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On a class of N(k)-mixed generalized
quasi-Einstein manifolds

Arindam Bhattacharyya and Sampa Pahan

Abstract. The objective of the present paper is to study N(k)-mixed
generalized quasi-Einstein manifolds. We prove the existence of these
manifolds. Later we establish some curvature properties of N(k)-mixed
generalized quasi-Einstein manifolds under certain conditions. In the last
section, we give two examples of N(k)-mixed generalized quasi-Einstein
manifolds.

1. Introduction

A Riemannian manifold (Mn, g) with n ≥ 2 is said to be an Einstein
manifold if the Ricci tensor S satisfies, on M , the condition

S(X, Y ) =
r

n
g(X, Y ),

where r denotes the scalar curvature of (Mn, g). According to [1], the above
equation is called the Einstein metric condition.

Chaki and Maity [3] introduced the concept of a quasi-Einstein manifold.
A non-flat Riemannian manifold (Mn, g), n ≥ 2, is said to be a quasi-Einstein
manifold if the equality

S(X,Y ) = αg(X,Y ) + βρ(X)ρ(Y )

is fulfilled on M , where α and β 6= 0 are scalars, ρ is a non-zero 1-form such
that g(X, ξ) = ρ(X) for all vector fields X, and ξ is a unit vector field.

The notion of a mixed generalized quasi-Einstein manifold was introduced
by Bhattacharyya and De in [2]. A non-flat Riemannian manifold is called
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a mixed generalized quasi-Einstein manifold if its non-zero Ricci tensor S of
type (0,2) satisfies the condition

S(X,Y ) = αg(X,Y ) + βA(X)A(Y ) + γB(X)B(Y )

+ δ [A(X)B(Y ) +B(X)A(Y )] ,
(1)

where α, β, γ, δ are non-zero scalars, g(X,U) = A(X), g(X,V ) = B(X) and
g(U, V ) = 0, A,B being two non-zero 1-forms, and U, V are unit vector
fields corresponding to the 1-forms A and B, respectively. This manifold is
denoted by MG(QE)n.

Let R denote the Riemannian curvature tensor of a Riemannian manifold
M . The k-nullity distribution N(k) of the manifold M is defined by (see
[11])

N(k) : p→ Np(k) = {Z ∈ TpM : R(X,Y )Z

= k [g(Y,Z)X − g(X,Z))Y ]} ,
(2)

where X,Y ∈ TpM and k is a smooth function. If the generators U, V
of a manifold MG(QE)n belong to N(k), then we say that (Mn, g) is a
N(k)-mixed generalized quasi-Einstein manifold, and we denote it by N(k)-
MG(QE)n.

In 2007, Tripathi and Kim [12] studied N(k)-quasi-Einstein manifolds.
They proved that an n-dimensional conformally flat quasi-Einstein manifold

is an N
(

a+b
n−1

)
-quasi-Einstein manifold. Later many authors (see, for exam-

ple, [10], [7], [13], [8]) have studied different types of N(k)-quasi-Einstein
manifolds.

In this paper, we study the existence of N(k)-mixed generalized quasi-
Einstein manifolds. Ricci-semi-symmetry, and the conharmonic and pseudo-
projective curvature tensors of N(k)-MG(QE)n are characterized. We ob-
tain Ricci recurrent, generalized Ricci recurrent and Ricci symmetric man-
ifolds N(k)-MG(QE)n. In the last section, we give two examples of N(k)-
mixed generalized quasi-Einstein manifolds.

2. Existence of N(k)-mixed generalized quasi-Einstein
manifolds

Theorem 2.1. Let µ, λ be nonzero scalars, let U, W be vector fields on M ,
and let Q : TpM → TpM be a symmetric endomorphism such that S(X,Y ) =
g(QX,Y ). If in a conformally flat Riemannian manifold (Mn, g), the Ricci
tensor S satisfies the relation

µS(Y,W )S(X,Z) + λg(Y,W )g(X,Z)

= [S(Y, Z)g(X,W ) + g(Y, Z)S(X,W )]

− [S(Y,W )g(X,Z) + S(X,Z)g(Y,W )],

(3)
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and the condition

λg(X,U)Y + µg(QX,U)QY = 0 (4)

holds, then (Mn, g) is a N(k)-mixed generalized quasi-Einstein manifold.

