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On a class of subalgebras of ¢(X)
with applications to fX\X.

by
Donald Plank* (Cleveland, Ohio)

W. Rudin has proved that, assuming the continoum hypothesis,
FNAN hLasg o dense subset of 2° P-points. A similar theorem of N. J. Fine
and L. Gillman states that, assuming the continuum hypothesis, FR\R
has o denge subset of remote points in AR. It is the purpose of this paper
to unify these results by giving a more general method of finding such
points. ’

Specifically, for & completely regular space X, we define a class
of subalgebras of C(X) called f-subalgebras. Examples of B-subalgebras
include €(X) itself and C*(X). With each §-subalgebra 4 of 0(X) we
associate a (possibly empty) set of points In BENX called A-points. We
show that, under the continuum hypothesis and with reasonable regtric-
tions on A and X, BX\X has a dense subset of 2° A -points. The Rudin
theorem is then obtained by observing that the P-points of SN\N are
precisely the C*(N)-points, and the Fine-Gillman theorem follows from
the fact that the remote points in AR are precisely the C(R)-points.

Our method considerably simplities the Fine-Gillman proof of the
existence of remote points in SR but does not have the power of their
method. Using their method, we show the existence of remote points in AR
which are not P-points of SR\R. We concluds by investigating a §-sub-
algebra H of ¢ (N) previously studied by R. M. Brooks. We correct Brooks’s
characterization of the maximal ideals in H and show that his characteriza-
tion holds precisely for the ideals M? where p is a P-point of SN\N
(equivalently, where p is an H-point).

1. Preliminarieé. The basie reference for this paper will be the
Gillman and Jerison text [3]; the terminology and notation will, with
only a few exceptions, be that of [5].

* This paper constitutes & portion of the aunthor’s doctoral dissertation written
mnder the supervision of Professor Leonard (illman at the University of Bochester.
The author wishes to thank Professor Gillman for his valuable advice and encouragement..
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The symbel X will always demote a completely rogular Hausdorfi
space. Specitic spaces, X in which wo shall be interested are the complex
plane C and its subspaces R of real numbers, Q of rational numbers, and N
of natural numbers.

In Sections 1 through 6, ¢(X) will denote the collection of real-valued
continuous functions on X, and O*X) will denote the subeollection of
bounded functions. The constant function on X of value » will be denoted
by ». Under the pointwise operations, 0(X) and C*(X) are algebras over R,
A subalgebra of O(X) will mean a subalgebra in the wsual sense which
containg the constant functions. By an ideal we shall mean a proper ideal.
In Section 7, the definition of subalgebra and ideal are changed slightly
to accommodate complex-valued functions.

A sobspace ¥ of X is sald to be O*-embedded if cach function
in O*Y) is the restriction of some function in (*(X); the expression
“0-embedded” iz defined analogously. Given X, therc is an essentially
unique compact Hausdorff space X which contains X as a dense C*-em-
bedded subspace (the extension of f to X will be denoted by f*). For
notational simplicity, we write X*= gX\X. For additional properties
of BX, the reader is referred to [5). We mention one: if f¢ O(X) and oR
denofes the one-point compaectification of R, then there iz a (unigue)
continuous f*: fX—aR which agrees with f on X

If 7 is a function, then we let 7+ denote the inverse map (of gets)
1t f maps X to R or ¢R, then Z(f) = f"(0) and Coz(f) = X\Z([). A zero-
set of X is a member of the family Z(X) = {Z(f): fs 0(X)}, and a cozero-
sei of X is the complement in X of some member of Z(X).

If 8 is & set, then |S] will denote the cardinality of S. As is standard,
we shall let ¢ denote the cardinality 2™ of the continuum. If § C X, then
olx 8, intx 8, and 9x 8 will denote, respectively, the clogure, interior, and
boundary of § in X (8x8 = clxS\intx§),

2. fp-subalgebras. Recall the definition of the hull-kernel topology
on a collection ¥ of prime ideals in & commutative ring .4 with an identity.

