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ABSTRACT. In this study, we investigate a recently introduced class of non-parametric priors,
termed generalized Dirichlet process priors. Such priors induce (exchangeable random) partitions
that are characterized by a more elaborate clustering structure than those arising from other widely
used priors. A natural area of application of these random probability measures is represented by
species sampling problems and, in particular, prediction problems in genomics. To this end, we study
both the distribution of the number of distinct species present in a sample and the distribution of
the number of new species conditionally on an observed sample. We also provide the Bayesian Non-
parametric estimator for the number of new species in an additional sample of given size and for
the discovery probability as function of the size of the additional sample. Finally, the study of its
conditional structure is completed by the determination of the posterior distribution.

Key words: Bayesian Non–parametrics, Dirichlet process, exchangeable random partitions,
generalized gamma process, Lauricella hypergeometric function, species sampling models

1. Introduction

Let (Xn)n≥1 be a sequence of exchangeable observations defined on some probability space
(�, F, P) with values in a complete and separable metric space X equipped with the Borel
�-field X. Then, by de Finetti’s representation theorem, there exists a random probability
measure (r.p.m.) P̃ such that given P̃, a sample X1, . . . , Xn from the exchangeable sequence
is independent and identically distributed (i.i.d.) with distribution P̃. That is, for every n≥1
and any A1, . . ., An ∈X,

P(X1 ∈A1, . . ., Xn ∈An | P̃)=
n∏

i =1

P̃(Ai).

The law of the r.p.m. P̃ acts as a non-parametric prior for Bayesian inference. In this study,
we focus on r.p.m.s that are almost surely discrete and with non-atomic prior guess at the
shape P0(·) :=E[P̃(·)]. By the almost sure discreteness, we expect ties in the sample, namely
that X1, . . ., Xn contain Kn ≤ n distinct observations X ∗

1 , . . ., X ∗
Kn

with frequencies NKn =
(N1, . . ., NKn ) such that

∑Kn
j =1 Nj =n. The joint distribution of Kn and NKn :

P[{Kn = k}∩{NKn = n}]= p(n)
k (n1, . . ., nk), (1)



360 S. Favaro et al. Scand J Statist 38

provides the partition distribution, that is the probability that a sample of size n exhibits
k distinct observations with frequencies n. Such a distribution is known in the literature as
exchangeable partition probability function (EPPF; Pitman, 1995) and uniquely determines the
probability law of an exchangeable random partition. Almost sure discrete r.p.m.s and the
exchangeable random partitions they induce have always played an important role in a variety
of research areas such as population genetics, machine learning, combinatorics, excursion
theory, statistical physics and Bayesian Non-parametrics. In particular, in Bayesian Non-
parametric inference, the use of random partitions dates back to the seminal work of Lo
(1984): his approach consists of exploiting a discrete r.p.m. as a basic building block in
hierarchical mixture models. In this way, the discrete r.p.m. induces an exchangeable random
partition for the latent variables, providing an effective tool for inference on the clustering
structure of the observations. See e.g. Lo & Weng (1989), James (2002), Ishwaran & James
(2003), Lijoi et al. (2007a), Navarrete et al. (2008) and Müller & Quintana (2010b), for
extensions in various directions. Since the introduction of the Dirichlet process in Ferguson
(1973), other classes of almost surely discrete r.p.m.s have been proposed in the literature.
Among them, we mention species sampling models (Pitman, 1996), stick-breaking r.p.m.s
(Ishwaran & James, 2001), normalized random measures with independent increments (NRMI;
Regazzini et al., 2003) and Poisson–Kingman models (Pitman, 2003). Within these classes, all
specific r.p.m.s, which enjoy sufficient mathematical tractability, represent valid alternatives
to the Dirichlet process: the most notable are the two parameter Poisson–Dirichlet process
(Pitman, 1995, 1996) and the normalized generalized gamma process (James, 2002; Pitman,
2003; Lijoi et al., 2007a); both recover the normalized stable process (Kingman, 1975) and
the Dirichlet process as limiting cases and the latter also contains the normalized inverse-
Gaussian process. By close inspection of these tractable processes, one can observe that they
all generate samples X1, . . ., Xn, for n ≥ 1, which are characterized by a system of predictive
distributions of the type:

P(Xn+1 ∈· |X1, . . ., Xn)=g0(n, k)P0(·)+g1(n, k)
k∑

j =1

(nj −�)�X ∗
j
(·), (2)

where �∈ [0, 1) and g0 and g1 are suitable non-negative functions satisfying g0(n, k)+g1(n, k)×
(n−�k)=1 for any n≥1 and k ≤n. An almost surely discrete r.p.m. generating a predictive
distributions as the above is termed Gibbs-type r.p.m. The class of Gibbs-type r.p.m.s has
been recently introduced and studied by Gnedin & Pitman (2005), where also a character-
ization of its members is provided: indeed, Gibbs-type r.p.m.s are Dirichlet process mixtures
when �=0 and Poisson–Kingman models based on the stable subordinators when �∈ (0, 1)
(see theorem 12 in Gnedin & Pitman, 2005). Further investigations related to Bayesian Non-
parametrics can be found in Ho et al. (2007) and Lijoi et al. (2008c).

