fijflhfhr

frh[fij ,fhl]
TjTr is divided by fij . Hence frh[fij , fhl] | flhfhr. But as

we have [[fij , fhl], flh] = 1, frh | flh and [fij , fhl] | fhr. By the structure of
f1, . . . , ft, if [fij , fhl] | fhr with r < h then [fij , fhl] = 1.

Hence in any case we have [fij , fhl] = 1 in the hypothesis i < j, h < l,
i 6= h, j 6= l with i, j, h, l ∈ {1, . . . , t}. It follows q = sn− 1 by Lemma 1.1.
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Conversely, let q = sn − 1. Iq,s is generated by n monomials f1, . . . , fn:
f1 = Xs

1Xs
2 · · ·Xs

n−1X
s−1
n , f2 = Xs

1Xs
2 · · ·X

s−1
n−1X

s
n, f3 = Xs

1Xs
2 · · ·X

s−1
n−2X

s
n−1

Xs
n, . . ., fn−1 = Xs

1Xs−1
2 · · ·Xs

n−2X
s
n−1X

s
n, fn = Xs−1

1 Xs
2 · · ·Xs

n−2X
s
n−1X

s
n.

We compute f12 = Xn−1, f13 = Xn−2, . . ., f1n = X1; f23 = Xn−2, . . .,
f2n = X1, and so on. It follows that fij 6= fhl because j 6= l. Then [fij , fhl] = 1
for i < j, h < l, i 6= h, j 6= l with i, j, h, l ∈ {1, . . . , n}. By [6, Proposition 1.7],
f1, . . . , fn is an s-sequence. �

Example 1.3. R = K[X1, X2, X3], I7,3 = (X3
1X3

2X3, X
3
1X2

2X2
3 , X2

1X3
2

X2
3 , X3

1X2X
3
3 , X2

1X2
2X3

3 , X1X
3
2X3

3 ). Set f1 = X3
1X3

2X3, f2 = X3
1X2

2X2
3 , f3 =

X2
1X3

2X2
3 , f4 = X3

1X2X
3
3 , f5 = X2

1X2
2X3

3 , f6 = X1X
3
2X3

3 , where f1 ≺ · · · ≺
f6 with respect to the Lex order and X1 ≺ X2 ≺ X3. Let G = {gij =
fijTj − fjiTi | 1 ≤ i < j ≤ 6}; f1, . . . , f6 is not an s-sequence because J
does not admit a linear Gröbner basis for any term order in R[T1, . . . , T6]
with Xi ≺ Tj for all i, j and T1 ≺ · · · ≺ T6. In fact there are S-pairs
S(gij , ghl) that have not a standard expression with respect G with remain-
der 0: S(g25, g36) = f25f63

[f25,f36]T3T5 − f36f52

[f25,f36]T2T6 = X3T3T5 −X3T2T6. There is
no gij ∈ G whose initial term divides a term of S(g25, g36).

Remark 1.3. A particular case is s = 1: Iq,1 is the square-free Veronese
ideal of degree q generated by all the square-free monomials in the variables
X1, . . . , Xn of degree q. Iq,1 is generated by an s-sequence if and only if q = n−1
as proved in [11].

Now we solve the problem to compute standard algebraic invariants of
the symmetric algebra of Veronese-type ideals generated by s-sequences.

Proposition 1.1. Let R = K[X1, . . . , Xn] be the polynomial ring over a
field K and Isn−1,s = (f1, . . . , fn). Then the annihilator ideals of f1, . . . , fn are

I1 = (0), Ii = (Xn−i+1) for i = 2, . . . , n.

Proof. Let Isn−1,s = (f1, . . . , fn) with f1 ≺ . . . ≺ fn: f1 = Xs
1Xs

2 · · ·
Xs

n−1X
s−1
n , f2 = Xs

1Xs
2 · · ·X

s−1
n−1X

s
n, f3 = Xs

1Xs
2 · · ·X

s−1
n−2X

s
n−1X

s
n, . . . , fn−1 =

Xs
1Xs−1

2 · · ·Xs
n−2X

s
n−1X

s
n, fn = Xs−1

1 Xs
2 · · ·Xs

n−2X
s
n−1X

s
n. Hence we observe

that Isn−1,s is generated by mh1, . . . ,mhn, where m = Xs−1
1 Xs−1

2 · · ·Xs−1
n−1X

s−1
n

and hi = X1 · · · X̂n+1−i · · ·Xn for i = 1, . . . , n. Then In−1 = (h1, . . . , hn) is
the square free Veronese ideal of degree n− 1. Hence the annihilator ideals of
the sequence f1, . . . , fn are the same of the sequence h1, . . . , hn [11, Proposi-
tion 2.1]. �

Theorem 1.2. Let R = K[X1, . . . , Xn] be the polynomial ring over a
field K and Ins−1,s. Then

1) dim(SymR(Ins−1,s)) = n + 1;
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2) e(SymR(Ins−1,s)) =
∑n−2

j=1

(
n−1

j

)
+ 2;

3) reg(SymR(Ins−1,s)) ≤ n− 1.

