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Abstract. Closed form formulas for well-defined solutions of the next difference equation

xn =
xn−2xn−k−2

xn−k(an + bnxn−2xn−k−2)
, n ∈N0,

where k ∈ N, (an)n∈N0 , (bn)n∈N0 , and initial values x−i, i = 1, k + 2 are real numbers, are given. Long-term
behavior of well-defined solutions of the equation when (an)n∈N0 and (bn)n∈N0 are constant sequences is
described in detail by using the formulas. We also describe the domain of undefinable solutions of the
equation. Our results explain and considerably improve some recent results in the literature.

1. Introduction and Preliminaries

Studying nonlinear difference equations is an area of a great recent interest (see, e.g. [1]-[45] and the
references therein). Since the publication of paper [24], which explains closed form solution to the second-
order difference equation in [9], have appeared considerable number of papers on solvable difference
equations (see, e.g., [1]-[4], [7], [8], [10], [22], [25], [27], [28], [30]-[45] and the related references therein).
Some classical methods for solving difference equations and systems can be found in [19]. Using a method
similar to the one in [24], in [44] were found the closed form formulas for well-defined solutions to the
following difference equation

xn+1 =
xnxn−k

xn−k+1(a + bxnxn−k)
, n ∈N0, (1)

where k ∈ N, a, b ∈ R, and initial values x−i, i = 0, k are real numbers, and studied behavior of its well-
defined solutions. In [42], among others, was noted that the following generalization of equation (1) can be
solved similarly

xn+1 =
xnxn−k

xn−k+1(an + bnxnxn−k)
, n ∈N0, (2)

where k ∈N, and sequences (an)n∈N0 , (bn)n∈N0 , as well as initial values x−i, i = 0, k are real numbers.
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Email addresses: sstevic@ptt.rs (Stevo Stević), proff-malghamdi@hotmail.com (Mohammed A. Alghamdi),

aalotaibi@kau.edu.sa (Abdullah Alotaibi), emmelsayed@yahoo.com (Elsayed M. Elsayed)
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A natural problem is to study difference equations related to equation (2). The problem is not so
technically easy, since the behavior of solutions to the equations heavily depends on delays and the initial
values, and formulas are represented in a complicated way.

We will consider here the following class of difference equations

xn =
xn−2xn−k−2

xn−k(an + bnxn−2xn−k−2)
, n ∈N0, (3)

where k ∈N,which is an extension of the equation in [10]. Our results theoretically explain and considerably
improve the results in [10].

Assume first that k is even, that is, k = 2k1 for some k1 ∈ N. Since every n ∈ N0 can be written in the
form n = 2m + i for some m ∈N0 and i ∈ {0, 1}, we see that for such k, equation (3) can be written as follows

x2m+i =
x2(m−1)+ix2(m−k1−1)+i

x2(m−k1)+i(a2m+i + b2m+ix2(m−1)+ix2(m−k1−1)+i)
, m ∈N0, (4)

i ∈ {0, 1}, which means that the sequences (x2m+i)m∈N0 , i ∈ {0, 1}, are respectively solutions to the following
two difference equations

zm =
zm−1zm−k1−1

zm−k1 (âi
m + b̂i

mzm−1zm−k1−1)
, m ∈N0, (5)

where âi
m = a2m+i, b̂i

m = b2m+i, i ∈ {0, 1}.However, two equations in (5) are special cases of equation (2), which
implies that the long-term behavior of their solutions essentially follows from the corresponding one of
equation (2).

Hence, from now on we will assume that k is an odd positive number, that is, k = 2t + 1 for some t ∈N0.
Solution (xn)n≥−s, s ∈N, of the difference equation

xn = f (xn−1, . . . , xn−s), n ∈N0, (6)

where f : Rs
→ R and s ∈N, is called eventually periodic with period p, if there is an n1 ≥ −s such that

xn+p = xn, for n ≥ n1.

It is called periodic with period p, if n1 = −s. For some results in this area see, e.g. [6, 12, 16–18, 20, 21, 26, 29]
and the references therein.

We now formulate an auxiliary result which will be used frequently throughout the paper. Since the
statements in it are well-known we will not prove them.

Lemma 1. Let l ∈N0, (an)n≥l be a real sequence such that an , 0, n ≥ l, and

Pn =

n∏
j=l

a j, n ≥ l.

Then the following statements are true.
(a) If lim supn→∞ |an| < 1, then Pn → 0 as n→ +∞.
(b) If lim infn→∞ |an| > 1, then |Pn| → +∞ as n→ +∞.
(c) If |q| < 1 and

an = 1 + O(qn)

for sufficiently large n, then the sequence (Pn)n≥l is convergent.
(d) If

an = 1 +
c
n

+ O
( 1

n1+δ

)
for some δ > 0 and sufficiently large n, then:
1) if c < 0, then Pn → 0 as n→ +∞;
2) if c > 0, then |Pn| → +∞ as n→ +∞;
3) if c = 0, then the sequence (Pn)n≥l is convergent.
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2. Solutions to Equation (3)

If x−i = 0 for some i ∈ {1, 2, . . . , k + 2}, then from (3) we see that xk+2−i is or not defined or equal to zero.
If the later holds then (3) shows that x2k+2−i is not defined. On the other hand, if xn0 = 0 for some n0 ∈ N0,
and xn are defined and different from zero for 0 ≤ n ≤ n0 − 1, then by using again (3) we have that xn0−2 = 0
or xn0−k−2 = 0, which along with the choice of number n0 implies n0 − 2 < 0 or n0 − k − 2 < 0 respectively,
that is, x−i = 0 for some i ∈ {1, 2, . . . , k + 2}. This fact along with the previous consideration implies that the
solution is not defined.

Hence, from now on in this section, we may assume that x−i , 0 for every i ∈ {1, 2, . . . , k + 2}, which is
equivalent to

xn , 0 for n ≥ −(k + 2).