Recently, Bayesian Non-parametric methods have found a fertile ground of applications
in biostatistics. Interesting reviews can be found in Dunson (2010) and Müller & Quintana
(2004, 2010a). One of such recent applications concerns species sampling problems, which
gained a renewed interest due to their importance in genomics. In Lijoi et al. (2007b),
properties of samples generated by Gibbs-type r.p.m.s have been analysed. In particular, given
a sample (X1, . . ., Xn) consisting in a collection of k distinct species with labels (X ∗

1 , . . ., X ∗
k )

and frequencies n, interest is in the distributional properties of an additional sample of size m
and, especially, in the distribution of the new distinct species. In genomics, the population is
typically a cDNA library and the species are unique genes that are progressively sequenced;
see Lijoi et al. (2007a,c, 2008a) and references therein. Bayesian estimators for this and related
problems have been derived under the hypothesis that the exchangeable sequence is governed
by a Gibbs-type prior. It is to be noted that the number of distinct species in the given sample
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Kn turns out to be a sufficient statistic for prediction of the number of new distinct species
(and other interesting quantities) to be observed in a future sample (Lijoi et al., 2008b). This
implies that the information arising from the frequencies n has to be incorporated into the
parameters of the model, as, otherwise, prediction of new species would not depend at all on
n. For instance, if the species are exchangeable with a two-parameter Poisson–Dirichlet prior,
then, given a sample of size n, the (n+1)th observation is a new species with probability
(�+�k)/(�+n), where �>−� and � ∈ [0, 1). Such a probability depends on the distinct
observed species k but not on their frequencies n, whose conveyed information can be sum-
marized through the selection of � and �. In principle, one would like priors that lead to richer
predictive structures, in which the probability of sampling a new species depends explicitly
on both Kn and NKn . However, by dropping the Gibbs structure assumption, serious issues
of mathematical tractability arise.

In this study, we consider a class of r.p.m.s, which is not of Gibbs-type, and show that one
can still derive analytic expressions for the quantities of interest leading to prediction schemes
that incorporate all the sample information. In pursuing this goal, we will also highlight some
nice connections between Bayesian Non-parametrics and exchangeable random partitions on
one side and the theory of special functions on the other. Other examples of this close con-
nection can be found in Regazzini (1998), Lijoi & Regazzini (2004) and James et al. (2008)
where functionals of the Dirichlet process are considered. The specific class we consider is
represented by the generalized Dirichlet process introduced in Regazzini et al. (2003) and
further investigated in Lijoi et al. (2005). In particular, the generalized Dirichlet process is an
NRMI obtained by normalization of superposed independent gamma processes with increasing
integer-valued scale parameter and gives rise to a system of predictive distributions of the type:

P(Xn+1 ∈ · |X1, . . ., Xn)=w0(n, k, n)P0(·)+
k∑

j =1

njwj(n, k, n)�X ∗
j
(·), (3)

where the weights w0(n, k, n) and wj(n, k, n), for j =1, . . ., k, now explicitly depend on n thus
conveying the additional information provided by the frequencies n1, . . ., nk directly into the
prediction mechanism. To our knowledge, the generalized Dirichlet process represents the first
example in the literature of almost surely discrete r.p.m., which is not of Gibbs-type and still
leads to a closed-form predictive structure.

The study is structured as follows. In section 2, we recall the concept of exchangeable
random partition of Gibbs-type together with some distributional results related to samples
generated by a Gibbs-type r.p.m. In section 3, we provide distributional results related to the
prior and posterior probability distribution of discovering a certain number of new species
in a sample generated by a generalized Dirichlet process. Moreover, a characterization of the
posterior distribution is obtained. Section 4 illustrates the roles of the prior parameters and
the predictive behaviour of the generalized Dirichlet process. The Appendix contains a short
review on completely random measures (CRMs) and Bell polynomials. Proofs of the results
can be found in the Supporting Information, which may be found in the online version of
this article.

2. Gibbs-type r.p.m.s

A random partition of the set of natural numbers N is defined as a consistent sequence
� :={�n, n ≥ 1} of random elements, with �n taking values in the set of all partitions of
{1, . . ., n} into some number of disjoint blocks. Consistency implies that each �n is obtained
from �n+1 by discarding, from the latter, the integer n+1. A random partition � is exchange-

© 2010 Board of the Foundation of the Scandinavian Journal of Statistics.
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able if, for each n, the probability distribution of �n is invariant under all permutations
of {1, . . ., n}. Consider now the set Dk,n :={(n1, . . ., nk) ∈ {1, . . ., n}k :

∑k
i =1 ni =n} and let

{p(n)
k , n≥1} be a sequence of functions such that p(n)

k :Dk,n → [0, 1] satisfies the properties:

(i) p(1)
1 (1)=1;

(ii) for any (n1, . . ., nk)∈Dk,n with n≥1 and k ∈{1, . . ., n},

p(n)
k (n1, . . ., nk)=p(n)

k (n�(1), . . ., n�(k)),

where � is an arbitrary permutation of the indices (1, . . ., k);
(iii) for any (n1, . . ., nk)∈Dk,n with n≥1 and k ∈{1, . . ., n}, the following addition rule holds

true:

p(n)
k (n1, . . ., nk)=

k∑
j =1

p(n+1)
k (n1, . . ., nj +1, . . ., nk)+p(n+1)

k +1 (n1, . . ., nk , 1).

Then, p(n)
k is an EPPF (Pitman, 1995). In particular, the EPPF uniquely determines the prob-

ability law of an exchangeable random partition according to the equality:

P(�n = (A1, . . ., Ak))=p(n)
k (|A1|, . . ., |Ak |) for any n≥1 and k ≤n,

where |A| stands for the cardinality of the set A. For a comprehensive account, the reader
is referred to Pitman (2006). As already seen in (1), an exchangeable sequence of random
variable (r.v.) governed by an almost sure discrete r.p.m. always yields an EPPF, which
corresponds to the samples’ partition distribution. In the following, let

(a)n =
n∏

j =1

(a + j −1)

be the ascending factorial of a with the convention that (a)0 ≡ 1. In light of the above con-
siderations, Gibbs-type random partitions can be defined via their EPPF as follows.