Proof. Let U be the vector field defined by g(X,U) = P (X), X ∈ χ(M).
Taking X = W = U in (3), we get

S(X,Y )=αg(X,Y )+βT (X)T (Y )+γP (X)P (Y )+δ[T (X)P (Y )+P (X)T (Y )],

where α = −a/u, a = S(U,U), u = g(U,U), β = µ/u, γ = λ/u, δ = 1/u,
and S(U,Z) = S(Z,U) = g(QZ,U) = P (QZ) = T (Z). Therefore, (Mn, g)
is a mixed generalized quasi-Einstein manifold.

If (Mn, g) is conformally flat, then we have

R(X,Y )Z =
1

n− 2
{g(Y,Z)QX − g(X,Z)QY + S(Y,Z)X

−S(X,Z)Y } − r

(n− 1)(n− 2)
{g(Y,Z)X − g(X,Z)Y }.

(5)

Taking Z = U in (5), for any W we obtain

R(X,Y )U =
1

n− 2
{P (Y )QX − P (X)QY + S(Y, U)X

−S(X,U)Y } − r

(n− 1)(n− 2)
{P (Y )X − P (X)Y }.

(6)

Taking Z = U in (3), we obtain

[S(Y,U)g(X,W ) + g(Y, U)S(X,W )]− [S(X,U)g(Y,W ) + S(Y,W )g(X,U)]

= µS(Y,W )S(X,U) + λg(Y,W )g(X,U),

and thus

g(S(Y,U)X+P (Y )QX−µT (X)QY −λP (X)Y−S(X,U)Y−P (X)QY,W )=0.

Therefore from (4) we have

S(Y,U)X − S(X,U)Y = P (X)QY − P (Y )QX.

Substituting this in (6), we get

R(X,Y )U = k(P (Y )X − P (X)Y ),

where k =− r
(n−1)(n−2) . Thus U ∈ Np(k).

Suppose V is a vector field orthogonal to U . Then we have V ∈ Np(k).
Hence (Mn, g) is a N(k)-mixed generalized quasi-Einstein manifold. �
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3. Ricci curvature, eigenvectors and associated scalars of
manifolds N(k)-MG(QE)n

From (1), we deduce that

S(U,U) = α+ β, S(V, V ) = α+ γ, S(U, V ) = δ = S(V,U)

since g(U, V ) = 0.
It is well known that S(X,X) is the Ricci curvature in the direction of a

unit vector field X. Now if X is a unit vector field in the section spanned by
U and V , then we have

1 = g(X,X) = g(aU + bV, aU + bV ) = a2 + b2

since g(U, V ) = 0 and g(U,U) = 1, g(V, V ) = 1. Now

S(X,X)=S(aU+bV, aU+bV )=α+βA(X)A(Y )+γB(X)(Y )+2δA(X)B(X).

Thus we can formulate the following result.

Theorem 3.1. In N(k)-MG(QE)n, the Ricci curvature in the direction
of U is α+ β, and in the direction of V is α+ γ. The Ricci curvature in all
other directions of the section of U and V is

α+ βA(X)A(Y ) + γB(X)(Y ) + 2δA(X)B(X).