Thus we can use the change of variables

yn =
1

xnxn−k
, n ≥ −2, (7)

and transform equation (3) into the following nonhomogeneous linear second-order difference equation

yn = anyn−2 + bn, n ∈N0. (8)

Since for n ≥ −2 we have n = 2m + i, for some m ≥ −1 and i ∈ {0, 1}, equation (8) can be written as

y2m+i = a2m+iy2(m−1)+i + b2m+i, m ∈N0, (9)

where i ∈ {0, 1}.
Thus, (y2m+i)m≥−1, i ∈ {0, 1}, are respectively solutions to the next linear first-order equations

zm = a2m+izm−1 + b2m+i, m ∈N0, (10)

for i ∈ {0, 1}.
Equations in (10) are solvable. Using the formulas for their solutions it is easy to see that the general

solutions to the equations in (9) are

y2m+i = yi−2

m∏
j=0

a2 j+i +

m∑
l=0

b2l+i

m∏
j=l+1

a2 j+i, m ∈N0, (11)

i ∈ {0, 1}.
From (7) it follows that

xn =
1

ynxn−k
=

yn−k

yn
xn−2k,

for n ≥ k − 2, and consequently

x2km+i = xi−2k

m∏
j=0

y(2 j−1)k+i

y2 jk+i
, (12)

for m ∈N0 and i ∈ {k − 2, k − 1, . . . , 3k − 3}.
Hence, if k = 2t + 1 we have

x2(2t+1)m+2s = x2s−2(2t+1)

m∏
j=0

y2( j(2t+1)+s−t−1)+1

y2( j(2t+1)+s)
, (13)

for m ∈N0 and 2s ∈ {k − 2, k − 1, . . . , 3k − 3}, and

x2(2t+1)m+2s+1 = x2s−2(2t+1)+1

m∏
j=0

y2( j(2t+1)+s−t)

y2( j(2t+1)+s)+1
, (14)

for m ∈N0 and 2s + 1 ∈ {k − 2, k − 1, . . . , 3k − 3}.
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Employing (11) into (13) and (14) we obtain

x2(2t+1)m+2s = x2s−2(2t+1)

m∏
p=0

y−1
∏p(2t+1)+s−t−1

j=0 a2 j+1 +
∑p(2t+1)+s−t−1

l=0 b2l+1
∏p(2t+1)+s−t−1

j=l+1 a2 j+1

y−2
∏p(2t+1)+s

j=0 a2 j +
∑p(2t+1)+s

l=0 b2l
∏p(2t+1)+s

j=l+1 a2 j

, (15)

for m ∈N0 and 2s ∈ {k − 2, k − 1, . . . , 3k − 3}, and

x2(2t+1)m+2s+1 = x2s−2(2t+1)+1

m∏
p=0

y−2
∏p(2t+1)+s−t

j=0 a2 j +
∑p(2t+1)+s−t

l=0 b2l
∏p(2t+1)+s−t

j=l+1 a2 j

y−1
∏p(2t+1)+s

j=0 a2 j+1 +
∑p(2t+1)+s

l=0 b2l+1
∏p(2t+1)+s

j=l+1 a2 j+1

, (16)

for m ∈N0 and 2s + 1 ∈ {k − 2, k − 1, . . . , 3k − 3}.

3. Case of Constant Coefficients

In this section we study equation (3) for the case when

an = a, bn = b, n ∈N0,

where a and b are some real constants.
In this case equation (3) becomes

xn =
xn−2xn−k−2

xn−k(a + bxn−2xn−k−2)
, n ∈N0. (17)

From (15) and (16) we have

x2(2t+1)m+2s = x2s−2(2t+1)

m∏
p=0

y−1
∏p(2t+1)+s−t−1

j=0 a +
∑p(2t+1)+s−t−1

l=0 b
∏p(2t+1)+s−t−1

j=l+1 a

y−2
∏p(2t+1)+s

j=0 a +
∑p(2t+1)+s

l=0 b
∏p(2t+1)+s

j=l+1 a

= x2s−2(2t+1)

m∏
p=0

y−1ap(2t+1)+s−t + b
∑p(2t+1)+s−t−1

l=0 ap(2t+1)+s−t−1−l

y−2ap(2t+1)+s+1 + b
∑p(2t+1)+s

l=0 ap(2t+1)+s−l
, (18)

for m ∈N0 and 2s ∈ {k − 2, k − 1, . . . , 3k − 3}, and

x2(2t+1)m+2s+1 = x2s−2(2t+1)+1

m∏
p=0

y−2
∏p(2t+1)+s−t

j=0 a +
∑p(2t+1)+s−t

l=0 b
∏p(2t+1)+s−t

j=l+1 a

y−1
∏p(2t+1)+s

j=0 a +
∑p(2t+1)+s

l=0 b
∏p(2t+1)+s

j=l+1 a

= x2s−2(2t+1)+1

m∏
p=0

y−2ap(2t+1)+s−t+1 + b
∑p(2t+1)+s−t

l=0 ap(2t+1)+s−t−l

y−1ap(2t+1)+s+1 + b
∑p(2t+1)+s

l=0 ap(2t+1)+s−l
, (19)

for m ∈N0 and 2s + 1 ∈ {k − 2, k − 1, . . . , 3k − 3}.

Case a , 1. We have

x2(2t+1)m+2s = x2s−2(2t+1)

m∏
p=0

y−1(1 − a)ap(2t+1)+s−t + b(1 − ap(2t+1)+s−t)
y−2(1 − a)ap(2t+1)+s+1 + b(1 − ap(2t+1)+s+1)

, (20)

for m ∈N0 and 2s ∈ {k − 2, k − 1, . . . , 3k − 3}, and

x2(2t+1)m+2s+1 = x2s−2(2t+1)+1

m∏
p=0

y−2(1 − a)ap(2t+1)+s−t+1 + b(1 − ap(2t+1)+s−t+1)
y−1(1 − a)ap(2t+1)+s+1 + b(1 − ap(2t+1)+s+1)

, (21)

for m ∈N0 and 2s + 1 ∈ {k − 2, k − 1, . . . , 3k − 3}.
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Case a = 1. We have

x2(2t+1)m+2s = x2s−2(2t+1)

m∏
p=0

y−1 + b(p(2t + 1) + s − t)
y−2 + b(p(2t + 1) + s + 1)

, (22)

for m ∈N0 and 2s ∈ {k − 2, k − 1, . . . , 3k − 3}, and

x2(2t+1)m+2s+1 = x2s−2(2t+1)+1

m∏
p=0

y−2 + b(p(2t + 1) + s − t + 1)
y−1 + b(p(2t + 1) + s + 1)

, (23)

for m ∈N0 and 2s + 1 ∈ {k − 2, k − 1, . . . , 3k − 3}.

