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ON A CLASS OF NILPOTENT DISTRIBUTIONS

Ovidiu Calin1 and Der-Chen Chang2

Abstract. This paper presents a sufficient condition for two vector fields X
and Y to have the squares noncommutative, i.e. [X2, Y 2] �= 0. We prove that
if the vector fields X, Y span a nilpotent distribution with nilpotence class 2,
then the squares of the vector fields do not commute.

1. INTRODUCTION

An important problem in the theory of sub-elliptic operators is to find heat
kernels for subelliptic operators written as a sum of squares L = X 2

1 + · · ·+ X2
r ,

where X1, . . . , Xr are vector fields on R
m, with m ≥ r. A sufficient well-known

condition for the hypoellipticity of the operator L is the bracket generating condition,
see Hörmander [6]. The important notion of step arises here, see also [1], [2], [3].
The step of the operator L at point p is 1 plus the number of iterated brackets of
vector fields {X1, . . . , Xr} needed to span R

m at p. The step is also a measure of
non-holonomy (i.e. non-integrability) of the distribution D generated as a subspace
of R

m by the linear combinations of the aforementioned vector fields at each point. If
the vector fields are considered linearly independent, then the rank of the distribution
D is r, the dimension of the subspace. We notice that the bracket generating
condition is equivalent with the finite step condition.

If the squares of the aforementioned vector fields commute, then the heat kernel
of L is the product of heat kernels

etL = etX2
1 · · ·etX2

r .
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If they do not commute the previous formula does not hold any more, and the heat
kernel should be found using a different method, such as Trotter’s formula, see [8].
Thus the importance of knowing when the squares of two vector fields commute.
For geometric methods of computing the heat kernel one may consult [4].

In the present work we shall state a relationship between the nilpotence class of
a distribution and the aforementioned non-commutativity of squares of vector fields.
More precisely, we shall prove that if the nilpotence class of a distribution is equal
to 2, then the squares of the vector fields do not commute. Proving this implication
makes sense, since checking the non-commutativity of squares of vectors by a direct
computation requires more computation than just checking the nilpotence class of
two given vector fields.

2. PRELIMINARY NOTIONS

Let X and Y be two vector fields on R
m. Consider the differential operator of

order n obtained by iterating the same vector field k times Xk = X . . .X. We start
by observing that if the vector fields X and Y commute, then the operators Xk and
Y k also commute. This can be written as the following set inclusion

(2.1) {p; [X, Y ]p = 0} ⊆ {p; [Xk, Y k]p = 0}.

Definition 2.1. Two vector fields X and Y satisfy the condition (Nk) at the
point p if [Xk, Y k]p �= 0. If the above condition holds at each point, then the
distribution D spanned by the vector fields X and Y is called a (Nk)-distribution.
In this case we say that X and Y are (Nk)-vector fields.

Using the contrapositive of (2.1)

(2.2) {p; [Xk, Y k]p �= 0} ⊂ {p; [X, Y ]p �= 0}
implies that if X and Y are (Nk)-vector fields, then X and Y do not commute.

For instance, the vector fields

(2.3) X = ∂x, Y = ∂y + x∂z

satisfy the condition (N2) everywhere on R
3. This follows from the relations

[X, Y ] = ∂z �= 0

X2 = ∂2
z

Y 2 = ∂2
y + 2x∂y∂z + x2∂2

z

[X2, Y 2] = 4∂x∂y∂z + 2∂2
z + 4x∂x∂2

z �= 0.
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Next we recall the notion of nilpotence class of a a distribution.

Definition 2.2. A distribution D = span{X, Y } is called nilpotent if there is
an integer k ≥ 1 such that all the Lie brackets of X and Y iterated k times vanish.
The smallest integer k is called the nilpotence class of D.

For instance, the vector fields (2.3) span a nilpotent distribution with nilpotence
class k = 2

[X, [X, Y ]] = 0, [Y, [X, Y ]] = 0, but [X, Y ] �= 0.

The nilpotence class of a distribution is in general a distinct notion from the
step of a distribution. The nilpotence class describes the functional nature of the
distribution (i.e. the polynomial or exponential type of the distribution), while
the step describes the non-holonomy of the distribution (i.e. the degree of non-
integrability). The nilpotence class and the step are equal in the case of a distribution
generated by left invariant vector fields on nilpotent Lie groups. For instance this
is the case of the Heisenberg distribution.

We shall consider next a of couple examples which show that the nilpotence
class and the step of a distribution are distinct features. The next two examples are
taken from Calin and Chang [3], p. 48.

Consider the distribution spanned by the vector fields X = ∂x + ey∂z and
Y = ∂y on R

3. This is bracket generating with step 2 everywhere, but it is not
nilpotent.

On the other side, the distribution spanned by the vector fields X = ∂x and
Y = ∂y + zx∂z is nilpotent with the nilpotence class 2. However, this distribution
is not bracket generating along the plane {z = 0}, i.e., it does not have a finite step
there.

In the next section we shall provide a sufficient condition for a distribution to
be of class (N2).