Proof. 1) By Proposition 1.1 in≺(J) = ((Xn−1)T2, (Xn−2)T3, . . . , (X1)Tn)
and it is generated by a regular sequence. We obtain dim(SymR(Ins−1,s)) =
n + n− (n− 1) = n + 1.

2) By [6, Proposition 2.4] e(SymR(Ins−1,s)) =
∑

1≤i1<···<ir≤n e(R/(Ii1 ,

. . . , Iir)) with dim(R/(Ii1 , . . . , Iir)) = d− r where d = dim(SymR(Ins−1,s)) =
n + 1 and 1 ≤ r ≤ n. By Proposition 1.1, the annihilator ideals of the
generators of Ins−1,s are the same of In−1. Then by [11, Theorem 2.1], we
obtain e(SymR(Ins−1,s)) =

∑n−2
j=1

(
n−1

j

)
+ 2.

3) reg(SymR(Ins−1,s)) = reg(R[T1, . . . , Tn]/J) ≤ reg(R[T1, . . . , Tn]/
in≺(J)), where in≺(J) = ((Xn−1)T2, (Xn−2)T3, . . . , (X1)Tn). By Proposition
1.1 in≺(J) is generated by a regular sequence of elements of degree 2, then
R[T1, . . . , Tn]/in≺(J) has a 2-linear resolution and projective dimension n− 1
equal to the number of the generators of in≺(J) ([5]): 0 → Sbn−1(−2(n −
1)) → · · · → Sb3(−6) → Sb2(−4) → Sb1(−2) → S → S/in≺(J) → 0, where
S = R[T1, . . . , Tn]. Then reg(R[T1, . . . , Tn]/in≺(J)) = n− 1. �

2. IDEALS OF VERONESE BI-TYPE

In this section we consider the class of monomial ideals of Veronese bi-
type in the polynomial ring R = K[X1, . . . , Xn;Y1, . . . , Ym].

Definition 2.1 ([10]). Let R = K[X1, . . . , Xn;Y1, . . . , Ym] be the poly-
nomial ring over a field K in two sets of variables. We define the ideals of
Veronese bi-type of degree q as the monomial ideals of R

Lq,s =
∑

r+k=q

Ir,sJk,s, r, k ≥ 1,

where Ir,s is the ideal of Veronese-type of degree r in the variables X1, . . . , Xn

and Jk,s is the ideal of Veronese-type of degree k in the variables Y1, . . . , Ym.

Example 2.1. Let R = K[X1, X2;Y1, Y2] be a polynomial ring. 1) L2,2 =
I1,2J1,2 = I1J1 = (X1Y1, X1Y2, X2Y1, X2Y2); 2) L4,2 = I3,2J1,2 + I1,2J3,2 +
I2,2J2,2 = I3,2J1 + I1J3,2 + I2J2 = (X2

1X2Y1, X
2
1X2Y2, X1X

2
2Y1, X1X

2
2Y2, X1

Y 2
1 Y2, X2Y

2
1 Y2, X1Y1Y

2
2 , X2Y1Y

2
2 , X2

1Y 2
1 , X2

1Y1Y2, X
2
1Y 2

2 , X2
2Y 2

1 , X2
2Y 2

2 , X2
2Y1Y2,

X1X2Y
2
1 , X1X2Y

2
2 , X1X2Y1Y2).

Remark 2.1. For s=1 and q=2, 3 we have Lq,1 =
∑

r+k=q Ir,1Jk,1, r, k ≥
1, a square-free monomial ideal, more precisely a mixed product ideal ([14]).

Now our aim is to investigate in which cases Lq,s is generated by an
s-sequence. In the sequel we will suppose L = (f1, f2, . . . , ft) where f1 ≺
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f2 ≺ · · · ≺ ft with respect to the monomial order ≺Lex on the variables
X1, . . . , Xn;Y1, . . . , Ym and X1 ≺ X2 ≺ · · · ≺ Xn ≺ Y1 ≺ Y2 ≺ · · · ≺ Ym.

