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On a class of operators on Oxlicz spaces
by
J. J. UHL, Jr. (Urbana, ITIL.)

Abstract. Let L% be an Orlicz space over & o-finite measure space. If X ia a Banach

n
space and £: L? —X is a linear operator, |[itlls = sup 2 llers (xE_)“ where the supremum

is taken over all meagurable simple functions f = T al 1z, {E;} disjoint and |file< 1.

Tnder fairly general assumptions on X and @ it is shown that |}i|]ls < oo if and only
it t{f) = ffgd'u, where g: Q — ¥ is measurable and the above Bochner integral exists

for all f eL"’ Clopsequently it is showu that such operators are compact. Finally, under
moderate assumptions on @, it is shown that i: L® — L® has ]|{{||}a < co if and only
if ¥'s adjoint is of finite double norm, thus providing a new characterization of Hilbert-
Schmidt operators,

1. Introduction. Let (2, X, 4} be a sigma-finite measure space,
& and ¥ be complementary Young’s functions and L°(2, X, u)(= L)
and L¥(8, Z, u){= L¥) be the corresponding Orlicz spaces of (equiva-

" lence classes of) measurable functions on £2. I* is a Banach space under

eath of the equivalent morms N, and ||, defined for feL” by Na(f)
= int{K >0: fﬁ(lf]/K yap <1} and [flle ~Sﬂp{ffgd/u geL¥ Nulg)

< 1}. If ¥ is a Banach space and ¢ is & bounded lmear operator mapping
L% into ¥, Dinculeanu has defined |||t} by

e = sup D fastlza)ly

where the supremum is taken over all measurable simple functions,
f= Z’ a; ¥,y (B} = Z disjoint, such that Ns(i <

opela.tors hag Deen the subject of some study by Dinculeanu in [1], [2],
and [3]. The purpose of this note centers around proving a Bochner
integral representation theorem  for these operators, examining their
compactness properties and 1ookmg ab their rather close rela,tlonshlp
with operators of finite double DOA[S]

1. This norm for
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2. Operators with ||[]||, < co. This section is eoncerned with opera-
tors t: L® - X where ¥ is either reflexive or is a separable dual of a Banach
space, which satisty ||{t||ls < co. Radon-Nikodym theorems for vector
nieagures will be used to obtain a Bochner integral representation for
these operators. The section will then conclude by looking ab compactness
properties of these operators. Recall that a Young’s function @ obeys
" the 4,-condition if there exixts a finite constant M such that @ (2x) < M @(x)
for all x.

THEOREM 1. Let & obey the A,-condition and let X be a Banach space
which is either reflexive or is a sepmable dual space. Then t: L® = % Rhas
NiElle << oo #f and only if there exists a strongly measurable ¢: Q — X such
that ||glleL® and t(f) = | fodu;feL®; where the integral is the Bochner

0

integral. In this case ||ltllls = | gl |le-

Proof. (Necessity) First assume u(2) < oo. Define G: X —» X
by G(E) = #{yg). Since ¢ is bounded and linear, we find that if L’),,—>E,
B,«Z, then [G(E)—GEN<I | yz— ZE“H(,, —0. Since G is clearly
finitely additive the above limit shows @ iy countably additive and a simi-
lar eomputation shows & is p-continuons. Next choose the constant ¢ > 0
such that N o(ay ) =1 and consider for any finite disjoint collection

m KL e

{En} < )‘ U En = 0. ays = 2: axEn Then «a le‘G e H = ‘12; W xlf;u H
n= =1

n=1 W=l

= 3 tCazs, ) < tlls < oo definition of |[[]|].
f=1

variation. Now since X is either reflexive or a separable dual space,

Phillips’ Radon-Nikodym Theorem [7, p. 134], or the Dunford Pettis

Theorem [4, pp. 344 —45] respectively establish the existence of a strongly
measurable g: 2 —+ X wuch that ||g||<Z' and

G(B) = [ gdu for BeX.
B

Hence & is of hounded

Next it will be shown. that fglieL¥. For this note that for any decompo-
sition. {#,} = I of Q into & finite disjoint sequende of sets if followy from
IEllle < oo and the definition of G that

i

D ] 1641 (B,) <
n=1

om o
IR_EJ: @, xm, satisties Ny (f)
of & on HeX. Now since [ |gl|du

b

m
2 ”an.i (xEn
=1

1élfe

provided f <1, where |G|(F) iy the variation

= |G{(E), BeX, one has

2 la,| f llgfldu <

fie=]1

1 1He

icm®
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for all f = 2
following equallty

1tills = sup{ [ 1£] 1g]da: 7 simple; No(f)<1}.
el
From this it follows that

litlllo = sup { [ 1F1 lgldp: Falf)<1}.

a, g, 8 above. Taking appropriate suprema yields the

A check of the definition of [|] |ll; shows then that
el = 1 ligll e

Now since Jjgl«L¥,

f Ifgldn < oo for all  feL*.