Let (Mn, g) be a N(k)-mixed generalized quasi-Einstein manifold. Since
U, V ∈ Np(k), we have

g(R(X,Y )U,W ) = k{A(Y )g(X,W )−A(X)g(Y,W )}.
Let {e1, e2, . . . , en} be an orthonormal basis of the tangent space TpM at
any point p ∈M . Putting X = W = ei and summing over i, 1 ≤ i ≤ n, we
obtain

S(Y, U) = k(n− 1)A(X). (7)

Similarly,

S(Y, V ) = k(n− 1)B(X). (8)

From (1), we get

S(X,U) = (α+ β)A(X) + δB(X), (9)

S(X,V ) = (α+ γ)B(X) + δA(X). (10)

Substracting (8) from (7) and (10) from (9), we see that

k(n− 1) = α+ β − δ, (11)

k(n− 1) = α+ γ − δ. (12)

Hence, adding (11) and (12), we obtain

k =
2α+ β + γ − 2δ

2(n− 1)
.
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Therefore,

S(X,U) =
2α+ β + γ − 2δ

2
g(X,U)

and

S(X,V ) =
2α+ β + γ − 2δ

2
g(X,V ).

Consequently, U and V are eigenvectors corresponding to the eigenvalue
(2α+ β + γ − 2δ)/2.

4. Curvature tensors of manifolds N(k)-MG(QE)n

Let (M, g) be a Riemannian manifold of dimension n. The conharmonic
curvature tensor is defined by

C̄(X,Y )Z = R(X,Y )Z − 1

n− 2
{S(Y, Z)X − S(X,Z)Y

+g(Y,Z)QX − g(X,Z)QY } ,
(13)

where X,Y, Z ∈ χ(M) and Q is the Ricci operator.

The pseudo-projective curvature tensor is defined by (see [9])

P̄ (X,Y )Z = aR(X,Y )Z + b{S(Y, Z)X − S(X,Z)Y }

− r

n

[
a

n− 1
+ b

]
{g(Y, Z)X − g(X,Z)Y },

(14)

where X,Y, Z ∈ χ(M), a, b 6= 0 are constants, Q is the Ricci operator, and
r is the scalar curvature.

Now we establish the following theorems.

Theorem 4.1. An n-dimensional N(k)-mixed generalized quasi-Einstein
manifold M satisfies the condition C̄(U, Y ) · S = 0 if and only if

k(n− 2) [n(α+ β)− r]−
[
n(α+ β)2 + (n− 1)δ2

−α(γ + r)− γ(γ + δ)− β(β + α)] = 0,

and the condition C̄(V, Y ) · S = 0 if and only if

k(n− 2) [n(α+ γ)− r]−
[
n(α+ γ)2 + (n− 1)δ2

−α(β + r)− β(β + δ)− γ(γ + α)] = 0,

where r is the scalar curvature.

Proof. Since C̄(U, Y ) · S = 0, we have

S(C̄(U, Y )Z,W ) + S(Z, C̄(U, Y )W ) = 0. (15)

Then, by (2) and (13), we have that

k[g(Y,Z)S(U,W )− g(U,Z)S(Y,W ) + g(Y,W )S(U,Z)− g(U,W )S(Y,Z)]
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− 1

n− 2
[g(Y,Z)S(QU,W )− g(U,Z)S(QY,W )

+ g(Y,W )S(QU,Z)− g(U,W )S(QY,Z)] = 0.

Putting W = U , we get

k[g(Y, Z)S(U,U)− g(U,Z)S(Y,U) + g(Y, U)S(U,Z)

− g(U,U)S(Y,Z)]− 1

n− 2
[g(Y, Z)S(QU,U)− g(U,Z)S(QY,U)

+g(Y,U)S(QU,Z)− g(U,U)S(QY,Z)] = 0.

(16)

From (1), we have

QX = αX + βA(X)U + γB(X)V + δ[A(X)V +B(X)U ]. (17)

From (16), we get

k[g(Y,Z)(α+ β)− g(U,Z)(αg(Y, U) + βA(Y )δB(Y ))

+ g(Y,U)(αg(Z,U) + βA(Z) + δB(Z))− S(Y,Z)]

− 1

n− 2
[g(Y, Z)S(αU + βU + δV, U)− g(U,Z)S(αY

+ βA(Y )U + γB(Y )V + δ[A(Y )V +B(Y )U ], U)

+ g(Y,U)S(αU + βU + δV, Z)− S(αY + βA(Y )U + γB(Y )V

+ δ[A(Y )V +B(Y )U ], Z)] = 0.