4. Long-Term Behavior of Solutions to Equation (17)

Long-term behavior of well-defined solutions to equation (17) will be presented here, in terms of
parameters a, b, k and some initial values. Before we formulate our first result we introduce the following
notation

Lk,0 =
(1 − a)(x−1x−k−1)−1

− b
a[k/2]+1((1 − a)(x−2x−k−2)−1 − b)

,

Lk,1 =
(1 − a)(x−2x−k−2)−1

− b
a[k/2]((1 − a)(x−1x−k−1)−1 − b)

,

Mk,0 =
(x−1x−k−1)−1

− (x−2x−k−2)−1
− b[k/2] − b

bk
,

Mk,1 =
(x−2x−k−2)−1

− (x−1x−k−1)−1
− b[k/2]

bk
.

Now we formulate and prove the main results in this section. For the brevity, we will write y−2 and y−1
instead of (x−2x−k−2)−1 and (x−1x−k−1)−1, and will also use the following notation t = [k/2].

4.1. Case a , −1, b , 0
Our first result considers the case a , −1, b , 0.

Theorem 1. Assume that a , −1, b , 0, k is an odd natural number, and (xn)n≥−k−2 is a well-defined solution to
equation (17). Then the following statements are true.

(a) If |a| > 1 and |Lk,i| < 1, for some i ∈ {0, 1}, then x2km+2s+i → 0 as m→ +∞, for every 2s+i ∈ {k−2, k−1, . . . , 3k−3}.
(b) If |a| > 1 and |Lk,i| > 1, for some i ∈ {0, 1}, then |x2km+2s+i| → +∞ as m → +∞, for every 2s + i ∈ {k − 2, k −

1, . . . , 3k − 3}.
(c) If |a| > 1 and y−1 = b/(1 − a) , y−2, then x2km+2s → 0 as m→ +∞, for every 2s ∈ {k − 2, k − 1, . . . , 3k − 3}, and
|x2km+2s+1| → +∞ as m→ +∞, for every 2s + 1 ∈ {k − 2, k − 1, . . . , 3k − 3}.

(d) If |a| > 1 and y−2 = b/(1− a) , y−1, then x2km+2s+1 → 0 as m→ +∞, for every 2s + 1 ∈ {k− 2, k− 1, . . . , 3k− 3}
and |x2km+2s| → +∞ as m→ +∞, for every 2s ∈ {k − 2, k − 1, . . . , 3k − 3}.

(e) If |a| > 1 and Lk,i = 1, for some i ∈ {0, 1}, then the sequences (x2km+2s+i)m≥−1 are constant, for every 2s + i ∈
{k − 2, k − 1, . . . , 3k − 3}.

(f) If |a| > 1 and Lk,i = −1, for some i ∈ {0, 1}, then the sequences (x4km+2s+i)m∈N0 and (x4km+2k+2s+i)m≥−1 are
convergent, for every 2s + i ∈ {k − 2, k − 1, . . . , 3k − 3}.

(g) If |a| < 1, then the sequences (x2km+ j)m≥−1, j ∈ {k − 2, k − 1, . . . , 3k − 3}, are convergent.
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(h) If a = 1 and Mk,i < 0, for some i ∈ {0, 1}, then x2km+2s+i → 0 as m→ +∞, for every 2s+i ∈ {k−2, k−1, . . . , 3k−3}.
(i) If a = 1 and Mk,i > 0, for some i ∈ {0, 1}, then |x2km+2s+i| → +∞ as m → +∞, for every 2s + i ∈ {k − 2, k −

1, . . . , 3k − 3}.
(j) If a = 1 and Mk,i = 0, for some i ∈ {0, 1}, then the sequence (x2km+2s+i)m≥−1 is constant, for every 2s + i ∈
{k − 2, k − 1, . . . , 3k − 3}.

(k) If y−1 = b/(1 − a) = y−2, then the sequence (xn)n≥−k−2 is 2k-periodic.

Proof. (a), (b) Let

pt,2s
m =

(y−1(1 − a) − b)am(2t+1)+s−t + b
(y−2(1 − a) − b)am(2t+1)+s+1 + b

, (24)

for 2s ∈ {k − 2, k − 1, . . . , 3k − 3},

pt,2s+1
m =

(y−2(1 − a) − b)am(2t+1)+s−t+1 + b
(y−1(1 − a) − b)am(2t+1)+s+1 + b

, (25)

for 2s + 1 ∈ {k − 2, k − 1, . . . , 3k − 3}.
By using the condition |a| > 1, we have

lim
m→+∞

pt,2s
m = lim

m→+∞

(y−1(1 − a) − b) + b
am(2t+1)+s−t

(y−2(1 − a) − b)at+1 + b
am(2t+1)+s−t

= Lk,0 (26)

for 2s ∈ {k − 2, k − 1, . . . , 3k − 3}, and

lim
m→+∞

pt,2s+1
m = lim

m→+∞

(y−2(1 − a) − b) + b
am(2t+1)+s−t+1

(y−1(1 − a) − b)at + b
am(2t+1)+s−t+1

= Lk,1, (27)

for 2s + 1 ∈ {k − 2, k − 1, . . . , 3k − 3}.
From (20), (21), (26), (27), and by using statements (a) and (b) in Lemma 1, these two statements easily

follow.
(c) First, note that in this case

pt,2s
m =

b
(y−2(1 − a) − b)am(2t+1)+s+1 + b

, (28)

for 2s ∈ {k − 2, k − 1, . . . , 3k − 3},

pt,2s+1
m =

(y−2(1 − a) − b)am(2t+1)+s−t+1 + b
b

, (29)

for 2s + 1 ∈ {k − 2, k − 1, . . . , 3k − 3}.
From (28), (29), and the conditions |a| > 1 and y−2 , b/(1 − a), we have

