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Abstract 

We study the prototypical, genuinely nonlinear, equation; ut + 
a(um), + ( u ~ ) ~ , ,  = p ( ~ ~ ) , ~ ,  u,p = consts., which encompasses a 

wide variety of dissipative - dispersive interactions. The parametric 
surface k = (rn + n) /2  separates diffusion dominated from dissipation 
dominated phenomena. On this surface dissipative and dispersive ef- 
fects are in detailed balance for all amplitudes. In particular, the 
m = n + 2 = IC + 1 subclass can be transformed into a form free of 
convection and dissipation making it accessible to theoretical studies. 
Both bounded and unbounded oscillations are found and certain exact 
solutions are presented. When a = ( 2 ~ / 3 ) ~  the map yields a linear 
equation; rational, periodic and aperiodic solutions are constructed. 

1. Introduction. 

The complexity of nonlinear phenomena, and the very limited analytical 

means presently available for their modelling, severely limits the scope of 

our scientific endeavors. Though in reality one rarely encounters phenomena 

which are either purely dissipative or dispersive, the means available for the 
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study of these phenomena differ to such an extent that, unless a head-on 

computing is employed, with rare exceptions, these phenomena are studied 

separately. In this context the celebrated KdV and the Burgers equations 

u t  + uux i- u,,, = 0 and ut + uu, = ux, (1% b) 
e. - 

have became the outstanding -paradigms describing convective-dispersive 

and convective-dissipative interaction, respectively. 

However, it is not on1,y a matter of fashion, convenience, or herd in- 

stincts, that we study separately patterns shaped by dispersion and dissi- 

pation. Pushed to extremity one might say that while dispersive systems 

cannot forget their past, t:he dissipative ones do not remember it. The old 

parable of Archilochus; the fox knows many things, but the hedgehog knows 

one big thing, acquires a new meaning when one identifies dispersion with the 

fox and dissipation with the hedgehog. Indeed, while the conservation laws 

of a dispersive system, at all times carry the memory of the initial startup, 

dissipative systems respond like the fabled hedgehog; care very little about 

their initialization, shaping the future according to their own, predetermined, 

blue-print . 

It is thus not surprising that models which combine ’fox-like’ with ’hedgehog- 

like’ features, say; the combined KdV - Burgers equation 

7% i- uux i- UZZX = uxx, 

are so hard to analyze. ‘The competition between such a different entities 

as dispersion and dissipation, very rarely turns into a cooperative interac- 

tion, but when it does, an analytical glimple into these phenomena becames 

possible. 

The typical model, derived in the weakly nonlinear limit, eliminates most 

of the phenomena related to large gradients and/or amplitudes like wave 

breaking, their collapse, fusion or saturation. The use of linear dissipation or 

dispersion in such a model is, as a rule, done out of convenience or necessity 
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(as usually nothing better is available) then from the conviction that this 

is the true state of affairs. The linearity, however, takes its toll; it brings 

in undesirable features as, say, the infinite tail of the typical soliton (or the 

infinite Gaussian tail), being the consequence linear dispersion (or diffusion). 

The compactification of thermal pulses due to the nonlinear conductivity, 

is perhaps the-simplest and the most striking example, that reveals how 

nonlinearity can combat the nuisance of an infinite tail. 

Similarly, it was recently found that nonlinear dispersion can compactify 

solitary waves and generate compactons-solitons with a compact support [l- 

31. As a prototypical dispersive model that describes compact patterns, I have 

recently proposed [l-31 to extend the K-dV type equations into a genuinely 

nonlinear dispersion regime and to consider 

K(m, n); ut + U ( U ~ ) ~  + ( u ~ ) ~ ~ ~  = o , m, n 2 1 , a = const. ( 3 4  

For a > 0, compact solitary travelling structures are possible, and for 

n = rn have a very simple form 

2n7r 
Iz - At1 5 - 

n - l  
for 

2An n - l  
u={- n + l  COS[-(X 4n - At)]  (4) 

and zero otherwise. For a < 0 solitary patterns having cusps, peaks or 

infinite slope may form, all being the manifestation of nonlinear dispersion 

in action 141. Its dissipative counterpart, a fully nonlinear variant of the 

Burgers equation 

also admits simple solutions [5 ] .  Returning to our modest goal we propose 

herein a new model equation which goes beyond Eq.(2), and merges into one 

equation the interaction between convection, dispersion and dissipation, all 

assumed to be genuinely nonlinear functions of state variable. Merging Eq. 

(3a) and (3b) we thus propose a combined dispersive-dissipative entity 
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The exponents rn, n and k in (5a) span a wide variety of nonlinear scenar- 

ios. In fact while in each of equations (3) the pattern is formed via balance 

between dispers6-e -(or dissipative) forces and convection, having three mech- 

anisms enables, roughly speaking, three kinds of scenarios. 

A. Phenomena dominated by balance between dispersion and convection 

with dissipation playing secondary role that manifests itself mainly on long 

temporal scales. 

B. Phenomena dominated by balance between dissipation and convection 

with dispersion playing a secondary role and 

C .  phenomena characterized by a detailed, three ways, balance between 

To unfold these classes we look first at the scaling properties of solutions 

to equation (5a) as a function of the exponents k,m and n. Invariance of 

Eq. (5a) under shifts in space and time affords steadily progressing waves 

and the associated scaling relations between speed, width and the amplitude 

of these structures. 

dissipation, convection and dispersion. 

So far the DD(k,m,n) was addressed only in two special cases , the 

Burgers-KdV, Eq.(2),[6], and Burgers - mKdV, [7]. In both cases the 

main effort was directed to elucidiate the limiting behaviour when either 

the dissipation or dispersio tend to zero . This usually is motivated by a 

mathematical quest to understand how weak solution of the purely convec- 

tive problem ut + = 0 are modified by dispersion and/or dissipation. 

From physical point of view, the main interest is to understand the formation 

of patterns and their topology, and will be our main concern here. 

One could say that since the combined structure is not integrable there is 

no apriori reason to consider a KdV-like like extension of dissipative process 
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rather then a BBM like extension. With an equal vigor one could make an 

argument in favor of 

ut + a(um)z = uzzt + p ( ~ ~ ) ~ ~  , a, p = consts. (5b)  

This equation and its fully nonlinear dispersive extensions, have a life of 

their own that- -perhaps warrants a separate consideration. However, as a 

first step, Eq.(5a) should certainly suffice. We thus return to Eq.(5a) and 

consider 

2.Scales and scalings. 