Detine § = {Pe7: (] § C P} to be the closure of the subset § of 4. It is
easy to verify that the sets -

Ey(a)={PeT: aeP}, acd,

are closed and constitute a base for the closed mets in 9. A dotailed de-
sceription of the hull-kernel topology is given in [4]. Let Ay denote the
-eollect‘ion of maximal ideals in A endowed with the hull-kernel topology.

f}wen a subalgebra A of C(X), we shall now introduce & family G4
of prime ideals in 4. The family &, willreduee to Ao« in the cases 4 = 0(X)
and 4 == C*(X). To motivate our definition, we observe that the maximal
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jdeals in O = 0(X) and C*== C4X) associated with the same point
pepX ean be characterized in the following parallel ways

M= {fe0: (fy)*(p)=0 for all g Ok
Mbe = {f 0% (fo)* (p)= 0 for all g C*}.

"The firgt characterization was discussed by Gelfand and Kolmogoroff [6];
the seeond is elementary (see [8], 7.2). Gelfand and Kolmogoroff proved
that the mappings p—~M5 and 15—>M‘é. are homeomorphisms of X onto
the maximal-ideal spaces Jbg and Aex.

The similarity of the expressions for M5 and Mp. suggests a generaliza-
tion of these ideals to any subalgebra A of O(X). Thus, for p < BX,
let us define

M = {f e A: (fg)(p)= 0 for all g e 4}.

It is easy to see that, for p e X, MY is the fixed maximal ides_ml {fed:
f(p)= 0} in 4, and we shall show pext that, for p e fX, MG is always
a prime ideal. But the general correspondence p—MY need not be‘one-
to-one, and, in spite of the notation, the ideal M% need 1_1013 be maxm;ail.
For example, in the algebra 4 of all real-valued polynomials on R, My is
the non-maximal ideal (0) for all p < SR\R.

Let us define G4 = {M%: p e X}

TEEoREM 2.1. For cach p ¢ pX, M% s « prime ideal in Aj hence €4
may be given the hull-Ternel topology.

Proot. Forp e X, @ # M% # A, since 0 ¢ M%andleé M5 q1earlyM’j
is an ideal in A. Next, M% is prime since whenever f,g e A mt} fé My
and g ¢ M5, there exist k, ke A such that (fR)*(p) = 0 and (gk)*(p) # 0;

“put then (fghk)*(p) # 0, whence fg¢ My.

Let us define ra: X -84 by zalp)= M%. For the special sub-
algebras ({X) and C*(X), we have observed that t¢ and 7o« are home-
omorphisms of X onto g and Mgr. Hence, ¢ and C* are §-subalgebras
of ¢(X) according to the following definition.

DErINTTioN 2.2. A subalgebra A of 0{X) is said to be a f-subalgebre
of Q(X) if r4 i3 a homeomorphism of pX onto Moa.

Por f ¢ A, write Salf) =74 [Bedf)]={p < fX: fe M3} =UOAZ((3”9) b
a closed subset of §X. By [5], 7.3, D, 7.2, it is immediate that
Solf) = clpx Z(f) for e o),

Soulfy = 2 for  feCHX).

Given f, g < A, wo have S(f) v 8alg) = Salfg) since es;oh M7 is prime,
and 84(f) n Salg) = 8a(f*+¢°) by the definition of M%.

(2.3)
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When no confusion can arise, we shall abhreviate oa, M5, 94, Hy,,
74 and Sy to b, MP, 8, B, v and S, respectively.

ProposITioN 2.4, Let A be o subalgebra of O(X).

(8) 7a: pX 4 is comtinuous, whence Sa €5 compact.

(D) 7a 45 o closed mapping if and only if 84 is o Housdorff space.

Proof. {a) For the basic closed set H(f), fed, wo have +~[E{f)]
= 8(f), & closed subset of BX. ‘

{b) Since 7 a contimuous map of the compact Tansdorfi space X
onto @, this is cleav (cf. [9], p. 2B2).

In order to give a simple characterization of f-subalgebras of (/{X),
we make the following definitions.