lim
m→+∞

pt,2s
m = lim

m→+∞

b
(y−2(1 − a) − b)am(2t+1)+s+1 + b

= 0 (30)

for 2s ∈ {k − 2, k − 1, . . . , 3k − 3}, and

lim
m→+∞

|pt,2s+1
m | = lim

m→+∞

∣∣∣∣∣ (y−2(1 − a) − b)am(2t+1)+s−t+1 + b
b

∣∣∣∣∣ = +∞, (31)

for 2s + 1 ∈ {k − 2, k − 1, . . . , 3k − 3}.
From (20), (21), (30), (31), and by using statements (a) and (b) in Lemma 1, the result easily follows.
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(d) First, note that in this case

pt,2s
m =

(y−1(1 − a) − b)am(2t+1)+s−t + b
b

, (32)

for 2s ∈ {k − 2, k − 1, . . . , 3k − 3},

pt,2s+1
m =

b
(y−1(1 − a) − b)am(2t+1)+s+1 + b

, (33)

for 2s + 1 ∈ {k − 2, k − 1, . . . , 3k − 3}.
From (32), (33), and the conditions |a| > 1 and y−1 , b/(1 − a), we have

lim
m→+∞

|pt,2s
m | = lim

m→+∞

∣∣∣∣∣ (y−1(1 − a) − b)am(2t+1)+s−t + b
b

∣∣∣∣∣ = +∞ (34)

for 2s ∈ {k − 2, k − 1, . . . , 3k − 3}, and

lim
m→+∞

pt,2s+1
m = lim

m→+∞

b
(y−1(1 − a) − b)am(2t+1)+s+1 + b

= 0, (35)

for 2s + 1 ∈ {k − 2, k − 1, . . . , 3k − 3}.
From (20), (21), (34), (35), and by using statements (a) and (b) in Lemma 1, the result easily follows.
(e) In this case, we have that

pt,2s
m =

(y−1(1 − a) − b)am(2t+1)+s−t + b
(y−2(1 − a) − b)am(2t+1)+s+1 + b

= 1, (36)

for every m ∈N0 if 2s ∈ {k − 2, k − 1, . . . , 3k − 3}, and

pt,2s+1
m =

(y−2(1 − a) − b)am(2t+1)+s−t+1 + b
(y−1(1 − a) − b)am(2t+1)+s+1 + b

= 1, (37)

every m ∈N0 if 2s + 1 ∈ {k − 2, k − 1, . . . , 3k − 3}.
From (20), (21), (36) and (37) the result easily follows.
(f) By using the asymptotic relation

(1 + x)−1 = 1 − x + O(x2), (38)

when x is in a neighborhood of zero, we have that

pt,2s
m =

−(y−2(1 − a) − b)am(2t+1)+s+1 + b
(y−2(1 − a) − b)am(2t+1)+s+1 + b

= −
(
1 −

b
am(2t+1)+s+1(y−2(1 − a) − b)

)(
1 −

b
am(2t+1)+s+1(y−2(1 − a) − b)

+ O
( 1

a2m(2t+1)

))
= −

(
1 −

2b
am(2t+1)+s+1(y−2(1 − a) − b)

+ O
( 1

a2m(2t+1)

))
, (39)

for sufficiently large m if 2s ∈ {k − 2, k − 1, . . . , 3k − 3}, and

pt,2s+1
m =

−(y−1(1 − a) − b)am(2t+1)+s+1 + b
(y−1(1 − a) − b)am(2t+1)+s+1 + b

= −
(
1 −

b
am(2t+1)+s+1(y−1(1 − a) − b)

)(
1 −

b
am(2t+1)+s+1(y−1(1 − a) − b)

+ O
( 1

a2m(2t+1)

))
= −

(
1 −

2b
am(2t+1)+s+1(y−1(1 − a) − b)

+ O
( 1

a2m(2t+1)

))
, (40)
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for sufficiently large m if 2s + 1 ∈ {k − 2, k − 1, . . . , 3k − 3}.
From (20), (21), (39), (40), the assumption |a| > 1, and by using statement (c) in Lemma 1, the result easily

follows.
(g) By using (38), we have

pt,2s
m =

1 + (y−1(1 − a) − b)am(2t+1)+s−t/b
1 + (y−2(1 − a) − b)am(2t+1)+s+1/b

= 1 + am(2t+1)+s−t ((y−1(1 − a) − b) − (y−2(1 − a) − b)at+1)
b

+ O(a2m(2t+1)), (41)

for sufficiently large m, if 2s ∈ {k − 2, k − 1, . . . , 3k − 3},

pt,2s+1
m =

1 + (y−2(1 − a) − b)am(2t+1)+s−t+1/b
1 + (y−1(1 − a) − b)am(2t+1)+s+1/b

= 1 + am(2t+1)+s+1((y−2(1 − a) − b)a−t
− (y−1(1 − a) − b)) + O(a2m(2t+1)), (42)

for sufficiently large m, if 2s + 1 ∈ {k − 2, k − 1, . . . , 3k − 3}. From (20), (21), (41), (42), the assumption |a| < 1,
and by using statement (c) in Lemma 1, the result easily follows.

(h)-(j) Let

qt,2s
m =

bm(2t + 1) + b(s − t) + y−1

bm(2t + 1) + b(s + 1) + y−2
, (43)

for 2s ∈ {k − 2, k − 1, . . . , 3k − 3}, and

qt,2s+1
m =

bm(2t + 1) + b(s − t + 1) + y−2

bm(2t + 1) + b(s + 1) + y−1
, (44)

for 2s + 1 ∈ {k − 2, k − 1, . . . , 3k − 3}.
Then by using (38), we have that

qt,2s
m =

1 +
b(s−t)+y−1

bm(2t+1)

1 +
b(s+1)+y−2

bm(2t+1)

=
(
1 +

b(s − t) + y−1

bm(2t + 1)

)(
1 −

b(s + 1) + y−2

bm(2t + 1)
+ O

( 1
m2

))
=1 +

y−1 − y−2 − bt − b
bm(2t + 1)