Definition 1 (Gnedin & Pitman, 2005)
An exchangeable random partition � of the set of natural numbers is said to be of Gibbs form
if, for all 1≤k ≤n and for any (n1, . . ., nk) in Dk,n, the EPPF of � can be represented as

p(n)
k (n1, . . ., nk)=Vn,k

k∏
j =1

(1−�)(nj −1) (4)

for some �∈ [0, 1) and some set of non-negative real numbers {Vn,k : n≥1, 1≤k ≤n} satisfying
the recursion Vn,k =Vn+1,k +1 + (n−�k)Vn+1,k with V1,1 =1.

Recall that, according to Pitman (1996), a species sampling model is an almost surely discrete
r.p.m. P̃(·)=∑i≥1 w̃i�Yi such that the masses w̃is are independent from the locations Yis,
which are i.i.d. from a non-atomic distribution P0. Then, one can define Gibbs-type r.p.m.s
as the class of species sampling models that induce exchangeable random partitions of Gibbs-
type, i.e. the EPPF corresponding to a sample of size n generated by a Gibbs-type r.p.m. is
of the form (4). It then follows that the predictive distributions associated with a Gibbs-type
r.p.m. are of the form (2) with

g0(n, k) := Vn+1,k +1

Vn,k
g1(n, k) := Vn+1,k

Vn,k
.

Before recalling the distributional results for samples drawn from Gibbs-type priors, we
introduce some useful notation to be used throughout the study. We denote by X (1,n)

k :=

© 2010 Board of the Foundation of the Scandinavian Journal of Statistics.
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(X1, . . ., Xn) a ‘basic sample’ of size n containing k ∈{1, . . ., n} distinct species, which corres-
ponds to the typically available information. Analogously, we denote by X (2,m) :=
(Xn+1, . . ., Xn+m) the additional, unobserved, sample of size m, whose distinctive characteris-
tics have to be predicted based on X (1,n)

k . Moreover, let K (n)
m :=Kn+m −Kn be the number of

new species in X (2,m) and denote by X (2,m)
j a new m-sample featuring K (n)

m = j. By S(n, k, �),
we denote the generalized factorial coefficient, which, for any n≥1 and k =1, . . ., n and �∈R,
can be represented as

S(n, k;�)= 1
k!

k∑
j =0

(−1)j

(
k
j

)
(−j�)n

with the proviso that S(0, 0, �)=1 and S(n, 0, �)=0 for all n≥1. See Charalambides (2005)
for a review of generalized factorial coefficients. The probability distribution of the number
of distinct observations Kn in the ‘basic sample’, derived in Gnedin & Pitman (2005), corres-
ponds to

P(Kn =k)= Vn,k

�k
S(n, k, �). (5)

In Lijoi et al. (2007a), the probability distribution (5) is reinterpreted as the prior probability
distribution of the number of species to be observed in the ‘basic sample’ and represents the
starting point for the determination of the following relevant quantities:

• the probability distribution, and the expected value, of the number of new species in
the second sample conditionally on the number of species in the ‘basic sample’ X (1,n)

k ;
• the probability of discovering a new species at the (n+m+1)th draw, without actually

observing the second sample X (2,m).

Evaluating the probability in (1) is equivalent to determining P(K (n)
m = j |X (1,n)

k ) for any
j =0, 1, . . ., m and for any k =1, 2, . . ., n, which can be interpreted as the ‘posterior’ prob-
ability distribution of the number of species to be observed in a sample of size m. As shown
in Lijoi et al. (2007a), in the Gibbs case, such a distribution is given by

P(K (n)
m = j |X (1,n)

k )= Vn+m,k + j

Vn,k� j

m∑
s = j

(
m
s

)
S(s, j, �)(n−k�)(m−s). (6)

From (6) one immediately recovers E[K (n)
m |X (1,n)

k ], the Bayes estimator of K (n)
m given X (1,n)

k

under a quadratic loss function. Moreover, (6) implies that Kn is sufficient for predicting the
number of new distinct species.

The determination of the probability in (2) corresponds to estimating the probability
P(K (n+m)

1 =1 |Kn =k) without observing K (n)
m . The corresponding Bayes estimator, given in

Lijoi et al. (2007a) for Gibbs-type prior driven exchangeable sequences, is of the form:

D̂
(n:k)
m =

m∑
j =0

Vn+m+1,k + j +1

Vn,k� j

m∑
s = j

(
m
s

)
S(s, j, �)(n−k�)(m−s),

and automatically provides a solution to the important problem of determining the sample
size such that the probability of discovering a new species falls below a given threshold.

It is worth noting that the above estimators provide Bayesian Non-parametric counterparts
to frequentist non-parametric procedures, which suffer from serious drawbacks when the size
of the additional sample m is larger than the size n of the initial sample. See Lijoi et al. (2007c)
for a comparison with the popular Good–Toulmin estimator (Good & Toulmin, 1956). We
conclude this section by specializing the above formulae to the Dirichlet case. This is useful
in view of section 3 where a generalization of the Dirichlet process will be investigated.

© 2010 Board of the Foundation of the Scandinavian Journal of Statistics.
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Example 1. The Dirichlet process with parameter measure � is a Gibbs-type r.p.m. with
�=0. Setting a :=�(X), its EPPF is of the form:

p(n)
k (n1, . . ., nk)= ak

(a)n

k∏
j =1

�(nj), (7)

which represents a version of the celebrated Ewens’ sampling formula (Ewens, 1972). The
prior distribution of the number of distinct species within a sample of size n, due to Ewens
(1972) and Antoniak (1974), is obtained by letting �→0 in (5), which yields

P(Kn =k)= ak

(a)n
|s(n, k)|,

where |s(n, k)| := lim�→0 S(n, k, �)/�k stands for the signless or absolute Stirling number of
the first kind. Moreover, the ‘posterior’ distribution of the number of distinct species to be
observed in the additional sample becomes

P(K (n)
m = j |X (1,n)

k )= aj(a)n

(a)(n+m)
|s(m, j, n)| (8)

for any j =0, 1, . . ., m, where |s(m, j, n)| denotes a non-central signless Stirling number of the
first kind (see Charalambides, 2005). The following proposition provides expressions for the
species sampling estimators by greatly simplifying those obtained in Lijoi et al. (2007a).