Let s = z - At, then integrating once Eq. ( 5 )  and setting 

u = a U ( s ) ,  a=X U(m-1) 

we obtain 

-u + UU" + an-m(un)ss = pak-m(Uk)s + Po(cmst.) (6b)  

Let further define 1) = Aps, w = (m - n)/(2m - 2) .  Rescaling again and 

neglecting the integration constant Po, and setting U = U[Aw(x - A t ) ] ) ,  we 

obtain 

/3 vanishes when 

k = (rn + n)/2 (7) 

In this special case the emerging patterns are ucLJersal in the sense that 

they are independent of speed, and thus of amplitude. Otherwise U = U(q,  .-) 

and the effective dissipation coefficient dependents on the amplitude of the 
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wave. For 2k < m f n ,  the dissipation is inhibited at high amplitudes and the 

pattern is dominated by djspersion, while for 2k > m+n the opposite occurs; 

the process is governed by balance between convection and dissipation, with 

dispersion playing secondary role. 

A. Consider first a dissipative extension of the KdV equation; now g = 

,u,X"'/~. For-'k- = 1 we- have the KdV - Burgers equation (2) (or the 

DD(1,2,1) equation, in the notation (.a)>, with o = p/&. At large am- 

plitudes g decreases and, on a short time scale, the dissipative effects are 

secondary. The opposite occurs for small amplitudes, which are dominated 

by dissipation, and therefore will quickly merge into high amplitude patters 

and disappear. Recent numerical simulations carried for equation( 2) ,[8], fully 

confirm these conclusions. 

0 = 

p f i .  The effective dissipation increases with amplitude and high amplitudes 

patterns dissipate quickly, while the low amplitude phenomena persist on a 

much longer time scale. 

B. Consider now a dissipative extension of the m-KdV equation; rn = 3 

and n = 1 imply that CT = PA"'. For IC = 1, 2 and 3,g = p/A ,p ,  and pA, 

respectively. Here IC = 2 is the critical value; the effective dissipationdoes 

not depend on amplitude. 

The total mass of a trmelling structure is another way to look at the 

effects of scaling. In the purely dispersive K(m,n)  case the mass scales as 

Now let the assumed dissipation be quadratic in u; then k = 2 

MI) = I udx = xp I U ( s ) d s  , p = (n  + 2 - m)/2(rn - l), (9) 

while for the dissipative case (3b) we have; ,B = ( k  + 1 - rn)(m - 1). 

Consequently the total mass of a pattern in the DD(k , rn ,n )  equation is 

independent of the amplitude, iff m = n + 2 = k + 1. 

Let us now consider the implications of invariance under a group of 

stretchings and the consequent similarity solutions. For the K(m,  n) one 

has 
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provided that o > 0, while for the purely dissipative case (3a) (a  > 0) 

- 

u = t l lAF([ )  = xi!-" , ct: = ( k  - m)/A , A = 1 + k - 2m. ( lob )  

When ct: < 0, the self-similar solut,ions represent phenomena that termi- 

nate within a finite, say t o ,  time. Instead of (loa) we now have 

(m-n)/2A 
u = ( t o  - t) l 'AF(<),  [ = x(to - t> 

and a similar modification applies to the dissipative variant. It thus fol- 

lows that the combined case admits a stretching symmetry iff 2k = rn + n, 

which is nothing more than the universality condition (7). In this case the 

symmetries of the dissipative and dispersive processes have a non-empty over- 

lap. In Sec. 4.2 we shall present a family of such solutions. If consistency 

condition (7) is not satisfied, self-similar structures may emerge only asymp- 

totically, when either the dissipative or the dispersive mechanism becames 

suppressed. 

We also note two exceptional cases that occur when either a or A vanish. 

Exploiting the invariance under shifts in time or space, one finds that each 

of these cases reflects a spiral symmetry, and induces similarity structures of 

the form 

u = t'-"F(z+Alnt) , if m = n and m = k ,  ( 1 2 4  

and 

] if n = 3 m - 2  and k = 2 m - 1 .  (12b) 
-X tqze2(m-  1)t u = e  
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The presented discussilon is not a systematic study of symmetries of Eq. 

(5a) but rather an outline of system's response to changes in scales. For 

a particular choice of nonlinearity exponents, additional symmetries may 

emerge. For instance, the KdV-Burgers equation (2) has a solution in an 

accelerated frame of reference 
- .. 

u(z, t )  = U ( S )  - A t  , < = x + aXt2 . 

The reader is challanged to find U ( c ) .  

3. Travelling Patterns 

In this section we shall outsline some basic features of the steadily travelling 

structures of Eq.(6). We shall 

limiting forms like kinks or solitons. 

2. Seek their explicit forms. 

We start with Eq.(6) and note that without dispersion this equation is 

immediately integrable. Without dissipation, energy integral is available 

which as a rule reduces the problem into an integrable, albeit not necessarily 

in terms of elementary functions. However, the presence of both dissipation 

and dispersion makes the problem next to impossible and save for the special 

case rn = n + 2 = k + 1, a first integral of motion is not available. One 

has thereforeto resort either to numerical or to phase space methods. Let 

M = 8,U. Since 8, = Mau then from (6c) we have 

1. Determine the topology of these structures and in particular their 

-u + UU"' + nh!d,(U"-%) = kOU"-lM 

or , if N = U"-'A,f 

In what follows we shall assume that a k 1. 
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3.1 Elements of phase portrait. 

It  is clear from(6c) that U = 0 and U = 1 (or -1 if a = -1) are singular 

points that need special attention. When u = 0 is not involved, we linearize 

the flow near the singular manifold at U = 1. If U N ezp(ylq) , t,hen 

- o k & d A  
I y i =  where A = a2k2 - 4n(m - 1). 

2n 

When A > 0 and n > 0 ,  U = 1 is a node which is characteristic of kink 

type solutions. When A < 0; U = 1 is a spiral and the solution in its vicinity 

is oscillatory, a typical setup for underdamped oscillations. In the present 

context this means that dispersion dominates dissipation. The critical value 

of the normalized dissipation 

separates between dissipation and dispersion dominated solutions. It as- 

sociates a critical speed with every value of p; A, = (p /aC) ' /p .  Thus the 

traveling wave is oscilatory if o < oc or, what amounts to the same, if 

AD < A t .  