+ O
( 1

m2

)
= 1 +

Mk,0

m
+ O

( 1
m2

)
, (45)

for sufficiently large m if 2s ∈ {k − 2, k − 1, . . . , 3k − 3}, and

qt,2s+1
m =

1 +
b(s−t+1)+y−2

bm(2t+1)

1 +
b(s+1)+y−1

bm(2t+1)

=
(
1 +

b(s − t + 1) + y−2

bm(2t + 1)

)(
1 −

b(s + 1) + y−1

bm(2t + 1)
+ O

( 1
m2

))
=
(
1 +

y−2 − y−1 − bt
bm(2t + 1)

+ O
( 1

m2

))
= 1 +

Mk,1

m
+ O

( 1
m2

)
, (46)

for sufficiently large m if 2s + 1 ∈ {k − 2, k − 1, . . . , 3k − 3}.
From (22), (23), (45), (46), and by using statement (d) in Lemma 1, these three statements easily follow.
(k) From (24), (25) and y−1 = b/(1 − a) = y−2, we have that

pt,2s
m = 1, (47)

for 2s ∈ {k − 2, k − 1, . . . , 3k − 3},

pt,2s+1
m = 1, (48)

for 2s + 1 ∈ {k − 2, k − 1, . . . , 3k − 3}. From (20), (21), (47), (48), the 2k-periodicity of the sequence (xn)n≥−k−2
follows. �
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4.2. Case a = −1, b , 0

Now we will consider the case a = −1, b , 0, in detail, by using the following formulas

x2(2t+1)m+2s = x2s−2(2t+1)

m∏
p=0

(2y−1 − b)(−1)p(2t+1)+s−t + b
(2y−2 − b)(−1)p(2t+1)+s+1 + b

, (49)

for m ∈N0 and 2s ∈ {k − 2, k − 1, . . . , 3k − 3}, and

x2(2t+1)m+2s+1 = x2s−2(2t+1)+1

m∏
p=0

(2y−2 − b)(−1)p(2t+1)+s−t+1 + b
(2y−1 − b)(−1)p(2t+1)+s+1 + b

, (50)

for m ∈N0 and 2s + 1 ∈ {k − 2, k − 1, . . . , 3k − 3}, which are obtained from (20) and (21), with a = −1.
Let

N :=
y−1(y−1 − b)
y−2(y−2 − b)

.

Theorem 2. Assume that a = −1, b , 0, k is an odd natural number, and (xn)n≥−k−2 is a well-defined solution to
equation (17). Then the following statements are true.

(a) If y−1 = b/2 = y−2, then the sequence (xn)n≥−k−2 is 2k-periodic.
(b) If y−1 = b/2 , y−2, and (−

√
2 + 1)/2 < y−2/b < (

√
2 + 1)/2, then |x2mk+2s| → +∞ as m → +∞, for every

2s ∈ {k − 2, k − 1, . . . , 3k − 3}.
(c) If y−1 = b/2 , y−2, and y−2/b < (−

√
2 + 1)/2 or y−2/b > (

√
2 + 1)/2, then x2mk+2s → 0 as m → ∞, for every

2s ∈ {k − 2, k − 1, . . . , 3k − 3}.
(d) If y−1 = b/2, and y−2 = b(−

√
2 + 1)/2 or y−2 = b(

√
2 + 1)/2, then

x2mk+2s = (−1)[ m+1
2 ](1 ∓

√

2(−1)s+1)
(−1)m+1

−1
2 x2s−2(2t+1), (51)

for every 2s ∈ {k − 2, k − 1, . . . , 3k − 3}.
(e) If y−1 = b/2 , y−2, and (−

√
2 + 1)/2 < y−2/b < (

√
2 + 1)/2, then x2mk+2s+1 → 0 as m → ∞, for every

2s + 1 ∈ {k − 2, k − 1, . . . , 3k − 3}.
(f) If y−1 = b/2 , y−2, and y−2/b < (−

√
2 + 1)/2 or y−2/b > (

√
2 + 1)/2, then |x2mk+2s+1| → +∞ as m → ∞, for

every 2s + 1 ∈ {k − 2, k − 1, . . . , 3k − 3}.
(g) If y−1 = b/2, and y−2 = b(−

√
2 + 1)/2 or y−2 = b(

√
2 + 1)/2, then

x2mk+2s+1 = (−1)[ m+1
2 ](±

√

2(−1)s−t+1 + 1)
1+(−1)m

2 x2s−2(2t+1)+1, (52)

for every 2s + 1 ∈ {k − 2, k − 1, . . . , 3k − 3}.
(h) If y−1 , b/2 = y−2, and (−

√
2 + 1)/2 < y−1/b < (

√
2 + 1)/2, then x2mk+2s → 0 as m → ∞, for every

2s ∈ {k − 2, k − 1, . . . , 3k − 3}.
(i) If y−2 = b/2, and y−1/b < (−

√
2 + 1)/2 or y−1/b > (

√
2 + 1)/2, then |x2mk+2s| → +∞ as m → ∞, for every

2s ∈ {k − 2, k − 1, . . . , 3k − 3}.
(j) If y−2 = b/2, and y−1 = b(−

√
2 + 1)/2 or y−1 = b(

√
2 + 1)/2, then

x2mk+2s = (−1)[ m+1
2 ](1 ∓

√

2(−1)s−t)
1+(−1)m

2 x2s−2(2t+1), (53)

for every 2s ∈ {k − 2, k − 1, . . . , 3k − 3}.
(k) If y−1 , b/2 = y−2, and (−

√
2 + 1)/2 < y−1/b < (

√
2 + 1)/2, then |x2mk+2s+1| → +∞ as m → ∞, for every

2s + 1 ∈ {k − 2, k − 1, . . . , 3k − 3}.
(l) If y−1 , b/2 = y−2, and y−1/b < (−

√
2 + 1)/2 or y−1/b > (

√
2 + 1)/2, then x2mk+2s+1 → 0 as m→∞, for every

2s + 1 ∈ {k − 2, k − 1, . . . , 3k − 3}.
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(m) If y−2 = b/2, and y−1 = b(−
√

2 + 1)/2 or y−1 = b(
√

2 + 1)/2, then

x2mk+2s+1 = (−1)[ m+1
2 ](1 ∓

√

2(−1)s+1)
−1+(−1)m+1

2 x2s−2(2t+1)+1, (54)

for every 2s + 1 ∈ {k − 2, k − 1, . . . , 3k − 3}.
(n) If y−1 , b/2 , y−2, and |N| < 1, then x2mk+2s → 0, as m → ∞, for every 2s ∈ {k − 2, k − 1, . . . , 3k − 3}, and
|x2mk+2s+1| → +∞, as m→∞, for every 2s + 1 ∈ {k − 2, k − 1, . . . , 3k − 3}.