Lemma 2.1. Let R = K[X1, . . . , Xn;Y1, . . . , Ym] be the polynomial ring
over a field K and Lq,s ⊂ R. If [fij , fhl] = 1 for i < j, h < l, i 6= h, j 6= l with
i, j, h, l ∈ {1, . . . , t}, then q = s(n + m)− 1.

Proof. Let Lq,s = (f1, . . . , ft). Set fij = fi

[fi,fj ]
forfi, fj with i < j. We

have fij = X
ai1
i1

· · ·Xaiw
iw

Y
bi1
i1

· · ·Y biz
iz

. In the same way for fh, fl with h < l,

i 6= h, j 6= l we have fhl = X
ci1
i1
· · ·Xcix

ix
Y

di1
i1

· · ·Y diy

iy
. By the hypothesis

[fij , fhl] = 1 for i < j, h < l, i 6= h, j 6= l. Then it follows that Xij 6= Xhp for
all j = 1, . . . , w, p = 1, . . . , x, and Yij 6= Yhp for all j = 1, . . . , z, p = 1, . . . , y.
This means that there are no other generators fh, fl of Lq,s such that fhl

contains one of the variables of fij . It follows that if a variable of fij is in
degree N in the monomial fh, with h 6= i, j, then such variable in degree N
belongs to any other generators fl for all l > h and l 6= j. In the same way of
the Lemma 1.1 we deduce the structure of the monomials that generate Lq,s:

f1 = Xs
1Xs

2 · · ·Xs
n−2X

s
n−1X

s
nY s

1 Y s
2 · · ·Y s

m−1Y
s−1
m ,

f2 = Xs
1Xs

2 · · ·Xs
n−2X

s
n−1X

s
nY s

1 Y s
2 · · ·Y s−1

m−1Y
s
m,

f3 = Xs
1Xs

2 · · ·Xs
n−2X

s
n−1X

s
nY s

1 Y s
2 · · ·Y s−1

m−2Y
s
m−1Y

s
m,

· · ·
fn+m−1 = Xs

1Xs−1
2 · · ·Xs

n−2X
s
n−1X

s
nY s

1 Y s
2 · · ·Y s

m−1Y
s
m,

fn+m = Xs−1
1 Xs

2 · · ·Xs
n−2X

s
n−1X

s
nY s

1 Y s
2 · · ·Y s

m−1Y
s
m. �

Theorem 2.1. Let R = K[X1, . . . , Xn;Y1, . . . , Ym] be the polynomial ring
over a field K. Lq,s is generated by an s-sequence if and only if q = s(n+m)−1.

Proof. Let Lq,s = (f1, f2, . . . , ft) and suppose that f1, f2, . . . , ft is an
s-sequence. We prove that [fij , fhl] = 1 for i < j, h < l, i 6= h, j 6= l with
i, j, h, l ∈ {1, . . . , t}.

The s-sequence property implies that G = {gij = fijTj − fjiTi | 1 ≤ i <
j ≤ t} is a Gröbner basis for J . This means that S(gij , ghl) has a standard
expression with respect to G with remainder 0. We have

S(gij , ghl) =
fijflh

[fij , fhl]
TjTh −

fhlfji

[fij , fhl]
TiTl.

We suppose that i < j, h < l, i 6= h, j 6= l. As S(gij , ghl) has a stan-
dard expression with respect to G, there exists grp such that in≺(grp) divides
in≺(S(gij , ghl)).
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I) If l > j then in≺(grp) | fhlfji

[fij ,fhl]
.

The first case is fhl |
fhlfji

[fij ,fhl]
, then [fij , fhl] | fji. But, as we have [[fij , fhl], fji] =

1, it follows [fij , fhl] = 1.
The second case is frl |

fhlfji

[fij ,fhl]
, where frl = in≺(grl) with r < j and

r < h. We can write

S(gij , ghl) = − fjifhl

frl[fij , fhl]
grlTi +

fijflh

[fij , fhl]
TjTh −

fjifhlflr

frl[fij , fhl]
TiTr.

Then fijflh

[fij ,fhl]
TjTh is divided by fij . Hence [fij , fhl] | flh. But, as we have

[[fij , fhl], flh] = 1, it follows [fij , fhl] = 1.
II) If l < j then in≺(grp) | fijflh

[fij ,fhl]
.