Henee t(f f fodu exists for all feL® and since It f)][ j If el dp

< |Iflsll llg] Ne, £ is bounded. But if f = Z’ o, ¥g, 15 simple, then
n=1
HL m

Zath ZanG Zanfgd.u—ffgd,u*t

n=1 =1 el

S =

But since @ obeys the A,-condition, simple functions are dense in L®%
thus #(f) = | fgdu for all feL®. This proves the necessity in the case of
]

afinite measure. The ¢-finite case can be proved using usnal techniques.
The proof of the sufficiency follows from an application of the Hilder
inequality and will be omitted. m
The second and final result of this section is
COROLLARY 2. If in addition to the hypothesis of Theorem 1, ¥ also
obeys the A,-condition, then every i: L? = X with |{|tl|ls < o 45 compact.
Proof. Let the X. valued strongly measurable funetion g satisfy
= [fedu (fel®)
0
and gl L. Choose a sequence [5, p. 117] {g,} of simple functions such
that ||g,| < 2|lg]| a. e. and limg,= g a. e. Then for any K >0 ¥(lig,— gll/K)
50 a.e Also ¥(lg,— gl/E) < ¥ (gl + g1}/ E) < P(3ligl/E) whieh is
integrable since ¥ obeys the Jp-condition. Hence for any K =0,
lim [ %(|lg,—gll/K)du = 0 by the dominated convergence theorem. From
o] .

thig it follows that Ng(llg,—gll) = 0.
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But now consider 7,: L® — X defined by 1,(f) = [ fg,du feL®. The
' Q

operators I, are bounded, and in fact are compact since their range is
contained in the span of the finite set of values of g, for each n. Moreoveyr

=]l = sup | [ flo—g3dsl < sup [If] lg— galldp < N ulllg—g.])
Ifllgpsl =4

g1

by the Holder fnequality. Hence Lim|ff—4,|| = 0 and ¢ is compact.
n

3. Operators of finite double norm. This seetion is devobed to the
connection between linear operators of finite double norm ¢: L® —» L@
and linear operators t: L® - L® with [|[t]||¢ finite. It will be shown, that
under a fairly generous hypothesis, the two classes of operators are adjoints
of each other. To this end, recall that a bounded linear operator t: L® — L%
is of finite double norm [8, p. 177] if there exists & u X w-measurable
funetion ¢: 2X 2—+ R such that

(i) the sestion g(s,-)eL” (¥ complementary to @) for almost all
§eld;

(i) the function z: @ R defined by 2(s) = |lg(s,")||w belongs to
L%, and

(iii) for each feL® and for almost all seQ

U = [Fo)gls, ) pidr).
2
In this case the double norm of ¢ iy given by .

MEN = llelle =1 g (5 le)lls-

Probably the most famous operators of finite double norm are the Hil-
bert~Schmidt operators [, p. 1009] which are precisely those opefrimtors
of finite double norm when ®(2) = |2f/2; i.e. when L® = L' = I~
Operators of finite double norm are discussed in some detail in [8]. The
following theorem characterizes operators of finite double morim.

TurOREM 3. Let @ and its complementary fumction ¥ each obey the
dy-vondition. Then o bounded linear operator ¢: I® — 1% 4g of finite double
norm if and only if ds edjoint 1*: L — L¥ sarisfies |||/} < oo. In this
case ||it]llp = W Ww. In particular if Ly = I ||lt]lle <oo of and only
if tis a Hilbert-Schmidt operator.

Proof. (Necessity) Suppose #: L®— L is of finite double norm
and that for fe1®

A6 = [Frdgls, Fluan e

icm®
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where g satisfies (i), {ii) and (iii) above. Now if he(L®)* = L¥, since &
obeys the 4;-condition, one finds

[ (57 () p@s) = [ Bis)r(s)uids)
o 12

= [hisM [#(r)gts, r)p(dr) pids)

= [10( [ i) g (s, 1) (88)) ptar),

by the Fubini Theorem. Since this holds for all kLY and for all feL?,
it follows that

T = [hs)gls rads) e

Now define the function g by g(s) = g(s, '}, s¢£. By hypothesis § (s) e L¥
for almost all sef2. Arguments entirely analogous to those of Dunford
and Pettis [4, p. 336] show that § is strongly measurable ag a vector-
valued funetion. Also by (ili) above, |g||ls<L®. Now applying [5,
III. 11. 17], one finds

hir) = fh&d,u r]  ae.
fQ

and hence by Theorem 1,
I e = 1 HgEe)le = 1R < o=

This proves the necessity.