(o) If y−1 , b/2 , y−2, and |N| > 1, then |x2mk+2s| → +∞, as m→ ∞, for every 2s ∈ {k − 2, k − 1, . . . , 3k − 3}, and
x2mk+2s+1 → 0, as m→∞, for every 2s + 1 ∈ {k − 2, k − 1, . . . , 3k − 3}.

(p) If y−1 , b/2 , y−2, and N = 1, then the sequence (xn)n≥−k−2 is 4k-periodic.
(q) If y−1 , b/2 , y−2, and N = −1, then the sequence (xn)n≥−k−2 is 8k-periodic.

Proof. (a) This statement follows directly from (49) and (50), and can be also regarded as a special case
of Theorem 1 (k).

(b) From (49) we have that

x2(2t+1)m+2s = x2s−2(2t+1)

m∏
p=0

1
(2y−2/b − 1)(−1)p(2t+1)+s+1 + 1

, (55)

for m ∈N0 and 2s ∈ {k − 2, k − 1, . . . , 3k − 3}, which implies

x4(2t+1)m+2s = x2s−2(2t+1)

2m∏
p=0

1
(2y−2/b − 1)(−1)p(2t+1)+s+1 + 1

=
x2s−2(2t+1)

(1 − (2y−2/b − 1)2)m((2y−2/b − 1)(−1)s+1 + 1)
, (56)

and

x4(2t+1)m+4t+2+2s = x2s−2(2t+1)

2m+1∏
p=0

1
(2y−2/b − 1)(−1)p(2t+1)+s+1 + 1

=
x2s−2(2t+1)

(1 − (2y−2/b − 1)2)m+1 . (57)

Now note that conditions, y−2 , b/2 and (−
√

2+1)/2 < y−2/b < (
√

2+1)/2 are equivalent to 0 < (2y−2/b−1)2 <
2, i.e.

|(2y−2/b − 1)2
− 1| < 1.

From this, (56) and (57), the result easily follows.
(c) Note that the conditions y−2 , b/2, and y−2/b < (−

√
2 + 1)/2 or y−2/b > (

√
2 + 1)/2, are equivalent to

(2y−2/b − 1)2 > 2, that is,
(2y−2/b − 1)2

− 1 > 1.

From this fact, (56) and (57), the result easily follows.
(d) Note that the conditions y−2 = b(−

√
2 + 1)/2 or y−2 = b(

√
2 + 1)/2, are equivalent to (2y−2/b− 1)2 = 2.

From this (56) and (57) we have that

x4(2t+1)m+2s =
x2s−2(2t+1)

(−1)m(∓
√

2(−1)s+1 + 1)
, (58)

and

x4(2t+1)m+4t+2+2s =
x2s−2(2t+1)

(−1)m+1 . (59)
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From (58) and (59), formula (51) easily follows.
(e) From (50) we have that

x2(2t+1)m+2s+1 = x2s−2(2t+1)+1

m∏
p=0

(
(2y−2/b − 1)(−1)p(2t+1)+s−t+1 + 1

)
, (60)

for m ∈N0 and 2s + 1 ∈ {k − 2, k − 1, . . . , 3k − 3}, which implies

x4(2t+1)m+2s+1 = x2s−2(2t+1)+1

2m∏
p=0

(
(2y−2/b − 1)(−1)p(2t+1)+s−t+1 + 1

)
= x2s−2(2t+1)+1((2y−2/b − 1)(−1)s−t+1 + 1)

(
1 − (2y−2/b − 1)2

)m
, (61)

and

x4(2t+1)m+4t+2+2s+1 = x2s−2(2t+1)+1

2m+1∏
p=0

(
(2y−2/b − 1)(−1)p(2t+1)+s−t+1 + 1

)
= x2s−2(2t+1)+1

(
1 − (2y−2/b − 1)2

)m+1
. (62)

According to the proof of (b) we have that |(2y−2/b− 1)2
− 1| < 1. From this, (61) and (62), the result follows.

(f) In this case we have (2y−2/b − 1)2
− 1 > 1. From this, (61) and (62) the result follows.

(g) In this case we have (2y−2/b − 1)2 = 2. Using this in (61) and (62) we get

x4(2t+1)m+2s+1 = x2s−2(2t+1)+1(∓
√

2(−1)s−t+1 + 1)(−1)m, (63)

and

x4(2t+1)m+4t+2+2s+1 = x2s−2(2t+1)+1(−1)m+1. (64)

From (63) and (64), formula (52) easily follows.
(h) From (49) we have that

x2(2t+1)m+2s = x2s−2(2t+1)

m∏
p=0

(
(2y−1/b − 1)(−1)p(2t+1)+s−t + 1

)
, (65)

for m ∈N0 and 2s ∈ {k − 2, k − 1, . . . , 3k − 3}, which implies

x4(2t+1)m+2s = x2s−2(2t+1)

2m∏
p=0

(
(2y−1/b − 1)(−1)p(2t+1)+s−t + 1

)
= x2s−2(2t+1)(1 − (2y−1/b − 1)2)m((2y−1/b − 1)(−1)s−t + 1), (66)

and

x4(2t+1)m+4t+2+2s = x2s−2(2t+1)

2m+1∏
p=0

(
(2y−1/b − 1)(−1)p(2t+1)+s−t + 1

)
= x2s−2(2t+1)(1 − (2y−1/b − 1)2)m+1. (67)

From (66), (67) and since in this case |(2y−1/b − 1)2
− 1| < 1, the result easily follows.