Proposition 1
Let {Xn, n ≥ 1} be an exchangeable sequence governed by a Dirichlet process with non-atomic
parameter measure �. Then

E(K (n)
m = j |X (1,n)

k )=
m∑

i =1

a
a +n+ i −1

, (9)

D̂
(n : k)
m = a

a +n+m
. (10)

Note that (9) admits an interesting probabilistic interpretation. In fact, it can be rewritten as
a

a +n

∑m
i =1

a +n
a +n+ i−1 , which is equal to P(Xn+1 =new |X (1,n)

k )Ea +n(Km), where Ea +n(Km) is the
unconditional expected number of species in a sample of size m corresponding to a Dirichlet
process with total mass parameter a +n. Moreover, (10) is simply equal to the probability of
observing a new species given a sample of size n+m. Interestingly, (8), and consequently the
corresponding estimators in (9) and (10), solely depend on the sample size: prediction does
not depend on Kn and NKn and so all this information has to be summarized by a single
parameter a. This, which is a characterizing property of the Dirichlet process (Zabell, 1982),
represents a severe limitation for predictive purposes.

3. A class of r.p.m.s without Gibbs structure

We first recall the definition of the generalized Dirichlet process and then provide solutions
to the species sampling problems described in (1) and (2) of section 2, when the exchangeable
sequence is governed by a generalized Dirichlet process.

Let us start by defining a CRM �̃ (i.e. a random measure such that for any disjoint sets
A1, . . ., An ∈X, the r.v.s �̃ (A1), . . ., �̃ (An) are mutually independent) characterized by its Lévy
intensity:

© 2010 Board of the Foundation of the Scandinavian Journal of Statistics.
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	(ds, dx)= exp{−s}
s(1− exp{−s})

(1− exp{−
s}) ds �(dx) s ≥0, 
> 0, (11)

where � is a finite measure on X with a :=�(X) > 0. See the Appendix for the basic facts
about CRM and Lijoi & Prünster (2010) for their central role in Bayesian Non-parametrics.
The Lévy intensity (11) implies that, for any A∈X, �̃(A) is the negative logarithm transform
of a Beta d.f. with parameters (� (A), 
) and belongs to the class of generalized convolutions
of mixtures of exponential d.f.s, introduced in Bondesson (1981). Note that, if X=R+ and
�(dx)=dx, the corresponding Lévy process represents an interesting special case of the class
of subordinators with logarithmic singularity deeply investigated in von Renesse et al. (2008).

We are now in a position to recall the definition of the generalized Dirichlet process.

Definition 2 (Regazzini et al., 2003)
Given the CRM �̃ identified by (11), the generalized Dirichlet process with parameters � and 

is defined as

P̃(·) d= �̃(·)
�̃(X)

.

If 
=1, the intensity in (11) reduces to the intensity of a gamma CRM and, hence, P̃ becomes
a simple Dirichlet process. The fact that the generalized Dirichlet process, which represents a
subclass of NRMIs, is not of Gibbs-type follows immediately from Gnedin & Pitman (2005)
and Lijoi et al. (2008c): for �=0, the only Gibbs-type NRMI is the Dirichlet process, whereas
for �> 0 the only NRMIs of Gibbs-type are normalized generalized gamma processes. This
implies that the weights in the predictive distribution (3) necessarily depend, not only on n
and k, but also on all frequencies n = (n1. . ., nk) and this corresponds precisely to the general
dependence structure we are aiming at.

For various reasons in the following we always assume 
 ∈ N. From an interpretational
point of view, 
∈N allows to see �̃ as arising from the superposition of 
 independent gamma

CRMs: specifically, �̃=∑

i =1 �̃

(i)
, where �̃

(i)
is a gamma CRM with scale parameter i and

shape parameter �. Moreover, the marginal distribution is now a member of the important
class of generalized gamma convolutions due to Thorin (1977). In fact, �̃(A), for some A∈X,
is then distributed as the convolution of 
 independent r.v.s with parameters (i, �(A)), for
i =1, . . ., 
, i.e.

E[exp{−��̃(A)}]=

∏

i =1

(
i

i +�

)�(A)

�≥0.

See James et al. (2008) for an interesting account on the connections between generalized
gamma convolutions and Bayesian Non-parametrics. In terms of mathematical tractability,
it is well-known that convolutions of gamma r.v.s can be represented in terms of Lauricella
functions (Exton, 1976), which will represent the key quantities in terms of which the relevant
closed-form expressions will be provided. In the following, we also assume � to be a non-
atomic measure, which is tantamount to requiring the prior guess at the shape P0(·)=E[P̃(·)]
to be non-atomic given that P0(·)=�(·)/a.