3.2 The front line. 

If n > 1 and k > 1, then at u = 0 nonlinearity degenerates and, typically, 

the solution has there a weak discontinuity. It is clear that this point plays 

a special role in our discussion as the singular manifold may be essentially 

nonlinear. The assumption that both k > 1 and n > 1 is needed (and 

occasionaly that a > 0 )  to assure the existance of a front, otherwise the 

front of the propagating wave(s) will run away to infinity. Consideration 

of the K(rn,n) reveals that for dispersive structures like compactons El-31, 

near the front line located at, say IC = 0, we have u x x2/(n-1) while for the 

dissipative Eq. (3b), u M x ' / (~- ' ) .  Both effects are in balance only when 

n + 1 = 2k. Otherwise, comparing the dispersive part with the dissipative 
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contribution, we find that near the front dispersion (dissipation) dominates 

for n + 1 < 2k(n  + 1 > 2 k ) .  

Thus. for n = k = 2,the behavior near the front line is shaped by the 

dispersive part and u NN ,x2. Without the dispersion, the behavior of the 

front is determined by the nonlinear diffusion which dictates here u NN 2 .  For 

n = 3 and k = 2, dispersion and dissipation are in balance; each considered 

separately predicts that u M 2. Note that convection has not entered into 

these considarations. Its crucial role is reserved to the overall dynamics. 

z -  

3.3 Explicit solutioim. 

The difficulty to derive explicit solutions makes it necessary not to dismiss 

any approach even if of a very limited scope. In what follows we describe 

two atttempts at our problem; 

1. Factoring of Operators ; 

A.Let n = 1, CJ = a, arid k = m, then Eq.(6c) may be rewritten as(d, G 

8 )  

( 8 2  - 1)U = a(d - 1)U”. (174  

B. Let a = -1, k = o := 1, m = n, and X = 1 -+ X = -1, then Eq.(6c) 

in its defocusing version m,ay be rewritten as 

(8 - l)Um = (a - 1)U. 0 7 b )  

The presence of a common factor enables to simplify our search for solu- 

tions. For (17a) the reducead problem reads 

(i? + 1)U - aU” = Uoeq. (18) 

When UO = 0 the solutions are easily found to be kinks (a = 1) 
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Let Uo # 0. For m = 2 (18) is a Riccati equation. When put into a linear 

form it generates an unbounded solution. Though for m .f 2 no explicit 

solutions of (18) are known, the presence of the exponential part in (18), 

precludes bounded solutions for m # 2 as well. 

The operator factoring may be better seen if we note that for m = 

k and n = 1 equation (sa) may be rewritten as 

ut + A2u, + ( -A  + a,)a,[u, - vum + Au] = 0 where A = a/v. (20) 

Similarly, for m = n. and k = 1 we write 

U t  + Avu, + ( A  + 8,)8,[(um), - Aum - vu] = 0 where A2 = -a > 0. (21) 

We now move into a frame of reference free of the linear advection (i.e., 

z -+ ?J = z - At and t + T = t where X = A2 and Av , respectively). 

In the new travelling coordinates we seek a stationary solution. This yields 

exactly the previous results and clarifies their very special nature. Since 

the resulting subsystem is governed by a polynomial first order differential 

equation, for those cases that afford such a split, in general one should not 

expect oscillatory patterns. 

A more evolved operator factoring is found via 

[d+A( 1 -.)][a+ B( 1 +u)]u = u,, + (2B - A)uu, + (A+ B)u, +ABu( 1 - u2>. 

(22 )  

There are two natural choices; either A = 2B or A = -B. In the first 

case 

2 3  
U t  - 2B (U )z + u,,, = 3Buxx 

is factored into two first order pieces 

ut - 2B2u, + [a + 2B(1 - u>][a + B ( 1 f  u)]u = 0. 

11 



f 

Eliminating the linear advection via x + y = x + 2B2t, t + t ,  we find a 

kink solution: u = l/[Co ex:p(By) + 13. The second case enables to factor 

ut - QU, + a(u"), + u,,, = v(u2),, where c\! = 4v2/9 

into two parts. This case will be shown shortly to be exactly linearizable -_ - 
and thus need not to be persued'ziny further here. 

The possibility to factcr operators is a topic of a far wider applicability 

than can be treated here. Let us only note that if m = k and a = p then 

equation (5b) can be factored as 

(1 - 3,) [ (1 + a&, + pd,urn] = o 

which enables to find solutions to equation (5b) by solving the second 

order equation 

uzt + U t  + p ( U m ) z  = 0. 

2. A Direct Ansatz; the various approaches presented overlap to some 

extent but not completly. This gives some hope for something new. The idea 

explored now is simple: a change of variables introduces a degree of freedom 

which is then utilized to decompose the problem into a solvable sequence of 

simpler ones. 

Consider the KdV - Burgers case; k = n = 1,m = 2. We restore the 

integration constant P, in (6c) and use the ansatz 

u = UO + e2cwQF(eaQ). 

The choice of the poweirs in the exponent is dictated by the balance be- 

tween nonlinear advection and dispersion. Eq.(6c) now takes the form 

A0 + A2e2ffQ + A ~ e ~ ~ 7 ,  + A4e4ffs = 0. 

We solve (25a) equating each A, to zero. This leads to four equations 

which determine the parameters as follows 
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and an equation for F ;  

02F" + 25aF2 = 0. 

The solution of (25c)is given in terms of an elliptic function, but the solution 

to U 
*. 

U = Uo + s 2 F ( s ) ,  where s = exp[aq/5], 

develops unbounded oscillations as 77 + 00. A bounded solution is ob- 

tained when F degenerates into an algebraic entity; 

The solution trajectory connects Uo with Uo - Po. Since we have to 

connect the steady states, U = 0 and U = 1, we need U, = Fo = 1, which 

implies Y/X z g 2  = 25/6. Thus the speed of the kink for a given upstream- 

downstream pair is, again, limited to one definite value. 

A similar ansatz may be used in a number of other cases , say; m = k = 

2 and n = 1 or n = 1, k = 2, rn = 3. In each case a balance between the 

dominant parts dictates an ansatz of the form 

U = Uo + s F ( s ) ,  where s = eaq 

Repeating the analysis we find that the sought after bounded solutions 

are restricted to the simple kinks already presented. Of course, another 

ansatz could perhaps do the trick, but the challange to to find it remains 

unanswered. 
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4. The Distinguished Case: m = n + 2 = k + 1. 

This case will emerge as the only where a meaningful progress can be made. 

We start with 

4.1: Potent hl- Representation. 

