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Abstract

The well-known first-order nonlinear difference equation

yn+1 = 2yn – xy
2
n , n ∈ N0,

naturally appeared in the problem of computing the reciprocal value of a given
nonzero real number x. One of the interesting features of the difference equation is
that it is solvable in closed form. We show that there is a class of theoretically solvable
higher-order nonlinear difference equations that include the equation. We also show
that some of these equations are also practically solvable.
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1 Introduction

Here we use the following standard notation:N,Z,R, andC are the sets of natural, integer,

real, and complex numbers, respectively, and N0 = N ∪ {0}. If p,q ∈ Z, p ≤ q, then we use

the notation r = p,q instead of writing p≤ r ≤ q, r ∈ Z.

In [10, p. 100], it is explained how themethod of iteration can be used for approximating

the values of a given function. Namely, if f is a continuous function, then it is supposed to

compute

y = f (x) (1)

for a given value of variable x.

To compute the value of f (x), it is suggested that relation (1) is written in an implicit

form F(x, y) = 0. An obvious way of writing relation (1) in an implicit form is by choosing

F(x, y) = y – f (x) (or F(x, y) = f (x) – y; for solving the equation, both choices are the same).

However, depending on someproperties of the function f , someother functions F(x, y) can

be also chosen. For example, if f is invertible, then we can choose F(x, y) = x– f –1(y). If the
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range of f does not contain the zero value, then, for example, we can also take F(x, y) =
1

f (x)
– 1

y
, and so on. So, F(x, y) can be chosen in various ways, and the choice depends on its

usefulness in solving the problem of computation of f (x). Two concrete examples of some

suitable choices of function F(x, y) are given below.

Such a chosen function F(x, y) is a function of two variables, and the given x in relation

(1) (a fixed number therein) belongs to the domain of definition of the function.

Assume that the functions F(x, y) and F ′
y(x, y) are continuous and F ′

y(x, y) �= 0. Let yn be

an approximation of y. Then by the Langrage mean-value theorem we have

F(x, yn) = F(x, yn) – F(x, y) = (yn – y)F ′
y(x, ŷn),

where ŷn is a point between yn and y, and, consequently,

y = yn –
F(x, yn)

F ′
y(x, ŷn)

. (2)

It is natural to assume that yn ≈ ŷn, so for computing f (x), from (2) we obtain the following

recursive relation:

yn+1 = yn –
F(x, yn)

F ′
y(x, yn)

, n ∈N0. (3)

This is the Newton method, applied to F as a function of y (here x is fixed).

Three nice examples for application of this method are given in [10]. Two of them are

interesting for the present investigation. Hence we describe some relevant details.

The first example refers to computing reciprocals, that is, in this case, we have f (x) = 1
x
.

Hence, for a given x, relation (1) becomes y = 1
x
.

To calculate it, choose the function F(x, y) = x – 1
y
. It is supposed to find y for a given

x such that F(x, y) = 0. Since F ′
y(x, y) =

1
y2
, after some simple calculations, the recursive

relation (3) becomes

yn+1 = yn(2 – xyn), n ∈N0. (4)

The recursive relation (4) appears in many problem books. For example, it is Problem

639.1 in the well-known problem book [9]. The reader might have seen it in the litera-

ture, but probably many are not aware of the above procedure, which leads to getting the

relation. The problem in [9] is the following:

Problem 1 Let x > 0, and let (yn)n∈N0 satisfy (4). Show that if min{y0, y1} > 0, then yn con-

verges, and

lim
n→+∞

yn =
1

x
.

The problem is relatively simple and can be solved in several elementaryways. Somenice

analyses related to the convergence of the sequence yn are given in [10]. It is interesting

that (4) is a difference equation solvable in closed form.
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The hint given in [9] suggests consideration of the sequence 1
x
– yn. From (4) we have

1

x
– yn+1 =

1

x
– 2yn + xy2n, n ∈N0,

and, consequently,

1 – xyn+1 = (1 – xyn)
2, n ∈N0. (5)

From (5) we easily obtain

1 – xyn = (1 – xy0)
2n , n ∈N0,

from which it follows that

yn =
1 – (1 – xy0)

2n

x
, n ∈N0. (6)

Formula (6) is a closed-form formula for general solution to equation (4) in the case x �= 0.