The first case is fij | fijflh

[fij ,fhl]
, then [fij , fhl] | flh. But, as we have [[fij , fhl], flh] =

1, it follows [fij , fhl] = 1.
The second case is frh |

fijflh

[fij ,fhl]
, where frh = in≺(grh). We can write

S(gij , ghl) =
fijflh

frh[fij , fhl]
Tjgrh −

fhlfji

[fij , fhl]
TiTl +

fijflhfhr

frh[fij , fhl]
TjTr.

Then fijflhfhr

frh[fij ,fhl]
TjTr is divided by fij . Hence frh[fij , fhl] | flhfhr. But as

we have [[fij , fhl], flh] = 1, frh | flh and [fij , fhl] | fhr. By the structure of
f1, . . . , ft , if [fij , fhl] | fhr with r < h, then [fij , fhl] = 1. Hence in any
case we have [fij , fhl] = 1 in the hypothesis i < j, h < l, i 6= h, j 6= l with
i, j, h, l ∈ {1, . . . , t}. It follows q = s(n + m)− 1 by Lemma 2.1.

Conversely, let q = s(n + m)− 1. The generators of Lq,s are

f1 = Xs
1Xs

2 · · ·Xs
n−2X

s
n−1X

s
nY s

1 Y s
2 · · ·Y s

m−1Y
s−1
m ,

f2 = Xs
1Xs

2 · · ·Xs
n−2X

s
n−1X

s
nY s

1 Y s
2 · · ·Y s−1

m−1Y
s
m,

f3 = Xs
1Xs

2 · · ·Xs
n−2X

s
n−1X

s
nY s

1 Y s
2 · · ·Y s−1

m−2Y
s
m−1Y

s
m,

· · ·
fn+m−1 = Xs

1Xs−1
2 · · ·Xs

n−2X
s
n−1X

s
nY s

1 Y s
2 · · ·Y s

m−1Y
s
m,

fn+m = Xs−1
1 Xs

2 · · ·Xs
n−2X

s
n−1X

s
nY s

1 Y s
2 · · ·Y s

m−1Y
s
m.

We compute f12 = Ym−1, f13 = Ym−2, . . ., f1m = Y1, f1,m+1 = Xn, f1,m+2 =
Xn−1, . . ., f1,n+m = X1, f23 = Ym−2, . . ., f2m = Y1, f2,m+1 = Xn, f2,m+2 =
Xn−1, . . ., f2,n+m = X1 and so on. Hence fij 6= fhl because j 6= l. Then
[fij , fhl] = 1 for i < j, h < l, i 6= h, j 6= l with i, j, h, l ∈ {1, . . . , n + m}. By
[6, Proposition 1.7] it follows that f1, . . . , fn+m is an s-sequence. �

Example 2.2. R = K[X1, X2;Y1, Y2], L3,2 =(X2
1Y1, X1X2Y1, X

2
2Y1, X1Y

2
1 ,

X2Y
2
1 , X2

1Y2, X1X2Y2, X
2
2Y2, X1Y1Y2,, X2Y1Y2, X1Y

2
2 , X2Y

2
2 ). Let G = {gij =
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fijTj − fjiTi | 1 ≤ i < j ≤ 12}; f1, . . . , f12 is not an s-sequence because J
does not admit a linear Gröbner basis for any term order in R[T1, . . . , T12]
with Xi ≺ Tj , Yi ≺ Tj for all i, j and T1 ≺ · · · ≺ T12. In fact, there are
S-pairs S(gij , ghl) that have not a standard expression with respect G with
remainder 0: S(g16, g27) = f16f72

[f16,f27]T2T6 − f61f27

[f16,f27]T1T7 = Y2T2T6 − Y2T1T7.
There is no gij ∈ G whose initial term divides a term of S(g16, g27).

As in Section 1 we use the theory of s-sequences to compute standard
invariants of the symmetric algebra of the monomials ideals Lq,s generated by
an s-sequence.

Proposition 2.1. Let R = K[X1, . . . , Xn;Y1, . . . , Ym] be a polynomial
ring over a field K in two sets of variables and Lq,s for q = s(n+m)−1. Then
the annihilator ideals of the generators of Lq,s are I1 = (0), Ii = (Ym−i+1) for
i = 2, . . . ,m, Ii = (Xn+m−i+1) for i = m + 1, . . . ,m + n.