Let p = 0,. Integrating once, Equation (5a) becomes 

(28) 
k 

0t + + [(~,>nl,, = p[(0,) 1, , a, p = consts * 

The next step is to look for an integrating factor which enables to cast 

(28) into a conserved form. Upon integration by parts, we find this to be 

possible only if m = n + 2 = k + 1, and yields 

ft + 8, {~’(0)[(Oz)nll, + af(e)(e,)”+’} = 0, (29) 

provided that the inte,grating factor f’(0) satisfies the auxiliary linear 

condition 

n 
-jf”’(O) + p f ” ( 0 )  + af’(0) = O . 
n + l  

If p 2 4- th.en f takes the form f ( 0 )  = exp(rnO), where 

(31a) 

These solutions represent an ’overdamped’ mode of propagation. In con- 

trast, if p < ,/’- 

f ( 0 )  = exp( -pnO)eos(unO) where un = \iacnf l) 

We digress to note that the purely disszpative equation (3b), begets 

et + aOF = p(ot),.  (324 
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Under the action of the integrating factor, in normalized time units, this 

equation is cast int'o 

'ut = [u('ux/v)']x . (32b)  

For k = 1, the quest for an integrating factor in (32a) (which for k = 1 is a 

potential represiiitstion of the Burgers equation), reconstructs the Hopf-Cole 

map, and Eq. (32b) reduces to the linear heat equation. For IC = 1/2 or k = 2 

using another potential function w ( 'u = w,) we have 

2 
( w , ) ~  = w,w,, and w,wt = [u?,,] ! (33)  

respectively. 

Returning to our problem one observes that in the overdamped case, the 

f - 6 relations enable to use f as a dependent variable and cast Eq.(29) into 

n = 1; 

n = 2; 

y ft = [ f I+Y(f-Y),,] 

ft = [ f x f 7 ( f - Y ) x x ] x x  where y = 1/3 + p/2r2 

where y = 1/2 + p / r ~  

etc., Clearly, the trace of dissipation is carried by y. The original variable u 

is recovered via 

(35 )  
f x  

rn f 
u =  -. 

The y as defined in (34a) has two branches 

1 * y+y- = - 
4' 

1 1 
y&=-+ 

2 -l&&Tz 
where 

6 alp'. 

(344 

(344 

Observe that a and p enter into the problem only via 6. While y as a function 

of S is continuous, with -1/2 < y- < 1/2, y+ is discontinous and unbounded 

at 6 = 0 (this corresponds to a = 0). As is clear from (34c), both branches 
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coincide at 6 = l / 2  (the upper limit of the overdamped mode), and 6 = -00- 

the purely dispersive limit. 

We note the following invariance property of Eq.(34a); 

Let f* = fP2’ and ?* == 1/47, then Eq.(34a) is invariant under f 4 f * ,  

y + *J* (and t 3 t / 2 7 ) .  Proof by substitution. 

The lemma >assures that- every solution obtained for a particular value 

of y , can be used to generate another solution via its ‘conjugate’ value -/* 

corresponding to the same 6. In the purely dispersive case y = l / 2 ,  y = y* 

and Eq.(34a) is invariant tinder f + l/f. This is the potential counterpart 

of the invariance of the mKdV, which associates with every speed X two 

solutions; u and -u. 

That y depends only cln 6, merely reflects the fact that for the distin- 

guished class, we are dealing here, defining 

yields 

VT + 6(vn+2)2 + (Vn)rrr = (21n+1)s2. ( 3 4 f )  

Thus 6 is the only relevant parameter in terms of which all properties of 

Is the representation (34) of Eq.(5a), really a simplification? Though the 

convection and dissipation parts of the original problem have been eliminated, 

their replacement is quite cumbersome. Yet, insofar as special solutions 

are concerned, equations (34a,b) offer a great advantage over the original 

Eq.(5a). Here we consider the implications of two obvious symmetries, that 

of stretchings and Galilean boosts; 

Let n = 1. The invariance of Eq.(34a) under the group of stretching 

provides similarity solutions of the form 

this class can be expressed 
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and satisfies 

If Co = 0 then in terms of 2 = Q-7 we have a linear equation 

Z,? + 7.2 = 0, 

solved via the Airy functions Ai (7) and Bi (7); 

( 3 7 4  

In terms of u we have ( I  = d/dq)  

However, due to the divergence of either Ab(7) or B,C(q) as Iq1 + m, this 

solution is unbounded. If the integration constant Co is kept, the problem 

is far more difficult. Apart of two special cases; y = -1 , which renders the 

problem linear 

-qQ = aq7) + co, (39) 

and the purely dispersive y = 1/2 case, which yields a second Painleve tran- 

scendent in terms of V = @-'I2, I cannot say much about its solution. 

The constant Co in (39) induces an additional part in the solution; 

To understand the origin of the special linear subcase (37a), let us derive 

the similarity form directly. Since m = I% + 1 = n + 2, we obtain, see sec.1, 

u = t-n+2F(< = x / t - z ) -  After one integration 
1 1 

-(<F) -1 + + ( F n y  = p ( F  n+l ) I + c1, 
n. + 2 
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where C1 is a constant. We now observe that in the overdamped case 

presently considered , equation (40a) may be factored into 

(40b) 
n t l  I 1 

n + l  
(a< + T~F)[---< + + T n ( F  ) 1 = c Z ,  

where C2 = CL- l / ( n - t  1) is another constant. If C, = 0, then Eq.(40b) 

reduces into a first order equation. For n = 1 it is a Riccati equation, which 

can be linearized via an uplift to a second order. The resulting form coincides 

with (37a). For n # 1 even the first order equation does seem to be solvable 

in an explicit form. 

* i 

4.2: A Few Special Cases 

For certain values of y, Equation (34a) takes a particularly attractive form. 

Thus when the radical in (31a) vanishes, we have a double root p / ~ 1  = -1 ( 

=+ y = -1/2), then in terms of 6 = fl our problem reads 

764t = [57Vzzlz. (414 

For future reference we record another interesting form for n = 2 and y = -1 

wxwt = wX,wx,, where f = w,. 

Perhaps the most remaxkable particular case occurs when y = -1 (thus 

6 = 4/9), for in this case ECq.(34a) reduces to the linear dispersive equa- 

t ion 

f t  + fxxx = 0. 

To recapitulate; Eq.(42) represents the DD(k = 2,m = 2,n  = 1) for 

a = 4p2/9. We turn now to exploit the linearity of Eq.(42) and consider 

kinds of waves; 

Travelling waves; depending on the direction of propagation there are 
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A. ll,.l.'aves propagating to the left. We set s = x - At and f has to be of 

the forni f = f o  + a,eos(fi,s). A one mode solution is (UO = 3 / 2 p )  

Certainly, for ._ If11 > 1 this is a nice periodic wave. However when two (or 

more) modes are involved and their speed ratio d X 1 / X 2  is not commensurate, 

periodicity is lost. Let XI = 1 and A2 = 2 and write a two mode solution as 

(44) 
U - bl sin(s) + bzfisin( f is) 

1 + blCOS(.s) + bpCOS(&S) 

- -  - 

UO 

If jblj + lb21 < 1, the solution stays bounded but the periodicity is lost. 