(i) Since in this case (2y−1/b − 1)2
− 1 > 1. From this (66) and (67), the result easily follows.
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(j) In this case we have (2y−1/b − 1)2 = 2. From this (66) and (67) we have that

x4(2t+1)m+2s = x2s−2(2t+1)(−1)m(∓
√

2(−1)s−t + 1), (68)

and

x4(2t+1)m+4t+2+2s = x2s−2(2t+1)(−1)m+1. (69)

From this (68) and (69) formula (53) easily follows.
(k) From (50) we have that

x2(2t+1)m+2s+1 = x2s−2(2t+1)+1

m∏
p=0

b
(2y−1 − b)(−1)p(2t+1)+s+1 + b

, (70)

for m ∈N0 and 2s + 1 ∈ {k − 2, k − 1, . . . , 3k − 3}, which implies

x4(2t+1)m+2s+1 = x2s−2(2t+1)+1

2m∏
p=0

b
(2y−1 − b)(−1)p(2t+1)+s+1 + b

=
x2s−2(2t+1)+1

((2y−1/b − 1)(−1)s+1 + 1)
(
1 − (2y−1/b − 1)2

)m , (71)

and

x4(2t+1)m+4t+2+2s+1 = x2s−2(2t+1)+1

2m+1∏
p=0

b
(2y−1 − b)(−1)p(2t+1)+s+1 + b

=
x2s−2(2t+1)+1(

1 − (2y−1/b − 1)2
)m+1 . (72)

Similar to (b) we have that |(2y−1/b − 1)2
− 1| < 1. From this, (71) and (72), the result follows.

(l) In this case we have (2y−1/b − 1)2
− 1 > 1. From this, (71) and (72), the result follows.

(m) In this case we have (2y−1/b − 1)2 = 2. Using this in (71) and (72) we get

x4(2t+1)m+2s+1 =
x2s−2(2t+1)+1

(∓
√

2(−1)s+1 + 1)(−1)m
, (73)

and

x4(2t+1)m+4t+2+2s+1 =
x2s−2(2t+1)+1

(−1)m+1 . (74)

From (73) and (74), formula (54) easily follows.
(n), (o) Note that in this case

x4(2t+1)m+2s = x2s−2(2t+1)

2m∏
p=0

(2y−1 − b)(−1)p(2t+1)+s−t + b
(2y−2 − b)(−1)p(2t+1)+s+1 + b

= x2s−2(2t+1)
(2y−1 − b)(−1)s−t + b
(2y−2 − b)(−1)s+1 + b

Nm, (75)
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and

x4(2t+1)m+4t+2+2s = x2s−2(2t+1)

2m+1∏
p=0

(2y−1 − b)(−1)p(2t+1)+s−t + b
(2y−2 − b)(−1)p(2t+1)+s+1 + b

= x2s−2(2t+1)Nm+1, (76)

x4(2t+1)m+2s+1 = x2s−2(2t+1)+1

2m∏
p=0

(2y−2 − b)(−1)p(2t+1)+s−t+1 + b
(2y−1 − b)(−1)p(2t+1)+s+1 + b

= x2s−2(2t+1)+1
(2y−2 − b)(−1)s−t+1 + b

Nm(2y−1 − b)(−1)s+1 + b
, (77)

and

x4(2t+1)m+4t+2+2s+1 =
x2s−2(2t+1)+1

Nm+1 . (78)

Using formulas (75)-(78), and respectively the conditions |N| < 1, that is, |N| > 1, these two statements easily
follow.

(p) Using formulas (75)-(78) and the condition N = 1 we have that

x4(2t+1)m+2s = x2s−2(2t+1)
(2y−1 − b)(−1)s−t + b
(2y−2 − b)(−1)s+1 + b

,

x4(2t+1)m+4t+2+2s = x2s−2(2t+1),

x4(2t+1)m+2s+1 = x2s−2(2t+1)+1
(2y−2 − b)(−1)s−t+1 + b
(2y−1 − b)(−1)s+1 + b

,

x4(2t+1)m+4t+2+2s+1 = x2s−2(2t+1)+1,

from which 4k-periodicity follows.
(q) Using formulas (75)-(78) and the condition N = −1 we have that

x4(2t+1)m+2s = x2s−2(2t+1)(−1)m (2y−1 − b)(−1)s−t + b
(2y−2 − b)(−1)s+1 + b

,

x4(2t+1)m+4t+2+2s = x2s−2(2t+1)(−1)m+1,

x4(2t+1)m+2s+1 = x2s−2(2t+1)+1(−1)m (2y−2 − b)(−1)s−t+1 + b
(2y−1 − b)(−1)s+1 + b

x4(2t+1)m+4t+2+2s+1 = (−1)m+1x2s−2(2t+1)+1.

From these relations we see that the subsequences x4(2t+1)m+2s, x4(2t+1)m+4t+2+2s, x4(2t+1)m+2s+1, x4(2t+1)m+4t+2+2s+1
are 2k-periodic, from which the statement follows. �

4.3. Case a , 0, b = 0
In this case equation (17) becomes

xn =
xn−2xn−k−2

axn−k
, n ∈N0, (79)

and from formulas (20)-(23), for the case a , 1, we obtain

x2(2t+1)m+2s = x2s−2(2t+1)

( y−1

y−2at+1

)m+1

, (80)
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for m ∈N0 and 2s ∈ {k − 2, k − 1, . . . , 3k − 3}, and

x2(2t+1)m+2s+1 = x2s−2(2t+1)+1

( y−2

y−1at

)m+1

, (81)

for m ∈N0 and 2s + 1 ∈ {k − 2, k − 1, . . . , 3k − 3}, while for a = 1 we have that

x2(2t+1)m+2s = x2s−2(2t+1)

( y−1

y−2

)m+1

, (82)

for m ∈N0 and 2s ∈ {k − 2, k − 1, . . . , 3k − 3}, and

x2(2t+1)m+2s+1 = x2s−2(2t+1)+1

( y−2

y−1

)m+1

, (83)

for m ∈N0 and 2s + 1 ∈ {k − 2, k − 1, . . . , 3k − 3}.

Employing formulas (80)-(83), the following theorem easily follows. We omit the proof for its simplicity.