The case x = 0 is very simple, since in this case, (4) defines a geometric progression with

quotient equal to two, and hence yn = 2ny0, n ∈ N0. However, from the practical point of

view, this case is not interesting, since for x = 0, the function 1
x
is not defined. By using

formula (6) the long-term behavior of solutions to equation (6) can be easily described.

The second example in [10] refers to computing the square roots of positive numbers.

This means that f (x) =
√
x in (1). Further, the following function is chosen F(x, y) = y2 – x.

Hence, in this case, equation (3) becomes

yn+1 = yn –
y2n – x

2yn
=
1

2

(
yn +

x

yn

)
, n ∈N0. (7)

It is interesting that equation (7) is also solvable. Namely, we have

yn+1 ±
√
x =

(yn ±
√
x)2

2yn
, n ∈N0,

from which it follows that

yn+1 +
√
x

yn+1 –
√
x
=

(
yn +

√
x

yn –
√
x

)2

, n ∈N0,

and, consequently,

yn +
√
x

yn –
√
x
=

(
y0 +

√
x

y0 –
√
x

)2n

, n ∈N0. (8)

From (8) we obtain

yn =
√
x
( y0+

√
x

y0–
√
x
)2

n
+ 1

(
y0+

√
x

y0–
√
x
)2

n
– 1

, n ∈ N0.
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Nowwe know that equation (7) is a particular case of a wider class of solvable nonlinear

difference equations (see, e.g., [39] and the related references therein).

Solvable difference equations have attracted attention of researchers in the eighteenth

and nineteenth centuries. Classical books on difference equations and related topics such

as [4, 5, 7, 8, 11, 13–17, 21–25] contain some information on the topic (see also the original

sources [3, 6, 18–20]). In the last two decades, there has been some renewed interest in

the topic (the reader can consult, e.g., [2, 26–42] and the related references therein).

Bearing in mind the above-mentioned facts related to equations (4) and (7), as well as

some of our recent investigations on solvability of difference equations and systems, the

following natural question arises.

Question 1 Is equation (4) also a particular case of a class of higher-order nonlinear dif-

ference equations solvable in closed form?

Here we give a positive answer to the question.We show that there is a class of theoreti-

cally solvable nonlinear difference equations that includes equation (4).We also show that

some of them are practically solvable, presenting closed-form formulas for their general

solutions.

Recall that we regard a difference equation as theoretically solvable if we know a form

of its general solution, but some of the quantities appearing in the form of the general

solution cannot be found in some suitable forms. For example, the homogeneous linear

difference equations with constant coefficients

yn+k – ak–1yn+k–1 – · · · – a1yn+1 – a0yn = 0, n ∈N0, (9)

where k ∈N, aj ∈C, j = 0,k – 1, are theoretically solvable, but some of them are not prac-

tically solvable, since the roots of the associated characteristic polynomials cannot be al-

ways found by radicals [1]. The roots can be always found by radicals if the degree of the

polynomials is less than or equal to four [12].

2 Main results

In this section, we present our main results. First, we quote the following auxiliary result,

which is employed for several times in the proofs of some of the main results [38].

Lemma 1 Let m ∈N, l ∈ Z, aj ∈R, j = 1,m – 1, a0 ∈R \ {0},

Rm(s) = sm – am–1s
m–1 – · · · – a1s – a0,

Rm(sk) = 0, k = 1,m, sk �= sj, k �= j, and let (zn)n≥l–m be the solution to the difference equation

zn = am–1zn–1 + · · · + a1zn–m+1 + a0zn–m

for n≥ l such that zj–m = 0, j = l, l +m – 2, zl–1 = 1. Then

zn =

m∑

k=1

sn+m–l
k

R′
m(sk)

, n≥ l –m.
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Here we consider the higher-order nonlinear difference equation

yn+k = yn+l + yn + ayn+lyn, n ∈N0, (10)

where k ∈N, l ∈N0, l < k, a ∈C, and yj ∈C, j = 0,k – 1.

First note that there are two cases to be considered. The case when a = 0, and the case

when a �= 0.