A first treatment of the generalized Dirichlet process in this set-up was provided in Lijoi
et al. (2005), where its finite-dimensional distributions, moments and linear functionals were
studied. Moreover, its EPPF, interpretable as the joint distribution of the number of species
and their frequencies according to (1), is given by

© 2010 Board of the Foundation of the Scandinavian Journal of Statistics.
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p(n)
k (n)= (
!)aak

∏k
j =1 �(nj)



a(
a)n
F(k, n, n, a, 
) (12)

with

F(k, n, n, a, 
) :=
∑

rk

F (
−1)
D

(

a, �∗(n, rk); 
a +n;

J
−1



)
,

where the sum is over rk := (r1, . . ., rk) ∈ {1, . . ., 
}k and F (
−1)
D (·, ·; ·; ·) is the fourth form of

the Lauricella multiple hypergeometric function. The vectors appearing in the arguments of
F (
−1)

D are defined as �∗(n, rk) := (�∗
1(n, rk), . . ., �∗


−1(n, rk)) with �∗
l (n, rk) :=a +∑k

i =1 ni1{l = ri} for
l =1, . . ., 
− 1 and J
−1 := (1, . . ., 
− 1). By setting 
 =1, from (12) one recovers the Ewens’
sampling formula (7). The predictive distributions associated with P̃ are then of the form (3)
with

w0(n, k, n)= aF(k +1, n+1, n+, a, 
)
(
a +n)F(k, n, n, a, 
)

, wj(n, k, n)= F(k, n+1, n+
j , a, 
)

(
a +n)F(k, n, n, a, 
)
, (13)

where we have set n+ := (n1, . . ., nk , 1) and n+
i := (n1, . . ., ni +1, . . ., nk) for i =1, . . ., k.

Before proceeding, a comparison of the predictive structures of Gibbs-type r.p.m.s and the
generalized Dirichlet process is in order. In the Gibbs case, the predictive distributions (2) are
a linear combination of the prior guess P0 and a weighted empirical distribution. So Xn+1 is
new with probability g0(n, k), whereas it coincides with X ∗

j with probability g1(n, k)(nj −�),
for j =1, . . ., k. The predictive distributions associated with a generalized Dirichlet process are
characterized by a more elaborate structure, which exploits all available information in the
sample X1, . . ., Xn: they are still a linear combination of the prior guess P0 and a weighted
empirical distribution, but now Xn+1 is new with probability w0(n, k, n) and coincides with
X ∗

j with probability njwj(n, k, n), for j =1, . . ., k. Therefore, from (13), we observe that both
the weight assigned to each X ∗

j and the weight assigned to a new observation depend on the
number of distinct observations k as well as on their frequencies n. Moreover, the balance
between new and old observations depends on k and n. To the authors knowledge, it is the
only r.p.m. not of Gibbs-type, which admits closed-form expressions for the EPPF and the
predictive distributions. Hence, it is definitely worth looking for a solution to the problems
(1) and (2) described in section 2 in the generalized Dirichlet process case.

The first aim is to derive the distribution of the number of distinct species Kn, which would
represent the analogue in the generalized Dirichlet case of (5) for Gibbs-type r.p.m.s. To this
end, we resort to the definition of the (n, k)th partial Bell polynomial associated with a non-
negative sequence of real numbers w• :={wi , i ≥ 0}. A brief account on partial Bell poly-
nomials is given in the Appendix.

Proposition 2
Let {Xn, n ≥ 1} be an exchangeable sequence governed by a generalized Dirichlet process with
non-atomic parameter measure � and parameter 
∈N. Then

P(Kn =k)= ((
)!)a ak



a�(n)

∫ 1

0

z
a−1(1− z)n−1∏
−1
l =1(1− zl/
)a

Bn,k(w•(z, 
)) dz, (14)

where by convention
∏0

l =1(1−zl/
)a =1 and Bn,k(w•(z, 
)) is the (n, k)th partial Bell polynomial
with w•(z, 
) :={wi(z, 
), i ≥1} such that
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wi(z, 
)= (i −1)!

(

−1∑
l =1

(1− zl/
)−i +1

)
(15)

with the proviso
∑0

l =1(
− zl)−i =0.

As for the evaluation of (14), it is important to remark that, for fixed n and k, Bn,k(w•) is
a polynomial of degree n in the variable (1− zi/
)−1, for i =1, . . ., 
−1, with a particular set
of coefficients specified according to the coefficients of the (n, k)th partial Bell polynomial
Bn,k(w•). Therefore, (14) can be easily evaluated using the generalized Picard integral repre-
sentation of the fourth-type Lauricella multiple hypergeometric function F (
−1)

D . For instance,
if 
=2, F (1)

D corresponds to the Gauss hypergeometric function 2F1 (see Exton, 1976) and
(14) reduces to a weighted linear combination of Gauss hypergeometric functions.

Now, we provide a solution to the species sampling problem (1) described in section 2.

Proposition 3
Let {Xn, n ≥ 1} be an exchangeable sequence governed by a generalized Dirichlet process with
non-atomic parameter measure � and parameter 
∈N. Then

P(K (n)
m = j |X (1,n)

k )= a j(
a)n

�(n+m)F(k, n, n, a, 
)

m∑
s = j

(
m
s

)
(n)(m−s)

×
∑

rk

∫ 1

0

z
a−1(1− z)n+m−1Bs, j(w•(z, 
))F (k−1)
D (−(m− s), nk−1; n; W)∏
−1

l =1(1− zl/
)a +∑k
i =1 ni 1{l = ri } + (m−s)1{l = rk}

dz, (16)

where nk−1 = (n1, . . ., nk−1) and W = (wk − w1/wk , . . ., wk − wk−1/wk) with wi =
∏
−1

l =1(1 −
zl/
)−1{l = ri } .

It is important to remark that, for the generalized Dirichlet process, the conditional distri-
bution of the number of new distinct species exhibits the desired dependence on both Kn

and NKn . This is in contrast to Gibbs-type r.p.m.s, where we have dependence solely on Kn

and not even on Kn in the Dirichlet case. Hence, although the distribution in (16) is quite
complicated, such a property makes the generalized Dirichlet process appealing for practical
purposes. Moreover, having (16) at hand, the computation of the Bayes estimate of K (n)

m , given
the basic sample X (1,n)

k , namely E[K (n)
m |X (1,n)

k ], is straightforward.
With reference to problem (2), we now derive a Bayesian estimator of the probability of

discovering a new species at the (n+m+1)th draw, given an initial observed sample of size
n with k distinct species and frequencies n and without observing the intermediate sample of
size m. The next result provides a solution to this problem.