Theorem 3. Assume that a , 0, b = 0, k is an odd natural number, and (xn)n≥−k−2 is a well-defined solution to
equation (17). Then the following statements are true.

(a) If |y−1/y−2at+1
| < 1, then x2(2t+1)m+2s → 0 as m→ +∞, for every 2s ∈ {k − 2, k − 1, . . . , 3k − 3}.

(b) If |y−1/y−2at+1
| > 1, then |x2(2t+1)m+2s| → +∞ as m→ +∞, for every 2s ∈ {k − 2, k − 1, . . . , 3k − 3}.

(c) If y−1/y−2at+1 = 1, then (x2(2t+1)m+2s)m∈N0 are constant sequences, for every 2s ∈ {k − 2, k − 1, . . . , 3k − 3}.
(d) If y−1/y−2at+1 = −1, then (x2(2t+1)m+2s)m∈N0 is a two-periodic sequence, for every 2s ∈ {k − 2, k − 1, . . . , 3k − 3}.
(e) If |y−2/y−1at

| < 1, then x2(2t+1)m+2s+1 → 0 as m→ +∞, for every 2s + 1 ∈ {k − 2, k − 1, . . . , 3k − 3}.
(f) If |y−2/y−1at

| > 1, then |x2(2t+1)m+2s+1| → +∞ as m→ +∞, for every 2s + 1 ∈ {k − 2, k − 1, . . . , 3k − 3}.
(g) If y−2/y−1at = 1, then (x2(2t+1)m+2s+1)m∈N0 is a constant sequence, for every 2s + 1 ∈ {k − 2, k − 1, . . . , 3k − 3}.
(h) If y−2/y−1at = −1, then (x2(2t+1)m+2s+1)m∈N0 is a two-periodic sequence, for every 2s+1 ∈ {k−2, k−1, . . . , 3k−3}.

5. Domain of Undefinable Solutions

As we have seen in Section 2 if x−i = 0 for some i ∈ {1, 2, . . . , k + 2}, then such solutions are not defined.
The set of all initial values for which solutions to equation (3) under some natural conditions are not defined,
so called, domain of undefinable solutions of equation (3), is described here. Before we formulate the main
result in this section we will give definition of the notion ([34]).

Definition 1. Consider the difference equation

xn = f (xn−1, . . . , xn−s,n), n ∈N0, (84)

where s ∈ N, and x−i ∈ R, i = 1, s. The string of numbers x−s, . . . , x−1, x0, . . . , xn0 where n0 ≥ −1, is called an
undefined solution of equation (84) if

x j = f (x j−1, . . . , x j−s, j)

for 0 ≤ j < n0 + 1, and xn0+1 is not defined number, that is, the quantity f (xn0 , . . . , xn0−s+1,n0 + 1) is not defined.
The set of all initial values x−s, . . . , x−1 which generate undefined solutions to equation (84) is called domain of

undefinable solutions of the equation.

Now we formulate and prove the main result in this section.
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Theorem 4. Assume that an , 0, bn , 0, n ∈ N0. Then the domain of undefinable solutions to equation (3) is the
following set

U =
⋃

m∈N0

1⋃
i=0

{
(x−(k+2), . . . , x−1) ∈ Rk+2 : xi−2xi−k−2 =

1
cm
, when cm := −

m∑
j=0

b2 j+i

a2 j+i

j−1∏
l=0

1
a2l+i

, 0
}

⋃ k+2⋃
j=1

{
(x−(k+2), . . . , x−1) ∈ Rk+2 : x− j = 0

}
.

Proof. The consideration at the beginning of Section 2 shows that the set

k+2⋃
j=1

{
(x−(k+2), . . . , x−1) ∈ Rk+2 : x− j = 0

}
belongs to the domain of undefinable solutions to equation (3). Hence, now assume that x−i , 0, i ∈
{1, . . . , k + 2}, i.e., that xn , 0 for n ≥ −(k + 2). If such a solution (xn)n≥−(k+2) of equation (3) is not defined then
clearly xn−2xn−k−2 = −an/bn for some n ∈ N0. By using the change of variables (7) and the representation of
integers n ≥ −2, in the form n = 2m + i, m ≥ −1, i ∈ {0, 1}, equation (3) is transformed into the two equations
in (9), which means that a solution xn of difference equation (3) is not defined when y2(m−1)+i = −b2m+i/a2m+i
for some m ∈N0 and i ∈ {0, 1}.

Let
12m+i(t) := a2m+it + b2m+i, m ∈N0, i ∈ {0, 1}.

Then 1−1
2m+i(t) := (t − b2m+i)/a2m+i, m ∈N0, i ∈ {0, 1}, and specially

1−1
2m+i(0) = −

b2m+i

a2m+i
, m ∈N0, i ∈ {0, 1}. (85)

Note that the equations in (9) can be written in the form y2m+i = 12m+i(y2(m−1)+i), m ≥ −1, i ∈ {0, 1}, which
implies that

y2m+i = 12m+i ◦ 12(m−1)+i ◦ · · · ◦ 1i(yi−2), m ∈N0, i ∈ {0, 1}. (86)

From (85) and (86) it follows that y2(m−1)+i = −b2m+i/a2m+i for some m ∈N0, i ∈ {0, 1}, if and only if

yi−2 = 1−1
i ◦ · · · ◦ 1

−1
2(m−1)+i(−b2m+i/a2m+i), m ∈N0, i ∈ {0, 1},

that is,

yi−2 = 1−1
i ◦ · · · ◦ 1

−1
2m+i(0), m ∈N0, i ∈ {0, 1}. (87)

It is not difficult to see (similar to getting the formula for general solution to the linear first order
difference equation) that (87) implies

yi−2 = −

m∑
j=0

b2 j+i

a2 j+i

j−1∏
l=0

1
a2l+i

,

for some m ∈N0 and i ∈ {0, 1}. From this and since

yi−2 =
1

xi−2xi−k−2
, i ∈ {0, 1},

the result easily follows. �
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[41] S. Stević, J. Diblı́k, B. Iričanin and Z. Šmarda, On a third-order system of difference equations with variable coefficients, Abstract
and Applied Analysis, Vol. 2012, Article ID 508523, (2012), 22 pages.
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