Proof. Let q = s(n+m)−1. Lq,s = (f1, . . . , fn+m) with f1 ≺ · · · ≺ fn+m

and

f1 = Xs
1Xs

2 · · ·Xs
n−2X

s
n−1X

s
nY s

1 Y s
2 · · ·Y s

m−1Y
s−1
m ,

f2 = Xs
1Xs

2 · · ·Xs
n−2X

s
n−1X

s
nY s

1 Y s
2 · · ·Y s−1

m−1Y
s
m,

f3 = Xs
1Xs

2 · · ·Xs
n−2X

s
n−1X

s
nY s

1 Y s
2 · · ·Y s−1

m−2Y
s
m−1Y

s
m,

· · ·
fn+m−1 = Xs

1Xs−1
2 · · ·Xs

n−2X
s
n−1X

s
nY s

1 Y s
2 · · ·Y s

m−1Y
s
m,

fn+m = Xs−1
1 Xs

2 · · ·Xs
n−2X

s
n−1X

s
nY s

1 Y s
2 · · ·Y s

m−1Y
s
m.

The annihilator ideals of the sequence f1, . . . , fn+m are Ii = (f1i, f2i, . . . , fi−1,i)
for i = 1, . . . , n+m. For i = 1 we have I1 = (0). By the structure of the mono-
mials f1, . . . , fn+m we have I2 = (f12) = (Ym−1), I3 = (f13, f23) = (Ym−2),
. . ., Im = (f1m, . . . , fm−1,m) = (Y1), Im+1 = (f1,m+1, . . . , fm,m+1) = (Xn),
. . . , In+m = (f1,n+m, . . . , fn+m−1,n+m) = (X1). �

Theorem 2.2. Let R = K[X1, . . . , Xn;Y1, . . . , Ym] be the polynomial ring
over a field K in two sets of variables and Lq,s for q = s(n + m)− 1. Then

1) dim(SymR(Lq,s)) = n + m + 1;
2) e(SymR(Lq,s)) =

∑n+m−2
j=1

(
n+m−1

j

)
+ 2;

3) reg(SymR(Lq,s)) ≤ n + m− 1.

Proof. 1) By Proposition 2.1, we have I1 = (0), Ii = (Ym−i+1) for
i = 2, . . . ,m, Ii = (Xn+m−i+1) for i = m + 1, . . . ,m + n. Then in≺(J) is
generated by a regular sequence. We obtain dim(SymR(Lq,s)) = n + m + n +
m− (n + m− 1) = n + m + 1.
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2) By [6, Proposition 2.4], e(SymR(Lq,s)) =
∑

1≤i1<···<ir≤n+m e(R/

(Ii1 , . . . , Iir)) with dim(R/(Ii1 , . . . , Iir)) = d−r, where d = dim(SymR(Lq,s))=
n + m + 1 and 1 ≤ r ≤ n + m. By Proposition 2.1, H = (Ii1 , . . . , Iir) is gene-
rated by a regular sequence of variables of R. Hence R/H is Cohen-Macaulay
and has an 1-linear resolution, the projective dimension is equal to the number
of the generators of H ([5]). Then e(R/H) = 1 by Huneke-Miller formula ([8]).

Set d′ = dim(R/(Ii1 , . . . , Iir)) = n + m + 1 − r, then e(SymR(Lq,s))
is given by the sum of the terms e(R/(0)) = 1 for r = 1 and d′ = n + m,∑n+m

j=2 e(R/Ij) = 1 + · · ·+ 1︸ ︷︷ ︸
n+m−1

for r = 2 and d′ = n + m− 1,∑
2≤i1<i2≤n+m e(R/(Ii1 , Ii2)) = 1 + · · ·+ 1︸ ︷︷ ︸

(n+m−1
2 )

for r = 3 and d′ = n + m− 2,

∑
2≤i1<i2<i3≤n+m e(R/(Ii1 , Ii2 , Ii3)) = 1 + · · ·+ 1︸ ︷︷ ︸

(n+m−1
3 )

for r = 4 and d′ = n+m−3,

and so on up to∑
2≤i1<···<in+m−2≤n+m e(R/(Ii1 , . . . , Iin+m−2)) = 1 + · · ·+ 1︸ ︷︷ ︸

(n+m−1
n−2 )

for r = n + m− 1

and d′ = 2, e(R/(I2, I3, · · · , In+m)) = 1 for r = n + m and d′ = 1.
Hence we obtain e(SymR(Lq,s)) =

∑n−2
j=1

(
n+m−1

j

)
+ 2.