Proposition 4
Let {Xn, n ≥ 1} be an exchangeable sequence governed by a generalized Dirichlet process with
non-atomic parameter measure � and parameter 
∈N. Then, the Bayes estimate, with respect to
a squared loss function, of the probability of observing a new species at the (n+m+1)th draw,
conditional on an initial sample of size n with k distinct species and frequencies n, is given by

D̂
n : k:n
m =

m∑
j =0

a j +1(
a +n)−1(
a)n(
a)n+m+1

F(k, n, n, a, 
)�(n+m+1)(
a)n+m

m∑
s = j

(
m
s

)
(n)(m−s)

×
∑
rk +1

∫ 1

0

z
a−1(1− z)n+m−1Bs, j(w•(z, 
))F (k−1)
D (−(m− s), nk−1; n; W)∏
−1

l =1(1− zl/
)a +∑k +1
i =1 (ni 1{i≤k} +1{i > k})+ (m−s)1{l = rk}

dz, (17)
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where nk−1 = (n1, . . ., nk−1) and W = (wk − w1/wk , . . ., wk − wk−1/wk) with wi =
∏
−1

l =1(1 −
zl/
)−1{l = ri } .

The Bayes estimator in (17), together with E[K (n)
m | (Kn, NKn )], represent new Bayesian counter-

parts to the celebrated Good–Toulmin estimator (Good & Toulmin, 1956) and represent
alternatives to Bayesian estimators derived from Gibbs-type r.p.m.s (Lijoi et al., 2007a,
2008b). With respect to the latter, these estimators have the advantage of incorporating all
the information conveyed by the sample at the cost of a higher computational complexity.

In order to complete the description of the conditional structure of generalized Dirichlet
processes, we now derive the posterior distribution that is the conditional distribution of P̃
given a sample X = (X1, . . . , Xn) featuring Kn distinct observations, denoted by (X ∗

1 , . . . , X ∗
Kn

),
with frequencies NKn . We will use the symbol Z(W ) to denote a random element whose
distribution coincides with a regular conditional distribution of Z, given W. By adapting
the general results for NRMIs of James et al. (2009), in the next proposition we provide the
desired posterior characterization of both the unnormalized CRM �̃ with intensity (11) and
the generalized Dirichlet process P̃(·)= �̃(·)/�̃(X).

Proposition 5
Let P̃ be a generalized Dirichlet process with non-atomic parameter measure � and parameter

∈N. Then, the distribution of �̃, given the observations X and suitable latent variable Un (see
20), coincides with

�̃(Un ,X) d= �̃(Un) +
Kn∑

j =1

J (Un ,X)
i �X ∗

j
,

where
(i) �̃(Un) is a CRM with intensity measure

	(Un)(dx, dv)=

∑

l =1

exp{−v(l +Un)}
v

dv�(dx); (18)

(ii) X ∗
j are fixed points of discontinuity, for j =1, . . ., Kn, and the J (Un ,X)

j s are the correspond-
ing jumps that are absolutely continuous w.r.t. to the Lebesgue measure with density

f
J (Un ,X)

j
(v)∝ vni−1


∑
l =1

exp{−v(l +Un)} j =1, . . ., Kn; (19)

(iii) the jumps J (Un ,X)
j , for j =1, . . ., Kn, are mutually independent and independent from �̃

(Un)
.

Moreover, the latent variable Un, given X, is absolutely continuous w.r.t. the Lebesgue measure
with density

f
U (X)

n
(u)∝un−1


∏
l =1

(l +u)−a
Kn∏

j =1

�(nj)(�(nj , 1+u)− �(nj , 1+ 
+u)), (20)

where �(x, y) stands for the generalized Riemann Zeta function (or Hurwitz function) with
parameters x and y.

Finally, the posterior distribution of P̃, given X and Un, is again an NRMI (with fixed points
of discontinuity) and coincides in distribution with

w
�̃(Un)

�̃(Un)(X)
+ (1−w)

∑Kn
j =1 J (Un ,X)

j �
X ∗

j∑Kn
j =1 J (Un ,X)

j

, (21)

where w= �̃(Un)(X)[�̃(Un)(X)+∑Kn
j =1 J (Un ,X)

j ]−1.
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The previous result completes the theoretical analysis of the conditional structure induced by
generalized Dirichlet processes and is also useful for practical purposes. Indeed, large values
of the parameter 
 combined with large additional samples m make the numerical computa-
tion of the distributions and estimators derived in propositions 3 and 4 cumbersome. If this
is the case, then one can devise a simulation algorithm relying on the posterior characteriza-
tion of proposition 5. By combining an inverse Lévy measure algorithm, such as the
Ferguson–Klass method (see Ferguson & Klass, 1972; Walker & Damien, 2000), for simu-
lating trajectories of �̃(Un) with a Metropolis–Hastings step for drawing samples from U X

n ,
one easily obtains realizations of the posterior distribution of the generalized Dirichlet process.
Then one can sample a new value Xn+1, update the posterior according to proposition 5 and
sample a realization of the posterior given (X, Xn+1). Proceeding along these lines up to step
m, one obtains a realization of the additional sample Xn+1, . . ., Xn+m. By repeating the proce-
dure N times, one obtains a collection of future scenarios {(X (i)

n+1, . . ., X (i)
n+m) : i =1, . . ., N}, which

can be used in order to evaluate the quantities of interest. For instance, if j(i) is the number of
new distinct species observed in X (i)

n+1, . . ., X (i)
n+m, E[K (n)

m |Kn] can be evaluated as 1/N
∑N

i =1 j(i)
m .