DEFINITION 2.5, A subalgebra 4 of ¢(X) is said to be f - determining
it {Z(f*): fe A} is a base for the closed sets in AX; A 1y waid to be olosed
under bounded inversion if f is a unit of 4 whenever fe.d with fi-1.

PROPOBITION 2.6. The following are equivalent for a subolgebra A
of U(X).

(2) A 48 fB-determining.

(b) G4 18 Hausdorff, and 7 is one-to-one.

(¢} © 4is @ homeomorphism.

Proof. (a) tmplies (b). Suppose that 4 is p-determining, and let
»,qe X with p # ¢. By [5], 6.5(b), there exist Z,, Z, ¢ Z(.X) such that
peelgx %y, q¢ cexZyand Z, v Z, = X, Choose f, ¢ ¢ 4 such that p ¢ Z(f*)
DelxZ) and g ¢ Z(g*) D clgx Zy; then fg = 0, f¢ M¥ and g ¢ M*. 1% follows
that G is Hausdorff and t is one-to-one.

(b) implies (¢). Tt § is Hausdorff, then 7 is a closed mapping, by 2.4.
If, in addition, v is one-to-one, then it is & homeomorphism.

(c) mplies (a). Let F be a closed set in X with p ¢ X, péF. It v
is a homeomorphigm, then {8{f): f ¢ .4} is a base for the closed sels in A,

80 there exists fe A such that FC 8(f), p¢ 8(f). Bub then (fy)*(p) # 0
for some ged, and FC8(f)C Z((fg)") .

An ideal 7 in A iz said to be abselutely conven if fe I whenover fe A
and g eI satisty |f] < |g|.

Prorosrrion 2.7. The following are equivalent for o subalgebra 4
of G(X). ’

(a) 4 s closed wnder bounded inversion.
(b) If I is an ddeal in A, then [ Z(f*) 5 ©.
fel

(e) Every ideal in A is contained in some M®.
() Hos C 8. !

(e) Bvery M e Mg is absolutely conves.

e ©
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Proof. (a) implies (b). Assume {a), and let I be an ideal in 4. Define
3= {Z(f*): fel}; to prove (b), it iz clearly sufficient to show that 3
has the finite intersection property. Thus, let fi,fi, ..., fo ¢ I; defining

g=fitfit o tfacl, we have Z(g*)=i\1 Z(fi). I Z(g*) =0, then

there exists ¥ ¢ R, v > 0, such that ¢ > 7; bub then gis a unit of 4, con-
tradicting the fact that g belongs to an ideal in A. So Z(y*) - B; hence 3
has the finite intersection property.

(b} implées (). Liet T be an ideal in 4. By (b), choose some p ¢ fX
guch that g*(p) == 0 for all g e I. But then, for fel, fgeI for all ge 4,
whence f ¢ M

(o) implies (d). Obvious.

(d) {mplies (e). Hach M? is absolutely convex.

(e) implies (). Since no maximal ideal contains 1, every fe A with
f»1 is o unit of 4.

We now classify the g-subalgebras of ¢(X), as promised.

TarorEM 2.8. The following are equivalent for a subdlgebra A of C(X).

(a) A is a §-subulgebra of C(X).

(b) A dis f-determining and closed under bounded inversion.

Prool. {a) implies (b). Suppose that A i a f-subalgebra of O(X).
Then A is B-determining, by 2.6, and closed under bounded inversion,
by 2.7.

(b) émplies (a). Suppose that A is B-determining and closed under
bounded inversion. By 2.6, 7 18 a homeomorphism of X onto G, and
by 2.7, 6 C G, Sinee § is T, no two ideals of @ are comparable. Clearly
then A6 =¢.

The topology of uniform convergence, OT u-topology, is' defined on
¢(X) by taking as & neighborhood base for ge ¢ the &-neighborhoods
Udg)= {fe0: |f—g| < &} A discussion of the u-topology may be found
in [8]. We now give a simple characterization of u-closed B-subalgebras
of ¢(X); this characterization clearly provides a large class of examples
of f-subalgebras.

Tupormy 2.9. A subalgebra A of C(X) is @ - closed , ﬁjsubalgebm
if and omly if ONX)C 4.