3) reg(SymR(Lq,s)) = reg(R[T1, . . . , Tn+m]/J) ≤ reg(R[T1, . . . , Tn+m]/
in≺(J)), where in≺(J) = ((Ym−1)T2, . . . , (Y1)Tm, (Xn)Tm+1, (Xn−1)Tm+2 . . . ,
(X1)Tn+m). By Proposition 2.1, in≺(J) is generated by a regular sequence
of elements of degree 2, then R[T1, . . . , Tn]/in≺(J) has a 2-linear resolution
and projective dimension n + m− 1 equal to the number of the generators of
in≺(J) ([5]): 0 → Sbn+m−1(−2(n + m − 1)) → · · · → Sb3(−6) → Sb2(−4) →
Sb1(−2) → S → S/in≺(J) → 0, where S = R[T1, . . . , Tn+m].

Then reg(R[T1, . . . , Tn+m]/in≺(J)) = n + m− 1. �

As an application of the previous results, now we verify the Conjecture
that is formulated in [11].

Conjecture. Let R = K[X1, . . . , Xn], SymR(M) be the symmetric al-
gebra of a graded module M generated on R by an s-sequence of elements of
the same degree. Then

reg(SymR(M)) ≤ e(SymR(M))− codim(SymR(M)).

Proposition 2.2. Let R = K[X1, . . . , Xn] be the polynomial ring over a
field K and Isn−1,s. Then the Conjecture is true for the symmetric algebra of
Isn−1,s and we have:

reg(SymR(Isn−1,s)) < e(SymR(Isn−1,s))− codim(SymR(Isn−1,s)).
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Proof. Let Iq,s for q = sn− 1. reg(SymR(Iq,s)) ≤ n− 1 < (
∑n−2

j=1

(
n−1

j

)
+

2)−(2n)+(n+1) = e(SymR(Iq,s))−(2n)+dim(SymR(Iq,s)) ≤ e(SymR(Iq,s))−
embdim(SymR(Iq,s))+dim(SymR(Iq,s)), as embdim(SymR(Iq,s)) ≤ n+n = 2n
and codim(SymR(Iq,s)) = embdim(SymR(Iq,s))− dim(SymR(Iq,s)). �

Proposition 2.3. Let R = K[X1, . . . , Xn;Y1, . . . , Ym] be the polynomial
ring over a field K in two sets of variables and Lq,s for q = s(n + m) − 1.
Then the Conjecture is true for the symmetric algebra of Lq,s and we have:

reg(SymR(Lq,s)) < e(SymR(Lq,s))− codim(SymR(Lq,s)).

Proof. Let q = s(n + m) − 1. Then reg(SymR(Lq,s)) ≤ n + m −
1 < (

∑n+m−2
j=1

(
n+m−1

j

)
+ 2) − (2n + 2m) + (n + m + 1) = e(SymR(Lq,s)) −

(2n + 2m) + dim(SymR(Lq,s)) ≤ e(SymR(Lq,s)) − embdim(SymR(Lq,s)) +
dim(SymR(Lq,s)) = e(SymR(Lq,s))− codim(SymR(Lq,s)). �

3. APPLICATIONS

For s = 2, the ideals Lq,s are associated to the walks of length q − 1 of
the strong quasi-bipartite graphs with loops ([9]).

Definition 3.1 ([9]). A graph G with loops is a strong quasi-bipartite if
all the vertices of V1 are joined to all the vertices of V2 and for each vertex of
V there is a loop.

Definition 3.2. Let G be a strong quasi-bipartite graph. A walk of length
q in G is an alternating sequence w = {vi0 , li1 , vi1 , li2 , . . . , viq−1 , liq , viq}, where
vij is a vertex of G and lij = {vij−1 , vij} is the edge joining vij−1 and vij or a
loop if vij−1 = vij , 1 ≤ i1 ≤ i2 ≤ · · · ≤ iq ≤ n.

Example 3.1. Let G be a strong quasi-bipartite graph on vertices {x1, x2;
y1, y2}. A walk of length 2 is

w = {x1, l1, x1, l2, y1},

where l1 = {x1, x1} is the loop on x1 and l2 = {x1, y1} is the edge joining x1

and y1. (A walk w in G cannot have the edges {xi, xj}, with i 6= j and {ys, yt}
with s 6= t, because G is bipartite.)