(18)

Let {e1, e2, ..., en} be an orthonormal basis of the tangent space TpM at
any point p ∈ M . Putting Y = Z = ei and summing over i, 1 ≤ i ≤ n, we
obtain

k(n− 2)[n(α+ β)− r]−
[
n(α+ β)2 + (n− 1)δ2

−α(γ + r)− γ(γ + δ)− β(β + α)] = 0.

Similarly, we get that C̄(V, Y ) · S = 0 if and only if

k(n− 2) [n(α+ γ)− r]−
[
n(α+ γ)2 + (n− 1)δ2

−α(β + r)− β(β + δ)− γ(γ + α)] = 0,

The theorem has been proved. �

Theorem 4.2. A n-dimensional N(k)-mixed generalized quasi-Einstein
manifold M satisfies the condition P̄ (U, Y ) · S = 0 if and only if either

ak − r
n

(
a

n−1 + b
)

= 0 or n(α+ β) = r, and the condition P̄ (V, Y ) · S = 0 if

and only if either ak − r
n

(
a

n−1 + b
)

= 0 or n(α+ γ) = r.

Proof. Since P̄ (U, Y ) · S = 0, we have

S(P̄ (U, Y )Z,W ) + S(Z, P̄ (U, Y )W ) = 0. (19)
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By (2) and (14), we get[
ak − r

n
(

a

n− 1
+ b)

]
[g(Y, Z)S(U,W )− g(U,Z)S(Y,W )

+ g(Y,W )S(U,Z)− g(U,W )S(Y, Z)] = 0.

Putting W = U , we obtain[
ak − r

n
(

a

n− 1
+ b)

]
[g(Y, Z)(α+ β)− g(U,Z)[αg(Y,U) + βA(Y )

+ δB(Y )] + g(Y,U)[αg(Z,U) + βA(Z) + δB(Z)]− S(Y,Z)] = 0.

(20)

Let {e1, e2, ..., en} be an orthonormal basis of the tangent space TpM at
any point p ∈ M . Putting Y = Z = ei and summing over i, 1 ≤ i ≤ n, we

obtain ak − r
n

(
a

n−1 + b
)

= 0 or n(α+ β) = r.

Similarly, we get that P̄ (V, Y )·S = 0 if and only if either ak− r
n

(
a

n−1 + b
)

=

0 or n(α+ γ) = r.

This completes the proof. �

5. Ricci-recurrent manifolds N(k)-MG(QE)n

A manifold N(k)-MG(QE)n is said to be Ricci-recurrent if its Ricci tensor
S of type (0, 2) satisfies the condition

(∇XS)(Y, Z) = L(X)S(Y,Z), (21)

where L is the nonzero 1-form such that L(X) = g(X, ξ) holds, ξ being the
associated vector field of the 1-form L.

A manifold N(k)-MG(QE)n is said to be generalized Ricci-recurrent if its
Ricci tensor S of type (0, 2) satisfies the condition

(∇XS)(Y, Z) = F (X)S(Y,Z) +G(X)g(Y,Z), (22)

where F,G are the nonzero 1-forms such that F (X) = g(X, ξ1), G(X) =
g(X, ξ2), and ξ1, ξ2 are associated vector fields of the 1-forms F , G, respec-
tively.

We prove the following proposition.

Proposition 5.1. Let F, G be nonzero 1-forms. In a generalized Ricci-
recurrent manifold N(k)-MG(QE)n, the following statements are true.

(i) If U is a parallel vector field, then X(α+β) = (α+β)F (X)+G(X).
(ii) If V is a parallel vector field, then X(α+γ) = (α+γ)F (X) +G(X).

Proof. Putting Y = Z = U in (22), we get

(∇XS)(U,U) = (α+ β)F (X) +G(X).
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On the other hand, we have

(∇XS)(U,U) = X(α+ β)− 2δS(∇XU,U),

i.e.,

2[(α+ β)A(∇XU) + δB(∇XU)] = X(α+ β)− (α+ β)F (X)−G(X).