Case a = 0. For a = 0, equation (10) becomes the following particular case of equation

(9):

yn+k = yn+l + yn, n ∈ N0. (11)

The equation is well known and appears from time to time in the literature. For example,

it has appeared recently in [35].

The characteristic polynomial associated with equation (11) is

Pk(s) = sk – sl – 1, (12)

and it can be certainly solved by radicals when k ≤ 4. From this by a well-known theorem

on the formof general solutions to homogeneous linear difference equationswith constant

coefficients [4, 13, 14, 21, 22, 24, 25] it follows that equation (11) is practically solvable in

this case. By the Abel–Ruffini theorem [1] the roots of a polynomial of degree strictly

greater than four cannot be always found by radicals. Hence some of the polynomials in

(12) for k > 5 could be of this type.

Case a �= 0. Since a �= 0, we can multiply both sides of equation (10) by a. Then adding

the unity to both sides of the obtained equation, we obtain the relation

1 + ayn+k = 1 + ayn+l + ayn + a2yn+lyn, n ∈N0.

Now note that the last relation can be written as

1 + ayn+k = (1 + ayn+l)(1 + ayn), n ∈N0. (13)

Relation (13) is very important for solvability of equation (10). Namely, by the substitution

un = 1 + ayn, n ∈N0, (14)

equation (13) becomes

un+k = un+lun, n ∈N0. (15)

If the initial values uj, j = 0,k – 1, are positive numbers, then a simple inductive argument

shows that all the members of such a solution are also positive. Hence, in this case, it

is possible to take the logarithm of both sides of equation (15) and use the substitution

vn = lnun, n ∈N0, bywhich the equation is transformed into equation (11).Hence equation

(15) is theoretically solvable in the case of positive initial values.
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If some of the initial values are negative or complex numbers, then this method is not

suitable for solving equation (15). However, there are some other methods for solving

equations of this type, which are usually called product-type difference equations [33, 34].

If k ≤ 4, then we can find the roots of the polynomial (12) by radicals, from which, to-

gether with the well-known theorem on the form of general solution to equation (9), we

can find closed-form formulas for solutions to equation (11) and, consequently, closed-

form formulas for solutions to equation (15). Such formulas can be used in the following

consequence of relation (14):

yn =
un – 1

a
, n ∈ N0. (16)

Hence the following particular cases of equation (15) are certainly practically solvable:

un+2 = un+1un, n ∈N0, (17)

un+3 = un+1un, n ∈N0, (18)

un+3 = un+2un, n ∈N0, (19)

un+4 = un+1un, n ∈N0, (20)

un+4 = un+2un, n ∈N0, (21)

un+4 = un+3un, n ∈N0. (22)

From this it follows that to solve equation (10) in the cases k ≤ 4, we should first solve

equations (17)–(22) and then employ the obtained formulas for un in relation (16). To

solve the equations, we use some methods for solving product-type difference equations

(see, e.g., [30, 33, 34]).

2.1 Case k = 2, l = 1

Let α1 = 1 and β1 = 1. Then

un = u
α1
n–1u

β1
n–2, n≥ 2,

from which we obtain

un = (un–2un–3)
α1u

β1
n–2 = u

α1+β1
n–2 u

α1
n–3 = u

α2
n–2u

β2
n–3, n ≥ 3,

where α2 = α1 + β1 and β2 = α1.

By the same argument and induction we obtain that for each m ∈N \ {1},

un = uαm
n–mu

βm
n–m–1, n≥ m + 1, (23)

αm = αm–1 + βm–1, βm = αm–1. (24)

From (23) and (24) it easily follows that

un = u
αn–1
1 u

αn–2
0 , (25)

αn = αn–1 + αn–2,
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and α1 = 1 and α2 = 2. Hence αn = fn+1 (fn is the Fibonacci sequence [43]), and by (25) we

obtain

un = u
fn
1 u

fn–1
0 , n ∈ N0. (26)

We obtain our first theorem by combining formulas (16) and (26).

Theorem 1 Let k = 2, l = 1, and a ∈C \ {0}. Then the formula

yn =
(1 + ay1)

fn (1 + ay0)
fn–1 – 1

a
, n ∈N0,

presents a general solution to equation (10) in this case.