Let G be a quasi-bipartite graph on vertex set {x1, . . . , xn; y1, . . . , ym}.
The generalized ideal Iq(G) associated with G is the ideal of the polynomial
ring R = K[X1, . . . , Xn;Y1, . . . , Ym] generated by the monomials of degree q
corresponding to the walks of length q−1. Hence the generalized ideal Iq(G) is
generated by all the monomials of degree q ≥ 3 corresponding to the walks of
length q−1 and the variables in each generator of Iq(G) have at most degree 2.
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Therefore,
Iq(G) = Lq,2 =

∑
r+s=q

Ir,2Js,2, for q ≥ 3 ([9]).

Example 3.2. Let R = K[X1, X2;Y1, Y2] be a polynomial ring over a field
K and G be the strong quasi-bipartite graph on vertices x1, x2, y1, y2:

I3(G) = I1J2 + I2J1 = (X1Y1Y2, X2Y1Y2, X1Y
2
1 , X2Y

2
1 , X1Y

2
2 , X2Y

2
2 , X1X2Y1,

X1X2Y2, X
2
1Y1, X

2
1Y2, X

2
2Y1, X

2
2Y2).

I4(G) = I3,2J1+I1J3,2+I2J2 = (X2
1X2Y1, X2

1X2Y2, X1X
2
2Y1, X1X

2
2Y2, X1Y

2
1 Y2,

X2Y
2
1 Y2, X1Y1Y

2
2 , X2Y1Y

2
2 , X2

1Y 2
1 , X2

1Y1Y2, X
2
1Y 2

2 , X2
2Y 2

1 , X2
2Y 2

2 , X2
2Y1Y2,

X1X2Y
2
1 , X1X2Y

2
2 , X1X2Y1Y2).

Remark 3.1. For q = 2 the ideal Lq,2 does not describe the edge ideal
I(G) = I2(G) of a strong quasi-bipartite graph. In fact, if we consider the
strong quasi-bipartite graph on vertices x1, x2, y1, y2 then I(G) = (X1Y1, X1Y2,
X2Y1, X2Y2, X

2
1 , X2

2 , Y 2
1 , Y 2

2 ), but L2,2 = (X1Y1, X1Y2, X2Y1, X2Y2). Hence
I(G) 6= L2,2.

The following result classifies the ideals Iq(G) that are generated by an
s-sequence.

Theorem 3.1. Let G be a quasi-bipartite graph on the vertex set {x1, . . . ,
xn; y1, . . . , ym}. The generalized ideal Iq(G) is generated by an s-sequence if
and only if q = 2(n + m)− 1.

Proof. One has Iq(G) = Lq,2 ([9]), then by Theorem 2.1 the proof is
complete. �

Remark 3.2. The generators of Iq(G) that form an s-sequence correspond
in the quasi-bipartite graph G to the walks of length 2(n+m)−2. We observe
that the maximal length of the walks on G is 2(m + n)− 1.

Example 3.3. Let R = K[X1, X2;Y1, Y2] be a polynomial ring over a field
K and G be the strong quasi-bipartite graph on the vertices x1, x2, y1, y2:
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The walks of length 6 correspond to the generators of the generalized ideal of
degree q = 7:

I7(G) = I4,2J3,2+I3,2J4,2 =(X2
1X2

2Y 2
1 Y2, X

2
1X2

2Y1Y
2
2 , X2

1X2Y
2
1 Y 2

2 , X1X
2
2Y 2

1 Y 2
2 )

that is the generalized ideal of G generated by an s-sequence.

Now we give a good property for the ideals Iq(G) generated by a s-
sequence. More precisely we prove that they have linear quotients.

Definition 3.3. Let L be a monomial ideal of R = K[X1, . . . , Xn ;Y1,
. . . , Ym] and G(L) be its unique set of minimal generators. L has linear
quotients if there is an ordering u1, . . . , ut of monomials belonging to G(L)
with degu1 ≤ · · · ≤ degut such that for each 2 ≤ j ≤ t the colon ideal
(u1, . . . , uj−1) : uj is generated by a subset of {X1, . . . , Xn;Y1, . . . , Ym}.

It is known that if a monomial ideal generated in the same degree has
linear quotients, then it has a linear resolution ([2]).

Definition 3.4. Let L be a monomial ideal of R with linear quotients
with respect to the ordering u1, . . . , ut of the monomials of G(L). We denote
by qj(L) the number of the variables which is required to generate the ideal
(u1, . . . , uj−1) : uj . Set q(L) = max2≤j≤tqj(L).

The integer q(L) is independent of the choice of the ordering of the
generators that gives linear quotients ([4]).