Since U is parallel vector field, ∇XU = 0. Then from the above we get

X(α+ β) = (α+ β)F (X) +G(X).

Similarly we can show that if V is a parallel vector field, then

X(α+ γ) = (α+ γ)F (X) +G(X).

The proof is complete. �

From the previous proposition we have the following corollary.

Corollary 5.1. Let L be a nonzero 1-form. In a Ricci-recurrent manifold
N(k)-MG(QE)n, the following statements hold.

(i) If U is parallel vector field, then d(α+ β)(X) = (α+ β)L(X).
(ii) If V is parallel vector field, then d(α+ γ)(X) = (α+ γ)L(X).

6. Ricci-symmetric manifolds N(k)-MG(QE)n

A Riemannian manifold (Mn, g) is said to be Ricci-semi-symmetric if the
relation R(X,Y ) ·S = 0 holds, where R(X,Y ) is the curvature operator and
S is the Ricci tensor of type (0, 2).

Theorem 6.1. An N(k)-mixed generalized quasi-Einstein manifold sat-
isfies the relations R(U, Y ) · S = 0 and R(V, Y ) · S = 0 if and only if k = 0.

Proof. Let (Mn, g) be a Ricci-semi-symmetric manifold N(k)-MG(QE)n.
Then we have

S(R(X,Y )Z,W ) + S(Z,R(X,Y )W ) = 0. (23)

Putting X = V in (23), we obtain

k{g(Y,Z)S(V,W )−B(Z)S(Y,W ) + g(Y,W )S(Z, V )−B(W )S(Z, Y )} = 0.
(24)

Putting W = V , we get

k{(α+ γ)g(Y, Z)− δA(Y )B(Z) + δA(Y )B(Z)− S(Y,Z)} = 0.

Hence either k = 0 or

(α+ γ)g(Y,Z)− δA(Y )B(Z) + dA(Y )B(Z)− S(Y,Z) = 0.

If k 6= 0, then in the second case the manifold becomes an N(k)-mixed quasi-
Einstein manifold (see [6]) which is not possible. Therefore we must have
k = 0.

Conversely, suppose k = 0. Then we obtain that R(V, Y ) · S = 0.
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Similarly, we get that R(U, Y ) · S = 0 if and only if k = 0, and the proof
is complete. �

A manifold N(k)-M(GQ)n is said to be Ricci-symmetric if its Ricci tensor
S of type (0, 2) satisfies the condition

(∇XS)(Y,Z) = 0 (25)

for all X,Y, Z ∈ χ(M).

Proposition 6.1. If a manifold N(k)-MG(QE)n with constant associated
scalar is Ricci-symmetric with Levi-Civita connection ∇, and U is a parallel
vector field, then b(∇XA)(Y ) + d(∇XB)(Y ) = 0.

Proof. First, putting Z = U in (25), where U is a parallel vector field, we
have

β(∇XA)(Y ) + δ(∇XB)(Y ) = 0.

Similarly, if V is a parallel vector field and M is Ricci-symmetric manifold
N(k)-MG(QE)n, then we can show that

γ(∇XB)(Y ) + δ(∇XA)(Y ) = 0,

which completes the proof. �

Corollary 6.1. If a manifold N(k)-MG(QE)n with constant associated
scalar is Ricci-symmetric with Levi-Civita connection ∇, and V is a parallel
vector field, then

γ(∇XB)(Y ) + δ(∇XA)(Y ) = 0.

7. Examples of manifolds N(k)-MG(QE)n

Example 7.1. Let us consider a Riemannian metric g on R4 determined
by

ds2 = gijdx
idxj = (1 + 2p)[(dx1)2 + (dx2)2 + (dx3)2 + (dx4)2],

where i, j = 1, 2, 3, 4 and p = k−2ex
1
, k is constant. Then the only non-

vanishing components of Christofell symbols, the curvature tensors, and the
Ricci tensors are