To prove the sufficiency, suppose [||t*|[|w < co: Since, under the
current hypothesis, L* is rveflexive, Theorem 1 applies and produces
a strongly measurable L¥-valued g with || ligiwlle < oo satistying

©'(h) = [hgdu for'all heL.
2

Now in view of [56., ITT. 11. 1773, which is valid for all the Orlicz spaces
under consideration here, there exists & g X u-measurable veal valued
g on 2% Q such that

()
(b}

gi*,8) = gls)()eL” a.e
[§0, 9ulds) = [gls)puids)r) e
B 5

for all BeX of finife measure. Moreover since g yeL.?,

(e) 1 Mle = lg(HweL®
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From (2), one has that for almost all reQ2

[ £ (ry s)u(ds) = [fls)g(s)p(ds
2 2

whenever feL" is simple. %iuce simple functionq are dense in LY, it follows
that for almost all 7ef2. t* f h(s)§ (s, )

)r)

the same as those used in the necessmy show that

ff (8, 7)

for all feI®. The fact that ¢ is of finite double norm follows immediately
from (c). m

w(dr) a.e.

References

[1] N. Dinculeanu, Fector Measures, New York, 1967.

[2] — Inlegral representation of linear operation, Queen’s Papers in Pule and Applied
Mathematics, no. 10, (1967}, pp. 2-41.
[3] ~— Represenlation inlegral des operations lineaires {roumain) I, II, 8tudii Clercet.

Matb. 18, (1966), pp. 349-385, pp. 483-536.

[4] N. Duntord, and B. J. Pottis, Lincar operations on swmmable JSunctions, Trans.
Amer. Math. Boc. 47, (1940), pp. 323-302,

[5] — nnd J. T. Schwartz, Linear Operators, Now York, 1958,

[6] W.A.J Luxemburg, Buanach function spacss, Thesis, Delft, 1955,

(71 R. 8. Phillips, On weakly compact subsets of a Banach space, Amer. J, Math.
65 (1943), pp. 108-136.

[8] A. C. Zaanen, Linear dnalysis, Amsterdam, 1953.

UNIVERSITY OF ILLINOIS
URBANA, ILLINOIS

Regu par le Rédaction lo 28. 4. 1970 (208)

VY (ds)for he LY. Arguments

icm®

STUDPIA MATHEMATICA, T. XL. (1971)

On shrinking basic sequences in Banach spaces*
by

DAVID W. DEAY (Columbus), IVAN SINGER (Bucharest)
and LEONARD STERXBACH (8. Carolina)

Abstract. In § ! we prove that a Banach space ¥ with a basis {x,} contains
a subspace with a separable conjugate space if and only If {w,} admits a shrinking
block hasic sequence. Hence, a Banach space B contains a subspace with a separable
conjugate space if and only if £ contains a shrinking basic sequence. In § 2 we prove
that if & has a subspace with a scparable conjugate space, then E* (the conjugate
of B) has a quetient space with a basis. In § 3 we prove that if E has a basis, then every
shrinking basic sequence in E has a subsequence which can be extended to & basis
of B. Wo also raise some related unsolved problems.

Introduction. A sequence {x,} in a Banach space F (we shall assume,
without special mention, that dim F = co and that the sealars are real
or complex) is called a basis if E if for every reF there exists a unique

sequence of scalars {a,} such that # = ) a;z;. A sequence {2} = F is

qm=1 i
said to be & basic seguence if {z,} is & basis of its closed linear span [z,].
A sequence {z,} = K is called a block basic sequence with resgect to a se-
£y

Y By #0
i=my 3+l
(n =1,2,...), where {m,} is an increasing sequence of positive integers
and m, = 0; it is well known and easy to see that if {y,} is & hasic sequence,
then {z,} is necessarily & basic sequence. A basic sequence {z,} = K is
called shrinking, it lim|y i, 1 =0 for all xe[z,J* Say that a basie

ki3

ef el

quence {y,} < F if it is a basic sequence of the form z, =

sequence {z,} can be ertended to a basis of E if there exists a basis {z,}
of 7 and » sequence of positive integers {k,} such that z, = o (n =1, 2, ..}1

In §1 of the present paper we shall prove someresults on the existence
of shrinking basic sequences. Among other resulfs, we shall prove that
if # has a basis {z,}, then E contains a subspace @ having a separable

* The work -of the first awthor was partially supported by NSF Grant GP9037.
The second author wag on leave from the Institute of Mathematics of the Romanian
Academny of Seiences.
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