 Proof. Assume that 4 i3 a u-closed B-subalgebra, and let A=A~
~ C“'; clearly A* is a w-closed subalgebra of C*. Ne.xt, A* sepg;ra_ntes
points in AX. For, let p,q ¢ X with p # ¢- Sinc'e A is _ﬁ-deterrmmng,
there exists f ¢4 such that f*(p)= 0, f*(q) # 0. %mce 4 is closed under
bounded inversion, §= (1 47t e A% clearly g'(p) = 1, g) #1. By
the Stone—Weierstrass Theorem, 4* = 0%, whence cxC A.
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Suppose, conversely, that (* C A. Now, A is u~-cloged; for let fe ¢
be in the u-closure of A, Then there exists g « 4 such that |f—gl <1,
which means that f={f—g)+ge "+ 4 CA, Since C* iy f-determining,
A it also. Clearly A is cloged under bounded invergion,

As a corollary, C*(X) and €(X) itself are u-closed f-subalgebrag:
of O(X). We remark that a u-closed subalgebra of O(X) nced not bhe
3-determining or closed under bounded inversion. An example iy the
algebra of all real-valued polynomials on R.

3. The A-points of SX\X. Let 4 be a S-subalgebra of 0(X).
We shall now associate with 4 o set of points in X* = SXN\X called the
A-poinis of X*. Three examples of f-subalgebras 4 and their A -points
will be examined separately in Sections 4, 5 and 7. First, we introduce
some notation. By 2.6, the collection {Sa(f): fe A} ir a basge for the closed
gets in BX. For fed, define 84(f) = Sa(f) X*; then the collection
{8%(1): fe A} is clearly a base for the closed sets in X*—a natural base
associated with 4. When no confusion can arise, we shall wxite 8%(f)
for §%(f). Since most of our topological considerations will take place
in X*, let us agree that the symbols “cl”, “int”, and “6”, without sub-
seripts, refer to the fopology of X*.

DrFmnITion 3.1. Let A be a f-subalgebra of C(X). A point p e X*
is called an A-point of X* if, for all fe 4, p ¢ 284(f).

Clearly a point p ¢ X* is an A-point if and only if 8*(f) iz a neigh-
borhood of p whenever f ¢ 4 and p ¢ 8*(f). The set of A -points is precisely
the setloﬁ (X*\28%(f)), an intersection of a family of 14| dense open subsets
of X*,

Let us now prove an existence theorem for 4 -points. A space X is.
§a;id to have the G- property if every nonvoid Gs-subset of X has a nonvoid.
intevior; equivalently, if every nonvoid zero-set in X has & nonvoid
fnterior ([5], 8.11(b)). The following analogue of the Baire category theorem.
is essentially proved in [11], 4.2.

. ProOPOSITION 3.2. Let ¥ be a nonwvoid locally compact Hausdorff spase:
with the Gy - propmy.. If D is o family of at most 8, dense open subsets of X,
Th(e\ni)fl};)zzi dense in Y. If, in addition, Y has no isolated poinis, then

_Prooi‘:. We may write D= {Us: a< o). Suppose that G iy an
arbitrary nonvoid open set in ¥; we shall show that ([ D) ~ G # @.
Let o < w,, and suppose that there is & collection {Vy: g < «} of nonvoid
open sets in @ satistying the three conditions

(a) clyV; is compact for § < a,

(b) Vp C Up f07' '3 << ay and

() poa Vs 0.
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Now [ Vs is a G,-subset of ¥, and therefore has a nonvoid interier
<

which must mee$ the dense open set U.. By local compaetness, there is

a nonvoid open set Va in ¥ such that clgV, iz compaet and clgVsC Uz

~ (N Vs C Tanr G in fact, it Y has no isolated points, there are two
<o

sucil Vs with disjoint closures. Thus, {V: @ < e} is defined inductively

in guch a way that {drVa.: e < e} iv s collection of compaet subsets with

the finite intersection property satisfying clyV, C Us ~ G for all o< a.