Definition 3.5. Let L be a monomial ideal of R. A vertex cover of L is a
subset W of {X1, . . . , Xn;Y1, . . . , Ym} such that each u ∈ G(L) is divided by
some variables of W . Denote by h(I) the minimal cardinality of the vertex
covers of L.

Theorem 3.2. Let G be a quasi-bipartite graph on the vertex set {x1, . . . ,
xn; y1, . . . , ym}. The generalized ideals Iq(G), for q = 2(n+m)−1, have linear
quotients.

Proof. Let q = s(n + m)− 1. The generators of Iq(G) are

f1 = X2
1X2

2 · · ·X2
n−2X

2
n−1X

2
nY 2

1 Y 2
2 · · ·Y

2Ym
m−1,

f2 = X2
1X2

2 · · ·X2
n−2X

2
n−1X

2
nY 2

1 Y 2
2 · · ·Ym−1Y

2
m,

f3 = X2
1X2

2 · · ·X2
n−2X

2
n−1X

2
nY 2

1 Y 2
2 · · ·Ym−2Y

2
m−1Y

2
m,

· · ·
fn+m−1 = X2

1X2 · · ·X2
n−2X

2
n−1X

2
nY 2

1 Y 2
2 · · ·Y 2

m−1Y
2
m,

fn+m = X1X
2
2 · · ·X2

n−2X
2
n−1X

2
nY 2

1 Y 2
2 · · ·Y 2

m−1Y
2
m.
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We compute

I2 = (f1) : (f2) = (Ym−1),

I3 = (f1, f2) : (f3) = (Ym−2),
· · ·

Im = (f1, f2, . . . , fm−1) : (fm) = (Y1),

Im+1 = (f1, f2, . . . , fm) : (fm+1) = (Xn),
· · ·

Im+n = (f1, f2, . . . , fm+n−1) : (fm+n) = (X1).

Hence Iq(G) has linear quotients. �

Corollary 3.1. Let R = K[X1, . . . , Xn;Y1, . . . , Ym] with n, m > 1 and
Iq(G) with q = 2(n + m)− 1. Then

1) dimR(R/Iq(G)) = n + m− 1;
2) pdR(R/Iq(G)) = 2;
3) depthR(R/Iq(G)) = n + m− 2;
4) regR(R/Iq(G)) = 2(n + m− 1).

Proof. Let q = 2(n + m) − 1 and Iq(G) be ideal of R. By the proof of
Theorem 3.2 we have q(Iq(G)) = 1. The minimal cardinality of the vertex
covers of Iq(G) is h(Iq(G)) = 1, W = {X1} being a minimal vertex cover of
Iq(G). It follows that

1) dimR(R/Iq(G)) = n + m− 1 ([4]).
2) The length of the minimal free resolution of R/Iq(G) over R is equal

to q(Iq(G)) + 1 ([7, Corollary 1.6]). Hence pdR(R/Iq(G)) = 2.
3) As a consequence of 1) and 2) we compute depthR(R/Iq(G)) = n +

m− pdR(R/Iq(G)) = n + m− 2.
4) Iq(G) is a monomial ideal generated in degree q that has linear quo-

tients, then Iq(G) has linear resolution ([2]). Hence regR(R/Iq(G)) = q − 1 =
2(m + m)− 1− 1 = 2(n + m− 1). �

Example 3.4. Let R = K[X1, X2;Y1, Y2] be a polynomial ring over a field
K and G be the strong quasi-bipartite graph on the vertices x1, x2, y1, y2 (see
Example 3.3). I7(G) = (X2

1X2
2Y 2

1 Y2, X
2
1X2

2Y1Y
2
2 , X2

1X2Y
2
1 Y 2

2 , X1X
2
2Y 2

1 Y 2
2 ).

Set f1 = X2
1X2

2Y 2
1 Y2, f2 = X2

1X2
2Y1Y

2
2 , f3 = X2

1X2Y
2
1 Y 2

2 , f4 = X1X
2
2Y 2

1 Y 2
2 .

The linear quotients are: I2 = (f1) : (f2) = (Y1), I3 = (f1, f2) : (f3) = (X2),
I4 = (f1, f2, f3) : (f4) = (X1). Then q(I7(G)) = max2≤i≤4{qi(I7(G))} = 1.
The minimal cardinality of a vertex cover of I7(G) is h(I7(G)) = 1 and W =
{X1} is a such vertex cover. Then

1) dimR(R/I7(G)) = 3;
2) pdR(R/I7(G)) = 2;
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3) depthR(R/I7(G)) = 2;
4) regR(R/I7(G)) = 6.
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