However if lbll + /b21 = 1 (or 2 l), things change drastically; depending 

on how closely the two periods overlap one, obtains bursts of intermittency. 

The theory of Diophante approximations assures that in an arbitrarily large 

interval, u will attain any value with a frequency inversely dependent on 

the amplitude. This means that on an open interval we should expect both 

bounded and unbounded burst (s) . 

For a periodic motion the strength of the intermittancy depends on the 

period; there is a minimal interval of periodicity in which u, with a prede- 

termined level of proximity, will attain at least once a prescribed value. 

B. Waves propagating to the right; Now f is of exponential type and can 

be used to describe interaction of kinks. However, a more interesting interac- 

tion emerges if one mixes waves moving in both directions. A simple example 

is one in which a periodic waves (traveling to the left) are superimposed on 

a kink which travels to the right (a  and /3 are arbitrary constants); 

The resulting solution is a bounded (lbol < 1) oscillating breather; the 

largest oscillations are at the center, they travel out and decay exponentially. 
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The overall solution is besi; seen in a frame moving with the kink. If s = 

z + Q2t, then the composite solution reads 

cy sinh(as) - bop sin ,B[s - (p2 + a2)t] 
, lbol 1. (46) 

- U 
- -  - 

UO cosh(a<s) + ~ O C O S ~ [ S  - (p2 + a)t] 

As can be Seen from the example in Fig.(l), the oscilatory part decays 

quickly away from the center. 

Rational solutions; In analogy with the polynomial solutions to the 

Laplace (or heat) equation, one constructs polynomial solutions P,(x) to 

Eq.(42). In terms of u, these are rational functions. We use, for instance 

X 6  

6 - 5 - 4  
&(z, t )  E -- - tx3 + 3t2 + Co, and CO = const., (474 

to construct 

x5 - 60tx2 - U 

UO p6(x, t )  ‘ 

- -  - 

This solution, which starts at t = 0 as a nice pulse 

6x5 - U 
- -  - 
UO 2 6  + 120Co’ 

develops a singularity within a finite time, t,. This singularity is due the the 

emergence of a double, bi-cubic root (for t ,  = 4- and x* = 60t,lj3) in 

PS. Since C, is a constant, the time of blow-up and its location are adjustable. 

This evolution is clearly seein in Fig.(2). A similar effect is observed for other, 

even order, polynomials, c.f.,P4 = x4-24tx+C1 ( In polynomials of odd order 

singularity is present at all times). The solution (47b)is useful to elucidate 

the emergence of a singularity. 

Remarks: 

A. The linearization ’miracle’ which occurs for a specific ratio between 

the coefficients of dissipation and dispersion,i.e., when 6 = 4/9, provides us 

with an analitical handle which otherwise is completly beyond our reach. 

Since, however, this value (of 6 has no particular physical distinction , one 
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can use the explicit fornis at  hand as an initial input, to study numerically 

the forniation of patterns for other values of 6. 

B. The forniation of a singularity in the last example, reflects the fact that 

for negative u’s the dissipation in the DD(3,1,2) equation turns into an anti- 

dissipation, which is to say that for u < 0 energy is deposited to the wave. 

This is a highly destabilizing mechanism which in the present example leads 

to a blow- up in a finite time. However, in other cases, to be discussed shortly, 

this instability will cooperate with dispersion and convection to generate 

stable, permanent, patterns. 

C .  Observe (see (34b)) that the n = 2 case does not admit a linearizable 

subcase. In fact looking at the ’reverse problem’ 

ft + L”zm = 0 

and taking u = f z / f ,  we find that u satisfies 

(49) 
4 3 2  

ut + (U4>z  + - (u3 )zz  + p )zzz + ~ z z z z  = 0. 
3 

This equation is the DD(3,4,2), but with an additional, fourth order, 

term. Its presence thus precludes the 0 0 ( 3 , 4 , 2 )  from being linearizable, at 

least in the sense that applies to the Burgers and DD(2,3,1) equations. 

D. mTe remind the reader that all the special solutions presented so far 

this section, are based on the fact that f was used as a new dependend 

variable, and are thus limited to the overdamped mode. The fact that in the 

underdamped case such representation is impossible, restricts our analysis to 

travelling waves. 

4.3: Travelling waves 

We now consider three ways of finding traveling waves in the distinguished 

case. Two are presented next and one in the Appendix. 

First approach; we reconsider ab initio the solutions of Eq.(6c) which 

now reads 
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-U + aUnf2  + ( u ~ ) ~ ~  = o(~"+l), .  

In terms of v = Uq, z = U n - b  and y = Un+l we have 

Define 5 = Luy - 1)/(n + 1) and F = z / c .  The resulting equation 

-1 + ny + n(n + 1)zZ = o(l + n)z .  

d F  C P  - 1 - 6,F2 an  
where 6 - - 

dln 6, F * - l + n  
- _ _ -  - 

may be immediately integrated to yield 

where D = 6,F2 - O F  + 1 . (52) 
In- c = - 6 , s  

CO 

Clearly, the nature of the solutions depends on the roots of D. Each of 

the three different cases yields a different solution manifold a(<, F )  which 

still has to be unfolded in terms of the original variables U and v, for the 

last integration q = JdU/v to be carried out. The program, while quite 

straightforward, is in practice too involved to be carried out even when D 

has a double root. In this case the integration of (50) yields an implicit 

expression for z 

Further unfolding yie1d.s an expression for v, which cannot be made ex- 

plicit in terms of U and thus cannot be used to determine q. For other cases 

the affairs are even more complicated. Thus even the availability of a first 

integral could not render the problem solvable explicitely. 

Second Approach; we now exploit directly the potential representation 

(29) of our problem. Each n has to be considered separately. In addition, it 

is also necessary to treat separately the overdamped and the underdamped 

cases. 

The overdamped, n==l, case ; 
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Let s = x.- A t  and R = f-l/*/, then after two integrations Eq.(34a) yields 

(Y # -1P) 

and 

(54b) 

A and E are integration constants( E plays a role of the ”total energy”). 

In terms of R we thus arrive at an equation describing a motion of a particle 

in a central field. The only trace of disipation is carried by y. Recall 

that two y’s correspond to the same 6. In fact, we can transform equation 

(54a) into an equivalent form with y* replacing y. 