Finally note that proposition 5 is also important in the context of mixture modelling,
where inference is necessarily simulation-based given the complexity of the models: in fact,
it allows to derive conditional sampling schemes, which, in the case of the generalized
Dirichlet process, are simpler to implement than algorithms based on the marginal or predictive
distributions.

4. Illustration

In this section, we illustrate the behaviour of the generalized Dirichlet process. We start by
considering the role of the parameters (a, 
) in terms of prior specification. Then, we show
how predictions based on the generalized Dirichlet process adapt to the information conveyed
by the data, whereas those derived from the Dirichlet process are not sensitive to it.

With reference to the prior specification of the generalized Dirichlet process, we focus on
the qualitative behaviour of the distribution of Kn in (14) as the parameters (a, 
) vary. The
parameter a has the same role as in the Dirichlet case in that it controls the location of the
distribution of Kn: by increasing a (with 
 fixed), the distribution of Kn moves to the right
and, consequently, the a priori expected number of species becomes larger. On the contrary,
the parameter 
 allows to tune the flatness of the distribution of Kn: indeed, by increasing

 (with a fixed), the distribution of Kn becomes more flat and obviously moves also to the
right. Hence, in some sense, one can say that a large value of 
 yields a less informative prior
for Kn. This role of 
 is illustrated in Fig. 1, where, for a =1 and with n=30, the distributions
of Kn are depicted as 
 varies (see also Fig. 2).

In order to highlight the posterior behaviour of the generalized Dirichlet process, suppose
one is considering the following experiment: a dataset of n observations is going to be col-
lected and, based on the available prior information, a certain number of distinct observations
within these data are expected. Once n observations are collected and the number of distinct
ones Kn =k recorded, a prediction on the number of new distinct observations within another
dataset of m observations has to be provided. Let us assume that the number of observations
to be collected at the first stage is n=30 and that the prior guess on the number of distinct
ones is its central value 15, i.e. we need to consider a prior specification such that E[K30]=15.
For the Dirichlet process this is achieved by imposing a =11.26, whereas for the generalized
Dirichlet process with parameter 
=5, 10, 15 one needs to set a =2.61, 1.45, 1.04, respectively.
Figure 2 displays the prior distribution of K30 corresponding to the four considered
processes.
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Fig. 1. Distributions of K30 corresponding to the Dirichlet process and the three choices of the gener-
alized Dirichlet process with parameters a =1 and 
=5, 10, 15, respectively.
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Fig. 2. Distributions of K30 corresponding to the Dirichlet process and the three choices of the gener-
alized Dirichlet process such that E[K30]=15.

For facing the prediction problem at issue, we have to make some assumptions on the
observed sample of size n=30, namely on the number of distinct observed species K30 and on
their frequencies N1, . . ., NK30 . For illustrative purposes, it seems best to consider the two ex-
treme cases that are given by: (i) all species are distinct, i.e. K30 =30 implying N1 = · · ·=N30 =1;
(ii) only one species has been observed, i.e. K30 =1 implying N1 =30. A first interesting quan-
tity to look at is given by the sample coverage, i.e. the proportion of distinct species repre-
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Table 1 Estimated sample coverage Ĉ and posterior expected number of species
E [K (30)

30 |X (1,n)
k ] for the Dirichlet process and the three choices of generalized

Dirichlet process corresponding to basic samples given by K30 =30 [case (i)]
and K30 =1 [case (ii)], respectively

Case (i) Case (ii)

m=n=30 Ĉ E[K (30)
30 |X (1,n)

k ] Ĉ E[K (30)
30 |X (1,n)

k ]

Dir(a =11.26) 0.727 6.211 0.727 6.211
GD(a =2.61, 
=5) 0.702 6.831 0.760 5.703
GD(a =1.45, 
=10) 0.683 7.309 0.781 5.343
GD(a =1.04, 
=15) 0.669 7.688 0.795 5.100

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5 30.0

0.025

0.050

0.075

0.100

0.125

0.150

0.175

A

B

pr
 (K

(3
0)

30
=

k
|K

30
=

 3
0)

pr
 (K

(3
0)

30
=

k
|K

30
=

 1
)

k

Dir (a = 11.26)
GD (a = 2.61, γ = 5)
GD (a = 1.45, γ = 10)
GD (a = 1.04, γ = 15)

Dir (a = 11.26)
GD (a = 2.61, γ = 5)
GD (a = 1.45, γ = 10)
GD (a = 1.04, γ = 15)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5 30.0

0.025

0.050

0.075

0.100

0.125

0.150

0.175

k

Fig. 3. Distributions of K (30)
30 corresponding to the Dirichlet process and the three choices of generalized

Dirichlet process conditional on K30 =30 and K30 =1, respectively.
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sented in the observed sample, which in a Bayesian non-parametric framework coincides with
Ĉ =P(Xn+1 =already observed species |X1, . . ., Xn). See Lijoi et al. (2007c) for a discussion.
In the Dirichlet case such an estimate depends on the observed sample only through its size:
consequently, the estimated coverage is 0.727 for both cases (i) and (ii). In contrast, for the
generalized Dirichlet process, such an estimate heavily depends on the observed sample and
is lower for case (i) and higher for case (ii). This is in agreement with intuition which would
suggest that observation of many distinct species implies that there are many more unob-
served ones. Table 1 displays the estimates corresponding to the different choices of para-
meters mentioned above and for both cases (i) and (ii).