2.2 Case k = 3, l = 1

Let α1 = 1, β1 = 1, and γ1 = 0. Then

un = u
α1
n–2u

β1
n–3u

γ1
n–4, n ≥ 3, (27)

from which we obtain

un = (un–4un–5)
α1u

β1
n–3u

γ1
n–4 = u

β1
n–3u

α1+γ1
n–4 u

α1
n–5 = u

α2
n–3u

β2
n–4u

γ2
n–5, n≥ 5,

where α2 = β1, β2 = α1 + γ1, and γ2 = α1.

By the same argument and induction we obtain that for each m ∈N \ {1},

un = u
αm
n–m–1u

βm
n–m–2u

γm
n–m–3, n≥ m + 3, (28)

αm = βm–1, βm = αm–1 + γm–1, γm = αm–1. (29)

From (29) it follows that

αn = αn–2 + αn–3, (30)

and α0 = 0, α–1 = 1, α–2 = α–3 = 0, α–4 = 1 ((29) can be also used form ≤ 1).

Using (28)–(30), we get

un = u
αn–3
2 u

βn–3
1 u

γn–3
0 = u

αn–3
2 u

αn–2
1 u

αn–4
0 , n ∈ N0. (31)

We easily see that the roots sj, j = 1, 3, of the polynomial

Q3(s) = s3 – s – 1 = 0, (32)

are distinct. From this and Lemma 1 it follows that

αn =

3∑

j=1

sn+3j

Q′
3(sj)

, n ∈ Z, (33)

is the solution to (30) with α–3 = α–2 = 0, and α–1 = 1.

From (16) and (31) we obtain our second theorem.
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Theorem 2 Let k = 3, l = 1, and a ∈C \ {0}. Then the formula

yn =
(1 + ay2)

αn–3 (1 + ay1)
αn–2 (1 + ay0)

αn–4 – 1

a
, n ∈N0,

where αn is defined in (33), presents a general solution to (10) in this case.

2.3 Case k = 3, l = 2

Let α1 = 1, β1 = 0, and γ1 = 1. Then

un = u
α1
n–1u

β1
n–2u

γ1
n–3, n ≥ 3, (34)

from which we obtain

un = (un–2un–4)
α1u

β1
n–2u

γ1
n–3 = u

α1+β1
n–2 u

γ1
n–3u

α1
n–4 = u

α2
n–2u

β2
n–3u

γ2
n–4, n≥ 4,

where α2 = α1 + β1, β2 = γ1, and γ2 = α1.

By the same argument and induction we obtain that for each m ∈N \ {1}

un = uαm
n–mu

βm
n–m–1u

γm
n–m–2, n≥ m + 2, (35)

αm = αm–1 + βm–1, βm = γm–1, γm = αm–1. (36)

From (36) we have

αn = αn–1 + αn–3, (37)

and α0 = 1, α–1 = α–2 = 0, α–3 = 1, α–4 = 0 ((36) can be also used form ≤ 1).

Formulas (35) and (36) yield

un = u
αn–2
2 u

βn–2
1 u

γn–2
0 = u

αn–2
2 u

αn–4
1 u

αn–3
0 , n ∈ N0. (38)

It is not difficult to see that the roots sj, j = 1, 3, of the polynomial

R3(s) = s3 – s2 – 1 = 0 (39)

are different, from which, together with Lemma 1, it follows that

αn =

3∑

j=1

sn+2j

R′
3(sj)

, n ∈ Z, (40)

is the solution to (37) with α–2 = α–1 = 0, and α0 = 1.

Using (38) in (16) we get the following theorem.

Theorem 3 Let k = 3, l = 2, and a ∈C \ {0}. Then the formula

yn =
(1 + ay2)

αn–2 (1 + ay1)
αn–4 (1 + ay0)

αn–3 – 1

a
, n ∈N,

where αn is defined in (40), presents a general solution to (10) in this case.
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2.4 Case k = 4, l = 1

Let α1 = β1 = 1 and γ1 = δ1 = 0. Then

un = u
α1
n–3u

β1
n–4u

γ1
n–5u

δ1
n–6, n≥ 4, (41)

from which we obtain

un = (un–6un–7)
α1u

β1
n–4u

γ1
n–5u

δ1
n–6 = u

β1
n–4u

γ1
n–5u

α1+δ1
n–6 u

α1
n–7 = u

α2
n–4u

β2
n–5u

γ2
n–6u

δ2
n–7

for n≥ 7, where α2 = β1, β2 = γ1, γ2 = α1 + δ1, and δ2 = α1.