3. MAIN THEOREM

Theorem 3.1. Any distribution D = span{X, Y } with nilpotence class 2 is a
(N2)-distribution.

Proof. Since the nilpotence class of the distribution is 2, we have

(3.1) [X, [X, Y ]] = 0, [Y, [Y, X ]] = 0, [X, Y ] �= 0.

The first two relations of (3.1) become

X2Y + Y X2 = 2XY X(3.2)

Y 2X + XY 2 = 2Y XY.(3.3)
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Multiplying on the right side the relation (3.2) by Y and the relation (3.3) by X

yields

X2Y 2 + Y X2Y = 2(XY )2

Y 2X2 + XY 2X = 2(Y X)2,

and subtracting we have

(3.4)
[X2, Y 2]=X2Y 2−Y 2X2=

(
2(XY )2−Y X2Y

)
−

(
2(Y X)2−XY 2X

)

=2{(XY )2 − (Y X)2} + (XY 2X − Y X2Y ).

Multiplying on the left side the relation (3.2) by Y and the relation (3.3) by X
yields

Y X2Y + Y 2X2 =2(Y X)2

XY 2X + X2Y 2 =2(XY )2,

and subtracting we get

(3.5)
[X2, Y 2]=X2Y 2−Y 2X2=

(
2(XY )2−XY 2X

)
−

(
2(Y X)2−Y X2Y

)

=2{(XY )2−(Y X)2}+(Y X2Y −XY 2X).

Comparing (3.4) and (3.5) yields

(3.6) XY 2X−Y X2Y =Y X2Y − XY 2X ⇐⇒ XY 2X = Y X2Y,

and hence relations (3.4) and (3.5) become

(3.7) [X2, Y 2] = 2{(XY )2 − (Y X)2}.

If let A = XY and B = Y X , using (3.6) the operators A and B commute

AB = (XY )(Y X) = XY 2X = Y X2Y = (Y X)(XY ) = BA,

and then we can factorize the difference of squares A2 − B2 = (A − B)(A + B).
Then relation (3.7) becomes by factorization

(3.8) [X2, Y 2] = 2(XY − Y X)(XY + Y X).

We shall show that X and Y are (N2)-fields, i.e. [X2, Y 2] �= 0. We shall pursue a
proof by contradiction by assuming [X2, Y 2] = 0. Then the relation (3.8) provides
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either: XY − Y X = 0, i.e., [X, Y ] = 0, which is in contradiction with the last of
the relations (3.1).

or: XY + Y X = 0, i.e.,

(3.9) XY = −Y X.

The remaining of the proof deals with showing that (3.9) cannot hold. By
contradiction, we assume that (3.9) holds. Then

[X, Y ] = XY − Y X = 2XY = −2Y X.

Therefore we have

[X, [X, Y ]] = 0 =⇒ [X, XY ] = 0 =⇒ X2Y = XY X(3.10)

[Y, [Y, X ]] = 0 =⇒ [Y, Y X ] = 0 =⇒ Y 2X = Y XY.(3.11)

Using (3.10) and (3.11) we have

X [X, Y ] = X(XY − Y X) = X2Y − XY X = 0,

Y [X, Y ] = Y (XY − Y X) = Y XY − Y 2X = 0.

Combining the last two relations we obtain

[X, Y ]2 = [X, Y ][X, Y ] = (XY − Y X)[X, Y ]

= X(Y [X, Y ])− Y (X, [X, Y ])

= 0.

Hence [X, Y ] = 0, which is a contradiction. It turns out that (3.9) cannot hold.
It follows that the vector fields X and Y span a (N2)-distribution.
Counterexample. We notice that the converse of the previous theorem does not

hold, as the next counterexample shows. Let X = ∂x and Y = ex∂y . Since

[X, Y ] = ex∂y �= 0, [X2, Y 2] = 4e2x(∂2
y + ∂x∂2

y) �= 0,

the distribution span{X, Y } is a (N2)-distribution. However, this distribution is not
nilpotent since

[X, . . . [X, [X, Y ]]] = ex∂y.
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Example. An important class of distributions with the nilpotence class 2 are
the Heisenberg-type distributions. Consider the vector fields X, Y, T on R

3. If

[X, Y ] = T, [X, T ] = 0, [Y, T ] = 0

we say that D = span{X, Y } is a 3-dimensional Heisenberg-type distribution.
Since

[[X, Y ], X ] = [T, X ] = 0, [[X, Y ], Y ] = [T, Y ] = 0,

it follows that D is a nilpotent distribution with the nilpotence class 2. According
with the previous theorem, the aforementioned distribution is a (N2)-distribution,
i.e. [X2, Y 2] �= 0.

One of the classical examples of vector fields with the these properties are

X = ∂x + 2y∂z, Y = ∂y − 2x∂z, T = −4∂z.

In this case we also have that X2 and Y 2 do not commute. The heat kernel of the
Heisenberg Laplacian 1

2(X2 + Y 2) was computed in [5] and [7].

Further developments. One natural question is if we can generalize the theorem
to the case of more than 2 vector fields. Another one is to investigate the case of
(Nk)-distributions.
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