Turning attention to prediction, and still considering the same parameter specifications and
the two extreme cases (i) and (ii) outlined before, suppose one is interested in predicting the
number of new distinct species to be observed in an additional sample of size m=30. Clearly
the Dirichlet process does not distinguish between the two cases (i) and (ii), whereas the
generalized Dirichlet process does. Table 1 reports the corresponding estimates. Fig. 3 dis-
plays the posterior distributions of the number of new species given the observed samples (i)
and (ii), i.e. K (30)

30 |K30 =1, N1 =30 and K (30)
30 |K30 =30, N1 =1, . . ., N30 =1. It is apparent how

the generalized Dirichlet process nicely adapts to the information conveyed by the data by
shifting either to the left or to the right of the distribution corresponding to the Dirichlet case.
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Appendix

Completely random measures

Denote by (M, M ) the space of finite measures on (X, X ) equipped with the corresponding
Borel �-algebra. Let �̃ be a random element defined on (�, F, P) and taking values in (M, M )
such that, for any A1, . . ., An in X, with Ai ∩Aj =Ø for any i 
= j, the r.v.s �̃(A1), . . ., �̃(An) are
mutually independent. Then �̃ is a completely random measure (CRM). CRMs can always be
represented as linear functionals of a Poisson random measure and, therefore, �̃ is charac-
terized by the Lévy–Khintchine representation:

E [e−∫
X f (x)�̃(dx)]= exp

{
−
∫

R+×X

[1− e−sf (x)]	(ds, dx)
}

,

where f : X → R is a measurable function such that
∫ |f |d�̃<∞ a.s. and 	, which uniquely

determines �̃, is the intensity measure of the underlying Poisson random measure. See
Kingman (1993) for an exhaustive account on CRMs. If �̃ is defined on X=R, one can also
consider the càdlàg random distribution function induced by �̃, namely {�̃((−∞, x]) : x ∈R}.

Such a random function defines an increasing additive process, that is a process with positive
independent increments.

Bell polynomials

The partition polynomials, introduced by Bell (1927), are multivariable polynomials that are
defined by a sum extended over all partitions of their index. Partition polynomials have found
many applications in combinatorics, probability theory and statistics, as well as in number
theory. A particular type of partition polynomials are the so-called Bell polynomials (see
Comtet, 1974).

Definition 2
Let w• :={wi , i ≥ 1} be a sequence of real numbers. Then the (n, k)th partial Bell polynomial
Bn,k(w•) is defined by the expansion:
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exp{xw(t)}=
+∞∑
n=0

+∞∑
k =0

Bn,k(w•)xk tn

n!
,

where w(t) is the exponential generating function of the sequence w• and w0 =w(0)=0.

From definition 2 it is possible to isolate Bn,k(w•) by differentiating the appropriate number
of times and then setting x = t =0, i.e.

Bn,k(w•)= ∂n

∂tn

1
k!

∂k

∂xk
exp{xw(t)}|x =0, t =0

for all n≥0 and k ≥0. This shows that Bn,k(w•) corresponds to the nth Taylor coefficient of
(1/k!)wk(t) or wk(t)/k!=∑+∞

n=0 Bn,k(w•)tn/n!. By setting k =0, one gets B0,0 =1 and Bn,0 =0
for n≥1, whereas for k =1 one has Bn,1 =wn for all n≥0. Also, since w0 =0, one has

1
k!

wk(t)= 1
k!

(
w1t +w2

t2

2!
+ · · ·

)k

=wk
1

tk

k!
+ · · · (22)

so that Bn,k(w•)=0 whenever k > n and Bn,n(w•)=wn
1 for all n ≥ 0. By expanding (22) and

examining the coefficient of tn/n!, one obtains the following explicit expression for Bn,k(w•)

Bn,k(w•)=
∑

i1, i2, ...≥0
i1 + i2 +···=k

i1 +2i2 +3i3 +···=n

n!
i1!i2! · · · (1!)i1 (2!)i2 · · ·w

i1
1 w

i2
2 · · · .

Note that, if the variable ws occurs in Bn,k(w•), then the summation conditions imply that,
for some i1 ≥ 0, i2 ≥ 0, . . ., is ≥ 1, . . ., we have s − 1 ≤ i2 +2i3 + · · ·+ (s − 1)is + · · ·=n − k, giv-
ing s ≤ n − k. Moreover, Bn,k(w•) is homogeneous of degree k and it can be shown by a
combinatorial argument that all of the coefficients are actually integers.

Definition 3
Let w• :={wi , i ≥ 1} be a sequence of real numbers. Then the Bell polynomial Bn(x, w•) is a
polynomial in x defined by

Bn(x, w•)=
n∑

k =0

xkBn,k(w•).

A combinatorial lemma

Here we recall a generalization of the well-known multivariate Chu–Vandermonde convolu-
tion formula (see Charalambides, 2005) derived in Favaro et al. (2009), which is of great help
in proving propositions 3 and 4. Recall that Dk,n ={(n1, . . ., nk)∈{1, . . ., n}k :

∑k
i =1 ni =n} and

define D(0)
k,n ={(n1, . . ., nk)∈{0, . . ., n}k :

∑k
i =1 ni =n}.

Lemma 1 (Favaro et al., 2009)
For any r ≥1, k ≥1 and ai > 0, with i =1, . . .k,

∑
(r1, ...,rk )∈D(0)

k,r

(
r

r1, . . ., rk

) k∏
i =1

wri
i (ai)(ni + ri−1)

=wr
k

(
n+

k∑
i =1

ai −k

)
r

k∏
i =1

(ai)ni−1F (k−1)
D

(
−r, a; n+

k∑
i =1

ai −k; W

)
,
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where (n1, . . ., nk) ∈ Dk,n, wi ∈ R+ for i =1, . . ., k, a := (n1 +a1 − 1, . . ., nk−1 − ak−1 − 1) and
W := (wk −w1/wk , . . ., wk −wk−1/wk).

Note that the usual Chu–Vandermonde formula is recovered by setting wi =1 and ai =1,
for i =1, . . ., k. Given the importance of this result to our purposes, we also provide a new
proof in the Supporting Information, which is based on probabilistic arguments, instead of
relying on the theory of special functions and inductive reasoning as in Favaro et al. (2009).
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