Consider first the purely dispersive case; this is the defocusing, a < 0, 

variant of the rn - KdV. Now n/ = 1/2. f = 1/R2, and potential function 

P e( R)  has a shape of a double hump, if X > 0, and A < 0,  or a double well, 

if X < 0 and A > O.(see Figs.(3a) and (3b)). 

1. The double hump case; depending on whether X2/16AE < 1,= 

1, OT > 1, we have in R(s), a periodic motion, a runaway or a kink, re- 

spectively. However, since u is a logarithmic derivative of R, passing through 

the bottom of the potential implies that at R = 0 u becames unbounded un- 

less R, vanishes as well. Thus, for instance, the zero of the kink in R-units, 

is an unbounded crest of a soliton in u. 

2. the double well; for E < 0, R undergoes a periodic motion with R # 0 

consequently the motion is bounded and periodic in both R and u. When 

E = 0, R describes a soliton, with R and R, vanishing simultanously. In 

terms of u this trajectory is a kink. When E > 0 the periodic motion in R 

samples R = 0, (here R, = @), thus in u, the resulting wave is periodic, 

but unbounded. 

Let us now restore the dissipation, thus y # 1/2. 

Given the wave speed A, the freedom to choose E and A, generates a large 

variety of patterns. Seeking the bounded ones, we have to assure that R is 
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kept away from 0, which necessiates to take E < 0 and consider a negative 

potential well. Taking into account that a < 0 --+ y > 0 and a > 

0 + y < 0 ==+, when y > 0 ,  ARl’T is superquadratic, and thus controls 

the behavior of the potential at large R’s, it is then easily seen that bounded 

oscilations in u will be found for 
- -  

E c : ~ ,  A <  0, and A y >  0. 

We note the two special values of y = +1 and - 1. In the first case 

the periodic waves can be expressed in terms of ratio of elliptic functions, in 

the other, which is the exactly linearizable case, in terms of trigonometric 

functions. 

Actually, when y = l , A  > 0,  and X < 0 the resulting potential (see 

Fig.(3c)), has exactly the same form as the potential of the travelling waves 

of the KdV!. For E < 0, R never vanishes and we obtain bounded oscillations 

with periodicity expressed in terms of elliptic function. When E = 0, motion 

of R describes a soliton with u being again a nice kink. 

The fact that we obtain a self sustained oscillatory motion can, again, 

be attributed to the pecuhar form of our dissipative term, which for u < 0 

becames anti-dissipative. Thus for u > 0 the wave deposits energy to the 

medium, but for u < 0 the opposite occurs; the medium transfers energy 

to the wave! When the resulting motion is bounded and unattenuated, dis- 

sipation and energy deposition are in a detailed balance. Indeed, since R, 

changes sign at each of its crests, u takes both positive and negative values. 

This process is a continuum analog of a well known phenomenon ocurring 

in nonlinear oscillations; piimping energy into a damped motion can sustain 

oscillations, and in a nonlinear case, even induce new ones. 

n 2 2; Let s = x - At and n = 2, then after two integration Eq.(b) yields 

The form of this equtilon is quite unusual and defies a simple physical 

interpretation. When either of the integration constants E or A vanishes, 
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one can derive an a simple solitary solution. However it is easier to derive 

this solution directly from (28); an integration in a traveling frame, and 

simple rearrangments. yield 

- X f  + 2f’QS6,, + ~ f ( 0 , ) ~  = Coo. (564  

The sought-&er solution is obtained upon assuming that Co = 0. Since 

f = exp(r28) and u = Q,, equation (56a) simplifies 

-A + T2(u2)s + au3 = 0. (56b)  

Let us assume that aX > 0 and introduce u = 

This is an elementary integral which yields; 

(V - 1 ) 2  1+2v 
] + 2 f i t a n - I ( -  

+ v + 1 8 )  

(X/a)1/3V, then 

k2s. (56c) 

Note that if in (56d) dissipation is removed, the resulting defocusing 

m - KdV yields a dark soliton with a cusp at the origin. This can be seen 

from (56); now 7-2 = &,/-8a/3, and for a < 0 the solution is composed from 

two branches of the solution that join to form a cusped soliton ( a cuspon, 

see ref[4]). When dissipation is restored its impact is to distort the cusped 

solitary wave to the effect that the resulting solitary wave is asymmetric, 

see Fig.(4). Again to construct this solitary wave, we use the two branches 

of the solution (Q takes both positive and negative values, see (31a)). If 

instead dissipation, dispersion is removed, the resulting solution is a kink 

with u vanishing on the front line x j ( t ) .  Near the front, u - fi f o r  x 5 

0 (and u = 0, for x 2 0), and as required, the dissipative flux vanishes at 

this point. However, when both dissipation and dispersion are present then, 

since the dispersive flux ((u2),,) does not vanish at u = 0, this point can no 

longer serve as a front line. 
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. -  

For the solitary wave of the last example, the integration constant was 

discarded, which enabled LIS to return to the original variable u. In this 

case the long detour via the potential represent’ation was needed to deduce 

Eq.(56b). This procedure can be reapplied to other solitary structures in the 

overdamped case as follows; 

Let s = z - At, and integrate equation (29) once. Discard the. integration 

constant to obtain 

- ~ f  + f’(e)[(e,)n], + af(8s)n+1 = o 

Using f = exp(r,8) and. u = 8, we obtain 

which yields ( u = ( A / a ) A V )  

For integer n’s the last integral is known. For n = 1 and n = 3 we obtain 

kink solutions as follows 

n = 1; V = tanh(kls) (569) 

n = 3; ] - 2 tan-’ V = 4k3s 
l + v  

Note that all kinks which we have obtained so far, are monotone. Oscil- 

latory kinks will be found in the underdamped case to be considered shortly. 

Observe that the last kink has a perfectly vertical slope at the origin 

which is in the center of the sharp transit (u - sl/’)), and where dissipation 

collapses exactly. 

Unlike the n = 2 case, for odd n’s, both positive and negative a‘s are 

permitted, provided that a,\ > 0. Since 
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and k: is corresponding branch of r,+ (see (56e)). In the first case, the 

orientation of the resulting kinks is opposite, while in the second case, we 

have an unusual situation, wherein both kinks have the same orientation. 

Example of such pair of kinks is shown in Fig.(5). The various questions 

which this situation raises, must at this stage be left unanswered. 