S0 {N D)~ GO clrVas# @. Tt ¥ has no isolated points, at each stage
a<oy

of the construction, there are two choices of V, with disjoint closures;
hence | D = oM,

Tet us agree to use the symbol “rH]? to indicate that we are
assuming the continuum hypothesis (¢ = %) A space X is said to be
realcompact if, for every p € X*, there is a Z ¢ Z(fX) such that p e ZC X*.

TuzorEM 3.3. [OH]L Let X be locally compact. and realcompact but
not compact. If 4 48 o f§ -subalgebra of C(X) with |A]= ¢, then X* has
o dense subset of 2° A-points.

Proof. Clearly X* is a nonvoid compact set. In [2], 3.1, it is gshown
that, if X is locally compact and realcompact, then X™* has the G- property.
The realcompactness of X prevents isolated points in X* For suppose
that p were isolated in X*. Then there would be 2 zero-set neighborhood Z,
of p in X such that Z, ~ X* = {p}, and by realcompactness, there would
be a Z, « Z(pX) such that p € 2, C X*. But then we would have {p} = Z; ~
~ Z, e Z(BX), which by [5], 9.6 would be impossible.

Let D = {X"\a8*(f): fed}, a family of ¢ (= 8,) dense open. subsets
of X*. TLetting X* play the role of Y in 8.2, we conclude that nois
a dense subset of X* with cardinality at least 2°. But, gince 4 is a 5-'sub—
algebra of 0(X), |X*| < 2 = 2°, so that | P| = 2°. As we have pointed
out. D is the set of A-points of X"

’lepose that {de: ae A} i8 2 family of ﬂ—snbalgebms of 0(X). Th.e«
set of points in X* that are gsimultanecusly A,-points for all e 4 I8
given by

N Enes)
acd fedx
An obvions modification of the proof of 3.3 gives the following generaliza-
tion.

TegorEM 3.4. [OE]. Let X be locally compact and realcompact b'ut
not compact. If {dat o€ 4} 48 a family of f-subalgebras of C{X) 'wv,th;
14| = ¢ for each ae 4 and with (4| < ¢, then X* has a dense subset of 2
points which are simultaneously Aq-points Jor all ae A. 4

Tf X is separable and A is a p-subalgebra of ¢(X), then obviously
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|4] = ¢. Thus, if X is separable, then the cardinality restrictions on the
§-subalgebras in 3.3 and 3.4 are redundant. However, a locally compact,
realcompact, and noncompact space X may he nonseparable and stil]
satisfy |€(X)| = ¢. For example, let X be a noncloged cozero-set in N*
(such exists by [5], 4K.1).

Sinee the maximal ideal space of a §-subalgebra is TTausdorif, we can
apply many of the results of [4] to f§-subalgebras. For example, every
prime ideal in a §-subalgebra 4 i8 contained in a unique maximal ideal M7
of A ([4], 3.4). Bollowing [4], we may define for & B-subalgebra A of 0(X),

0% = {fe A: p e mtgeSa(f}},

where p e X. Clearly 0% is an ideal in A4 contained in M%. We shall often
write OF for G5, By [4], 2.6, each O” iy an intersection of primoe ideals
in 4, and by {4], 3.4, & prime ideal in 4 is contained in M it and only
if it contains OF. Olearly then M® properly contains some prime ideal
in A if and only if 0% = M”.

ProPOSITION 3.5. If A is o f-subalgebra of C(X) and p e X*, then
MY = 0% implies that p is an A-point of X*

Proof. Suppose that M¥ == 0%, Tf, for f e A, we have p e §%(f), then
p eintpr 8(f), whence p < int §*(f). Thus, p is an 4-point of X*,

The converse of 3.5 is false. For we know, by 3.3, that [CII] N* has
& dense subset of 2° C*N)-points; however, Mp~== 0% I8 never true
for p e N*. .

4, O*—poi.nts. ‘We now disouss a simple example of .4 -pointy, name-
1y, 13?16 C*-points. A point pe X 13 a P-point of X it any @,-subset
{equivalently, any zero-get) of X containing p is a neighborhood of p.