By the same argument and induction we obtain that for each m ∈N \ {1},

un = u
αm
n–m–2u

βm
n–m–3u

γm
n–m–4u

δm
n–m–5, n≥ m + 5, (42)

αm = βm–1, βm = γm–1, γm = αm–1 + δm–1, δm = αm–1. (43)

From (43) we obtain

αn = αn–3 + αn–4, (44)

and α0 = α–1 = 0, α–2 = 1, α–3 = α–4 = α–5 = 0, α–6 = 1.

Using (42)–(44), we get

un = u
αn–5
3 u

βn–5
2 u

γn–5
1 u

δn–5
0 = u

αn–5
3 u

αn–4
2 u

αn–3
1 u

αn–6
0 , n ∈N0. (45)

It is not difficult to see that the roots sj, j = 1, 4, of the polynomial

R4(s) = s4 – s – 1 = 0 (46)

are simple. From this by Lemma 1 it follows that

αn =

4∑

j=1

sn+5j

R′
4(sj)

, n ∈ Z. (47)

is the solution to (44) such that α–5 = α–4 = α–3 = 0, α–2 = 1.

The following result follows from (16) and (45).

Theorem 4 Let k = 4, l = 1, and a ∈C \ {0}. Then the formula

yn =
(1 + ay3)

αn–5 (1 + ay2)
αn–4 (1 + ay1)

αn–3 (1 + ay0)
αn–6 – 1

a
, n ∈N0,

where αn is defined in (47), presents a general solution to (10) in this case.

2.5 Case k = 4, l = 2

In this case, we get (21), which is an equation with interlacing indices of second order [40,

42]. Thus the subsequences u2n and u2n+1 are two solutions to equation (17). Employing

Theorem 1, we obtain the following result.
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Theorem 5 Let k = 4, l = 2, and a ∈C \ {0}. Then the formulas

y2n =
(1 + ay2)

fn (1 + ay0)
fn–1 – 1

a
, n ∈N0,

y2n+1 =
(1 + ay3)

fn (1 + ay1)
fn–1 – 1

a
, n ∈N0,

present a general solution to (10) in this case.

2.6 Case k = 4, l = 3

Let α1 = 1, β1 = 0, γ1 = 0, and δ1 = 1. Then

un = u
α1
n–1u

β1
n–2u

γ1
n–3u

δ1
n–4, n≥ 4, (48)

from which we obtain

un = (un–2un–5)
α1u

β1
n–2u

γ1
n–3u

δ1
n–4 = u

α1+β1
n–2 u

γ1
n–3u

δ1
n–4u

α1
n–5 = u

α2
n–2u

β2
n–3u

γ2
n–4u

δ2
n–5

for n≥ 5, where α2 = α1 + β1, β2 = γ1, γ2 = δ1, and δ2 = α1.

By the same argument and induction we obtain that for each m ∈N \ {1},

un = uαm
n–mu

βm
n–m–1u

γm
n–m–2u

δm
n–m–3, n≥ m + 3, (49)

αm = αm–1 + βm–1, βm = γm–1, γm = δm–1, δm = αm–1. (50)

From (50) we obtain

αn = αn–1 + αn–4, (51)

and α0 = 1, α–1 = α–2 = α–3 = 0, α–4 = 1, α–5 = α–6 = 0.

Relations (49) and (50) yield

un = u
αn–3
3 u

βn–3
2 u

γn–3
2 u

δn–3
0 = u

αn–3
3 u

αn–6
2 u

αn–5
2 u

αn–4
0 , n ∈N0. (52)

It is not difficult to see that the roots sj, j = 1, 4, of the polynomial

S4(s) = s4 – s3 – 1 = 0 (53)

are simple. From this and Lemma 1 we have that

αn =

4∑

j=1

sn+3j

S′
4(sj)

, n ∈ Z, (54)

is the solution to (51) such that α–3 = α–2 = α–1 = 0, and α0 = 1.
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From (16) and (52) we get our next result.