One cannot leave the present topic without pausing to understand how a 

first order equation in u, Eq.(56e), relates to the full travelling wave equation 

( 5 0 )  (apart of a slightly different normalization). The answer is to  be found 

in the possibility to factor Eq.(50) into a product of two operators. Using 

the present notation we have 

(56 i )  

which clarifies how factorization leads to the solitary wave solution. Clearly, 

for other solutions one has to address the full equation. Note, that unlike 

the cases considered in sec.2. the present factorization does not restrict the 

solution to one: definite, speed of propagation. Similarly to the factorization 

in (40a), the factorization is limited to the overdamped mode. In the purely 

dispersive case this allows factorization only in the defocusing variant of the 

m-KdV, with r1 = =tG. 

The Underdarnped n = 1 Case; 

Now p < a, ,u1 = p and w1 = w. Since in the present case e no longer 

can replace 8 with f ,  We shall use equation (29) directly. Integration in a 

travelling frame yields 

no simplification of the kind made in (56) seem to be possible now. As it 

stands, Eq.(57) looks even more complicated then the original in ( 6 ) .  What 
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makes the difference is th.e existance of an an integrating factor; multiply 

(57) by v6, - the integrating factor is then defined via 

(f ’v)’ = 2afv. 

If R = f ’v /2 ,  then our problem may be cast into - 
. -  

<.-- 

-- X R, + (L [ R6:] , = Cgv6,. 

Integrating and solving for v and R yields 

X 
6: + R,cos(wO)e@ = - U , R, = const. (584 

Equation (58a) looks like an energy equation for a nonlinear oscillator. 

The trace of dissipation is kept in the exponential part of the potential shown 

in Fig.(G).The invariance of the problem under shifts in 6 is used to assure 

that the potential function vanishes when 8 = 7r/2 . This rescales the inte- 

gration constant (in Fig.(6) we assumed a = 1, andR, = 1). One is now left 

with one, final, integration to determine 6. 

The crucial features of the solution will be now deduced directly from 

(58a), without solving explicitely for 6. 

We consider first the im - KdV equation, now a > 0, and set p = 0 

in(58a). (+ w = 6). 

t 58b) 
x 
a 

+ R,cos(wO) = - , R, = const. 

In terms of 6, Eq.(58a) is now an energy equation for the travelling waves 

of the m - KdV. Here A l a  plays the role of the total energy of the system. 

When Ala is above the potential well (i.e., when R, < X/a),  then 6s(= u) 

never vanishes ( u always resides in one of the wells in (59)). The class of 

large oscillations in u is obtained when Ala resides within the potential well, 

i.e., X/a < R,. The transitory state wherein R, = A/a describes one kink 

solution in B which in terms of u is a one soliton solution. 

28 



Note that Eq.(5Sb) has exactly the same form as the equation describing 

the motion of a nonlinear peiidula with 8 describing the angle of deflection. 

In this description u represents the angular velocity. The soliton in u would 

then represent that particular scenario wherein the pendula starts at one 

horizontal position and, as t -+ m, approaches the other horizontal position. 

It is also useful to write the energy equation for the m - KdV in terms 

of the original variable u; 

U: - xu2 + au4/2  = E. (59) 

For X > 0 its potential has a double well, with two equilibrium points 

u = &@. It is seen from ( 5 t h )  that these equilibrium points are attained 

when 8 + -m. For E < 0. Eq.(59) has two separate bands (u > 0 

and u < 0) of travelling waves, which for E > 0 merge into a one, large 

amplitude domain. We see that the particle motion in the potential well in 

(59) corresponds in (58b) to an unconfined motion (so that 8, never vanishes) 

and vice versa. 

Returning to the dissipative problem we note that the exponential factor 

causes the potential function to oscillate with an ever increasing amplitude 

thus, irrespective of the value of the 'total energy', Ala, it has to  cut the 

potential well at a certain point, say; 8 = 8,. 

Assume first this point is not one of the crest points of the potential. 

Then starting at 8 + -a where 8, f u2 = A/a, the solution develops an 

ever growing oscillations until 8 = 8, where 8, = 0 and thus u vanishes. This 

is a turning point of the potential well in (58a) (see Fig.(G)), which means 

that now u has changed its sign, on its way back to  the equilibrium point 

at 8 = -m. In terms of u, the traveling wave is thus an oscillatory kink 

connecting the two equilibrium points; u = -@ with u = @. Using 

a mechanical analogy, the anti-dissipative nature of the diffusive part for 

negative u's, drives the 'particle' out of u = -@ in the left well, toward 

the st able equilibrium point u = + Jx/. in the right well in (59). Throughout 
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this drive the ’particle’ oscillates with an ever decreasing amplitude, around 

the final rest point at the bottom. The traveling wave thus acts as a bi-stable 

system. Three such kinks are shown in Fig.(7). The crest near 19 = 0 is at 

1.0032. In Fig.(7a), X = 0.9. In Fig.(7b), X = 1.002, placing it very close to 

the top. The resulting change in the pattern is clearly visible. Now note tha 

kink in Fig.(Sc) with X = I .0034, which is slightly ’over the top’, and allows 

the particle to cross the top and roll into the next well where it executes one 

more oscilattion and then is reflected back by the barrier of the well. This 

one extra oscillation is clearly noticible in the resulting shape of the kink. 

In the limiting case, shown in Fig.(7c), wherein X = 1.0032, to be discussed 

shortly, the uphill push is such that as s + cc the particle approaches the 

top (where u = 0), ’without having the time’ to roll to the second well. 

W e  note  that unlike the monotone kinks found in the overdamped regime, all 

kinks found here oscillate! 

The same ’energy level’ Ala which generates the kink, also enables an 

infinite number of oscillating waves, each of which resides in its own potential 

well. As can be anticipated from Fig.(6), as one moves in the right direction 

from one well to another, the well deepens and narrows. The corresponding 

amplitudes and the frequancy of these waves, increase in discrete quantas. 

VC7ith each wave having its own eigen-frequency. Two such cases are shown 

in Fig.(8a) and (8b), respectively ( using the notation in Fig.(6); one wave 

resides in valley (1) and ithe other in valley (3)). The pattern shown in 

Fig.(9a), share the same well with the one in (sa), but the ’energy level’ X 

is different. As in all other cases, the persistance of undamped oscillations is 

due to energy deposition whenever u assumes negative values. 