TEEOREM 4.1. A point in X* 48 a OYX)-point if and only if it s
a P-point of X*.

n ]%’roof. Evidently, & point in X* iy a P-point of X* if and only
{f it is nok an element of the X*-boundary of any zero-get of X¥, and
iy a O"(X)-point i and only if it is not an element of the X*-houndary
of the juraee on X* of any zero-set of fX. Certainly then, every I’-poind
of X* is.a O%X)-point.

) But the converse holds. For let p 87, where Zy ¢ Z(X*). There
is a G.,-gubset 8 of X such that 8§ ~ X* = Z,, By complete regularity,
there exists Z, e Z(BX) such that p « Z, C 8. Surely then p < 8(Z, 1) X*).

Combining 4.‘1 and 3.3 gives us the following special cage of & well-
known. result. For an even stronger result, see [5], 9M.3.

COROLELARY 4.2 (Rudin)., [CHIL. Let X be locally compact and real-

compqat but not compact. If |0(X)| = ¢; then X* has a dense subset of 2°
P-points. .
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5, C-points. In this section, we shall turn our attention to the
@-points of X*; thus, we shall consider ¢(X) as a f-subalgebra of itself.
We shall relate the concept of ('-point with that of remote point, defined
by Tine and Gillman,

PropostrioN B.1. If X is completely uniformizable, in particular if X
is redlcompact or metrizable, then nb8*(f)= (intex S(f)) n X* for ol
feG(X).

Proof. Obviously, (inbsx8(f)) ~ X* Cint8*(f). Let p « int §%(f); then
there existy ¢ « ¢ such that p « XN\S*(g) C 8*(f). But then, g¢ M* and
fge Oy = q ~M". In [10] it is shown that, it X is completely uniformizable,

€

then ¢, consisty of all ke ¢ with compact support. Thus, p ¢ clax Z(g)
(see 2.3), and K == clxCoz(fg) is compact, Hence, p ¢ BX\(K w elx Z(g)
C clpx Z(f), so that p e intgx 8 (f).

DEFINITION 5.2." A point p ¢ AX is called a remole point in AX if p
is not in the BX-closure of any discrete subset of X.

A remote point in AX necessarily lies in X*. Following [5], we associate
with each maximal idesl M% in C(X) the e-ultrafilter

AP = (Z(f):.f e MB) = {Z e Z(X): peclpxP} (s 2.3).

THEROREM 5.3, Let p e X* where X ds o melric space, and consider
the following fowr conditions.

(a) p is @ C-point of X*.

(b) A% has no member which is nowhere dense.

(e) MY == 0%.

(d) p is a remote point in 8X.

Conditions (a), (D) and (¢} are mutually equivalent and are implied
by (d). All four conditions are equivalent if X has no isolated points.

Proof. (a) implies (b). Suppose that p iy a O-point, and let Z « 4%,
Then p « int(clgx Z\X), and by Proposition 5.1, p e ¥ = intgxelsx Z. Thus,
@ %V AXCZ and Z is not nowhere dense. :

(b) dmplies (). Assume (b), and let fe M. Since X is a metric space,
we may find g ¢ C{X) such that Z(g) = alxCoz(f); hence X = Z(f) v Z(g).
Now,it p « clgxZ(g), thenp ¢ clpx(B{f) ~ Z(g) = olpxdx Z(J), contradicting
our hypothesis, since 2xZ(f) is nowhere dense. Thus, p e fXN\elxZ(g)
C clyx Z(f), so that fe0”.

(¢) implies (a). This follows from 3.5.

(d) implies (b). Suppose that AP has a nowhere dense member Z.
Tt is shown in [7], p-188 (VII), that, if Z is a cloged nowhere dense set
in the metric space X, then there is a discrete subset D of X such thab
DuZ=cxgDand DnZ=9. Thus pe lpx Z C clpx D, 80 that p 18 nob
a remote point.

Fundaments Msthematlcae, T. LXIV 4
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Assume that X has no isolated points; we shall prove that (b)
implies (d). Suppose then that p is not a remote point; then there is
a discrete subset D of X such that p e clgxD. Since any peint common
to D and intzclgD would be isolated, one easily sees that Z == elxD i
nowhere dense; clearly Z ¢ 4.