Theorem 6 Let k = 4, l = 3, and a ∈C \ {0}. Then the formula

yn =
(1 + ay3)

αn–3 (1 + ay2)
αn–6 (1 + ay1)

αn–5 (1 + ay0)
αn–4 – 1

a
, n ∈N0,

where αn is defined in (54), presents a general solution to (10) in this case.

Besides the above-described six cases where equation (10) is solvable in closed form,

there are some other ones. Here we present one.

2.7 Case l = 0

If l = 0, then (10) is an equation with interlacing indices [40, 42]. If

y(i)m = ymk+i

form ∈N0, i = 0,k – 1, then

y
(i)
m+1 = 2y(i)m + a

(
y(i)m

)2
, m ∈N0, (55)

for each i ∈ {0, . . . ,k – 1}, implying that (y
(i)
m )m∈N0 , i = 0,k – 1, are solutions to (10) with

k = 1. Thus the solution to (10) consists of k solutions to the equation with k = 1. So, it is

of interest to find a general solution in this case.

2.8 Case k = 1, l = 0

Since k = 1, it follows that

1 + ayn+1 = (1 + ayn)
2, n ∈N0, (56)

that is, un+1 = u2n, n ∈N0, and, consequently,

un = u2
n

0 , n ∈N0. (57)

Combining (16) and (57), we obtain the following theorem.

Theorem 7 Let k = 1, l = 0, and a ∈C \ {0}. Then the formula

yn =
(1 + ay0)

2n – 1

a
, n ∈N0,

presents a general solution to (10) in this case.

2.9 Case k ∈ N, l = 0

From Theorem 7 we obtain the following result in the general case.
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Theorem 8 Let k ∈N, l = 0, and a ∈C \ {0}. Then the formulas

ymk =
(1 + ay0)

2m – 1

a
, m ∈N0,

ymk+1 =
(1 + ay1)

2m – 1

a
, m ∈N0,

...

ymk+k–1 =
(1 + ayk–1)

2m – 1

a
, m ∈N0,

present a general solution to (10) in this case.

Remark 1 The roots of polynomials (32), (39), (46), and (53) can be found by radicals in

some routine ways [12]. Hence we omit the calculations and leave them to the reader as

simple exercises.

2.10 A brief overview of some classes of solvable difference equations and the

place of equation (10) in the classes

The first nontrivial class of solvable difference equations appearing in the literature was (9)

(the homogeneous linear with constant coefficients). The equations of small orders have

been essentially solved for the first time by deMoivre [6–8] by using generating functions,

whereas the equations of any order were solved by Bernoulli [3] by looking for solutions

in the form yn = λn. As an example, in [3], a closed-form formula for the Fibonacci se-

quence also appeared. Some formulas for solutions to the linear equations can be also

found in Euler’s book [11]. Lagrange [19] proposed the method of decomposition of the

linear equations in linear factors and solved therein a first-order nonhomogeneous equa-

tion. He also proposed the method of undetermined coefficients for solving nonhomoge-

neous equations [18]. Anothermethod for solving first-order nonhomogeneous equations

was given by Laplace [20]. Therein he also solved, among other equations, some nonlinear

ones, a few cyclic systems, and several partial difference equations. The paper indirectly

shows that he also knew how to solve bilinear/fractional difference equations. Reduction

of product-type difference equations to linear ones by using the logarithmhas been known

tomathematicians of the eighteenth century (see, e.g., [5], [16, p. 204]).We should say that

the method is justified only for positive solutions to product-type difference equations.

Some methods dealing with complex-valued solutions to product-type equations are de-

scribed, for example, in [30, 33, 34] (see also the related references therein). As we have

shown here, equation (10) is transformed to a product-type difference equation, so it is

a close relative of product-type equations, and, consequently, a bit farther relative of the

homogeneous linear difference equations with constant coefficients.
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40. Stević, S., Diblik, J., Iričanin, B., Šmarda, Z.: On some solvable difference equations and systems of difference equations.
Abstr. Appl. Anal. 2012, Article ID 541761 (2012)
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