Γ1
22 = Γ1

33 = Γ1
44 = − p

1 + 2p
,

Γ1
11 = Γ2

12 = Γ3
13 = Γ4

14 =
p

1 + 2p
,

R1221 = R1331 = R1441 =
p

1 + 2p
,

R2332 = R2442 = R3443 =
p2

1 + 2p
,

R11 =
3p

(1 + 2p)2
, R22 = R33 = R44 =

p

(1 + 2p)
.
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Let us consider the associated scalars α, β, γ, δ defined by

α =
p

(1 + 2p)2
, β =

2p

(1 + 2p)3
, γ =

p

(1 + 2p)3
, δ = − p

2(1 + 2p)2
,

and the 1-forms

Ai(x) = Bi(x) =

{√
1 + 2p if i = 1,

0 otherwise,

where generators are unit vector fields. Then we have

(i) R11 = αg11 + βA1A1 + γB1B1 + δ[A1B1 +A1B1],

(ii) R22 = αg22 + βA2A2 + γB2B2 + δ[A2B2 +A2B2],

(iii) R33 = αg33 + βA3A3 + γB3B3 + δ[A3B3 +A3B3],

(iv) R44 = αg44 + βA4A4 + γB4B4 + δ[A4B4 +A4B4].

Since all the cases (i)–(iv) are trivial, we can say that

Rij = αgij + βAiAj + γBiBj + δ[AiBj +AjBi], i, j = 1, 2, 3, 4.

So, (R4, g) is a mixed generalized quasi-Einstein manifold with non-zero and

non-constant scalar curvature. We can say that (M4, g) is an N( p(2+p)

3(1+2p)3
)-

mixed generalized quasi-Einstein manifold.

Example 7.2. Let us consider a Riemannian metric g on R4 by

ds2 = gijdx
idxj = (dx1)2 + ex

1+x2
(dx2)2

+ ex
1+x3

(dx3)2 + ex
1+x4

(dx4)2, i, j = 1, 2, 3, 4.

Then the only non-vanishing components of Christofell symbols, the curva-
ture tensors, and the Ricci tensors are

Γ1
22 = −1

2
ex

1+x2
, Γ1

33 = −1

2
ex

1+x3
, Γ1

44 = −1

2
ex

1+x4
,

Γ2
22 = Γ3

33 = Γ4
44 =

1

2
= Γ2

12 = Γ3
13 = Γ4

14,

R1221 =
1

4
ex

1+x2
, R1331 =

1

4
ex

1+x3
, R1441 =

1

4
ex

1+x4
,

R2332 =
1

4
e2x

1+x2+x3
, R2442 =

1

4
e2x

1+x2+x4
, R3443 =

1

4
e2x

1+x3+x4
,

R11 =
3

4
, R22 =

3

4
ex

1+x2
, R33 =

3

4
ex

1+x3
, R44 =

3

4
ex

1+x4
.

Let us consider the associated scalars α, β, γ, δ defined by

α =
3

4
, β = ex

1
, γ =

2

ex1 , δ = − 2√
2
,
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and the 1-forms

Ai(x) =


√
2√
ex1

if i = 1,

0 otherwise,
Bi(x) =

{√
ex1 if i = 1,

0 otherwise,

where generators are unit vector fields. Then we have

(i) R11 = αg11 + βA1A1 + γB1B1 + δ[A1B1 +A1B1],

(ii) R22 = αg22 + βA2A2 + γB2B2 + δ[A2B2 +A2B2],

(iii) R33 = αg33 + βA3A3 + γB3B3 + δ[A3B3 +A3B3],

(iv) R44 = αg44 + βA4A4 + γB4B4 + δ[A4B4 +A4B4].

Since all the cases (i)–(iv) are trivial, we can say that

Rij = αgij + βAiAj + γBiBj + δ[AiBj +AjBi], i, j = 1, 2, 3, 4.

So, in this case (R4, g) is a mixed generalized quasi-Einstein manifold. We

can easily see that (M4, g) is an N

(
2
√
2
(
ex

1
)2

+4
√
2+8ex

1
+3
√
2ex

1

12
√
2ex1

)
-mixed gen-

eralized quasi-Einstein manifold.
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