The equivalence of (b) and (d) appears in [8] for X = R; we wish
$o thank Mark Mandelker for communicating (b) implies (¢).

TEEOREM 5.4, [OB). If X is a separable, locally compaot, noncompaot
meiric space withowt isolated points, then B has a collection of 2° remote
points which forms a dense subset of X*.

Proof. Since X iz a separable metric space, it is clear that X is
realcompaet and |0(X)|=c. (In fact, [OH] for a metric space X, the
geparability of X is equivalent to the condition |0(X)|==ec.) By 3.3,
X* has a dense subset of 2° - points, and by 5.3, the ¢-points are precisely
the remote points in AX.

An obvious corollary to 5.4 is that [CH] R has a collection of remote
points which is dense in R*, This result was proved by Fine and Gillman
in [3] by another method. Our proof appears to be simpler than the Fine~
Gillman proof, but their method has wider applieation; they show thai
[CH] #Q has remotie points, whereas our method fails in this case (Q* does
not have the Gs-property). Using the methods of [3], we now oxtend 5.4

to include the case X = Q by removing the local compactness from. the
hypotheses.

TEHEOREM 5.5. {OH]. If X is a separabls, noncompact melric space
without isolated points, then BX has a collection of 2° remote points which
forms a dense subset of X*.

Proof. Let ¥ be a cloged neighborhood in X of any point in X*.
Since X is a separable metric space, X iy realcompact and has no more
than &, (== ¢) dense open subsets. By [3], 2.8, there exists a family F
of zero-sets of X such that & has the finite-intersection property, N & = @,
and every dense open subget of X contains a member of ¥, Since X is real-
compact, we may constrmet F such that each of ity members is con-
tained in ¥ (see [3], 2.5). Now let 4 =={pefX: FC A"} = (Lclpr,

Ze

a nonvoid .compact subset of ¥ ~ X* A simple modification of the
proof of [3], 2.3, guarantees that 4 iz infinite; beunce, by [5), 9.11, we
have [4| > 2°. As in the proof of 3.3, |X*| < 2°, whence |4] = 2°. Now,
for p < 4, A? confains no member which is nowhers dense; each such p
is remote by 5.3. '

Thus, [CH] Q* has C-pointg but no (*-points {see [8), 6 0.53). We
remark that 5.3 and 5.5 remain true if we assume only that the set of
solated points in X has compact closure.
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6. Remote points in fR vs. P-poinis in FR\R., We now con-
centrate on the case X = R. Let P denote the set of P-points of R,
T denote the set of remote points in fR, P=RX"/D, and R#R*\Iib
We shall now show that no inclusions hold between the sets P, R, P
and B. First we prove a preliminary regult. We call X an F-gpace if every
eozero-set in X is (*-embedded in X. Every ¢*-embedded subset of
an F-gpace is an F-gpace ([B], 14.26), N* and R* are coI_npa,ct B -spaces
([8], 14.27), and every countable subset of an F-space is O*-embedded
([5], 14N.5).

ProposITioN 6.1. If X iz an infinite compact ¥ -space, then X contains
at least 2° non-P-points.

Proof. Let X be an infinite compact F-space. Then, by [5], 0.13,
X contains a conntable diserete set D = {pn: neN} As a countaple
get, D 15 C*-embedded in X, whence clxD = pD ([?], 6.9(a)). Define
fe CHX) by letting f(pu} = n~t for n eN and ex_tendmg over X. Then,
for every peD*=clxD\D, p e Z(f), but Z(f) is not a z}elghborhood
of p. Thus, every one of the 2° points in D* is a non-P-point of X.

As a corollary, N* and R* each have 2° non-P-Eoints. L

TazoxEm 6.2. [CH]. The seis PR, P AR BAR and PrR
are each dense subsels of R* of cardinal 2°.