The exceptional case, duded before, wherein the energy line is tangent 

to  one of the crests, say at qC = uOc, necessiates that 
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where 

to be satisfied. Given R, as a measure of the initial energy of the wave, 

condition (60) is satisfied by a denumerable number of wave eigen-speeds 

A,, i = 1,2,  .. given via ~c + 2i7r. Each eigen-speed represents energy line 

tangent to a specific crest. Approaching now the crest point near 0 = 0, 

corresponds to  the tail of u -+ 0 as s -+ 00. The resulting solution is also a 

kink in u and is accompanied by a train of damped oscillations connectiong 

the upstream at u = 0 with a downstream at u = +X/a (see Fig.(Sa)). A 

countable number kinks corresponds to a countable number of eigen speeds 

in (60a). In addition to the oscillatory bands of travelling solutions residing 

each in its own well, one well, namely; the well to the right of the critical 

crest (0,) , stands out. It hosts a solitary wave in 0. In terms of u, this is 

a traveling doublet - see Fig.(9b). Using the potential double-well of the 

m - KdV, (59), we can interpret this solution as follows; a particle starting 

at the u = 0 top, rolls into the left, unstable well. Due to anti-dissipation, 

it gains energy and its return to the top of the hill at u = 0, occurs in a 

finite time. Now it rolls into the right well. Here, however, the process is 

dissipative, and the motion is such, that its return from to the top of the hill. 

will take now an infinite time. 

The underdamped cases for n > 1; Similarly to the n = 1 case, we 

obtain an expression which is completly analogous to (58a), namely; 

, R, = const. 
x + R,cos(w,B)epne = - 
a 

The main difference is between odd and even n’s. For odd n’s, say n = 

3, the analysis for n = 1, carries through, with quartic root replacing the 

quadratic root, but where for n = 1 we had a solitonic tail, the pulse has a 

sharp front, compare Fig.(7c) with Fig.(lla) In fact, even the doublet seen in 

Fig. (loa), has a compact support! In Fig.(l2) we display a typical periodic 

waves which have a weak discontinuity at u = 0. These waves are exactly 
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the n = 3 analog of Fig.($’) Similarly, the kinks in Fig.(ll) are the n = 3 

replica of Fig.(7a) and (9c:), respectively. As for n = 1, the frequency and 

the amplitude of these waves change as we move to another potential well. 

For n = 2, taking third root in (61) has a very different meaning. Because 

both positive and negative values are admitted, we can no longer interpret 

equation (61)-aS describing a motion of a particle in a central field. In 

fact all oscillations grow indefinitely. The only bounded solutions arise in 

the exceptional case when Ala is tangent to the crest. In terms of u, this 

represents a semi-infinite wave train with a sharp front. 

5.Summary 

We have seen in this work that unless the distinguished m = k + l  = n+2 case, 

is considered , very little can be said about patterns emerging from dispersive- 

dissipative interactions. Explicit solutions for particular wave speeds have 

been obtained and this is ]pretty much all that can be said in terms of the 

ensuing patterns. It is onlg in the distinguished case that a glimpse in to  the 

dispersive- dissipative interactions became possible. While the stability and 

the attraction basin of the presented patterns is yet to be determined, their 

variety is truly remarkable. Some of the permanently oscillating patterns 

emerge as a result of a global balance between dissipated and deposited 

energy. We obtain a global bi-stable dynamical system in which for negative 

u’s the system deposites energy to the wave, while for positive u’s it dissipates 

it. Without nonlinear convection and dispersion, a system with negative 

dissipation, is unstable to the point of ill posedness. It is the presence of 

these mechanisms which mitigates the unstable process and generates stable 

patterns. One expects that if at t = 0 the negative part of u is not too large, 

these bi-stable patterns will be evolutionary. Otherwise, as the example in 

Fig.( 1) clearly demonstrates, we can expect a blow-up in a finite time. 
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Appendix; Traveling Waves Via A Lagrange Map 

We define new variables via; 

y = unC1 and < = J Udq. ( 1 4  

When m = n + 2 = k + 1, then in terms of y and < equation(6c)yields 

*which is a linear equation. Define 

2n 
-7 
n + l  

u k a where A = o2 - 4an/(n + l), (W 

then the solution reads 

y = l / a  + yoeY6 cosh(v%C) when A > 0, (24 

and 

y = l / a  + yoeYCcos (m<)  when A < 0. (W.  

When A = 0 then y = l / a  + yo<eYC. In each case the solution has to  be 

reexpressed in terms of the original coordinate q, via the integral 

The present approach provides a uniform representation for all n’s, how- 

ever: inspite of its simplicity the map is limited to U’s that do not change 

sign, which considerably restricts its applicability. 
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Figure 1: A breathing k:ink in a steadily traveling frame (see Eq.(46) 
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Figure 2: Formation of a singularity within a finite time (C, = 0.1: see 

Eq. (47)). 
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Figure 4: A dark solitary wave for the overdamped n = 2 mode. Note its 

asymmetric shape (see Eq. (56d). 
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Figure 3: Types of effective potentials in the overdamped mode, that support 

bounded oscillations. In cases (a) and (b), y = 1/2, X = f l ,  and A = ~ 1 ,  

respectively. In (c); y = 1, X = -3 and A = 1.2 
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Figure 5: A kink with a sharp transient at u = 0, where the dissipation flux 

vanishes. Here n = 3, a = 1 anxi! p = 2. Note that for a > 0, two kinks , 
having the same orientation, as shown: are possible. In (a), ks = -1/2; and 

in (b): k3 = -1/6 (see Eq.(56)). 

Captions of Figures 6-12 

Figure 6.- Potential function of the underdamped traveling waves (see Eq.(58a)). 

Figure 7.- Three kinks for the n=l  case. The point of reflection of the 

kink in (7b) is very close to the crest as is evident from its shape near u = 0. 

The kink in (7c) corresponds to the limiting case wherein the 'energy line' is 

tangent to the crest and 'the particle' is never reflected. 

Figure 8.- Two travelling waves having the same speed X = 0.9 but re- 

siding in a different wells. The wave in (a) resides in well (1) and the one in 

(b) resides in well (3), see Fig.(6). 

Figure 9.- Three typical patterns as they occur in the potential well (2) 

for n = 1. The periodic wave in (a) has the same speed as the kink in (7b); 

its counterpart on the other side of the hill. Both are very close to the crest. 

The doublet in (9b) is the counterpart of the special kink in (7c). Their 

speed is tangent to the crest. 
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Figure 10.- Two kinks for n = 3. Note the sharp angle of approach near 

u = 0. The kink in (loa) and (lob) are the n = 3 counterparts of the kinks 

in (7a) and (Sc), respectevjly. 

Figure 11.- The n = 3 counterparts of the n = 1 doublet in (9b) and the 

kink in (7c). Note the sharp front of these structures. 

Figure 12.5'The n = 3 counterparts of the n = 1 travelling waves in 

Fig. (8). 
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