Proof. (P~ R). Apply 3.4 to the family {C(R), C*{R)} of B -sub-
&1ge13(r§:io% (;;llfll)f ~ R). Let V be a closed neighborhood in AR of‘any
point in R*. Then V ~ R is nonpsendocompact and is. G’—gmbedded inR
([5], 1F.4); hence V ~ R containg & copy D of N .Whlch is ] -embeddeg
in R {([5], 1.20). Then D*= g \D CV ~R¥, sinee .D is close«_l and
0*-embedded in R. A poing in D* is a P-point of D* if and ‘only.n" it is
a P-point of R* ([8], 4L.2, 9M.2). But D* is homecomorph.lc with N%,
<o that D* has 2° non-P-points by 6.1 and %(;H) 2° P-points by 4.2.

oint of D* is a remote point in SR. o
Olem(ll%’r\nucl)ﬁ)l.) Lgt ¥ be a closed neighborhood in SR of any point in R:.
As in the proof of 5.5, construct an infinite compact set 4 of rfamcis e
points in AR. Since R* is an F-gpace, the 0’*—e'mbedded subsetfﬁt ];s a; 12;
an I'-space. Then, by 6.1, 4 has 9° non«P-pOllltB, .amd each o - ese e
a non- P -point of R*. Thus, ¥ ~ R* has 2° points which are non - - poil:
of R* and remote points in AR

7. The algebra H. In this section, we shall let O(X) denote the

algebra (over the complex numbers C) of complen-valued continuous

functions on X and C*(X) the subalgebra of bounded iunetilons. Atsﬂ;
algebra of C(X) will mean a subalgebra in the usnal sense which conta

the constant functions and which is self-adjoint (closed under the forma,tuf:
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of complex conjugates). By an ideal we shall mean a proper self-adjoint
ideal. 'With these conventions, it is not difficult to see that all the results
$hat we have obfained for subalgebras of 0(X) in the real case are true
in the complex case as well.

Following R. M. Brooks [1], let us define

H = {feC(N): imsupf{n) < 1}

where f(n) = |f(n)[" for n < N. It is shown in [1] that H is a subalgebra
of 0(N) containing C*(N), so by 2.9, His a u-cloged f-subalgebra of ¢(N).
Thus, bz is homeomorphie with N ([1], 2.4).
Propostrion 7.0, H = {fe C(N): f* <1 on N*%. A function f<H is
o unit of H if and only if Z(f) =9 and [* =1 on N*.
Proof. The first part follows by observing that limsupf(n)
n—roa

= sup{ff(p): p «N*} for any real-valued fe O¥(N). The second part is
clear since fi' = § for f,qeH.

_ Pollowing Brooks, let us define, for p ¢ N*, the collection JP = {fc H:
Ffp) < 1} of non-units of H.

ProPOSITION 7.2, For p «N*, J¥ 48 a prime ideal in H comtained
in MP, whence O° CJ® C M”.

Proof. We first note that feJ” implies f*(p)=0. For suppose
that 7%(p) < 1. Then there existy § < 1 and a neighborhood V of p in gN
such that |f(n)["™ < 6 whenever n ¢ ¥ ~ N; that is, |f(n)| < & whenever
neV ~AN. If U is a neighborhood of p in fN, then U ~n ¥ contains arbi-
trarily large n eN yielding arbifrarily small positive values of |f(n)[;
hence f*(p) = 0. .

J? is easily seen to be an ideal (see [1], 2.3.4, 2.3.5) and is clearly
prime, since fg¥=f%5%. Suppose feJ”, whence fy eJ? for all g e H; then
(f9)*(p) = O for all g ¢ H, whereby f ¢ M”. Since J* C M7, it follows from [4],
3.4, that O° CJ%. '

By considering H as & topological ring, it is shown in [1], 4.9, that H
ha.ﬁiﬂ at least one nonmaximal prime ideal. We can now improve on this
result.

ProrosITION 7.3, H has 2° nonmawmimal prime ideals.

' Proof. Since |H|=c¢, H has no more than 2° nonmaximal prime
ideals. By [4], 2.6, 3.4, it suffices to prove that M” s 0" for p « N*. Thus,
define f(n) = n—* for ne N, and let p ¢ N* be arbitrary. Since fin) = n-4,
G.lea,rly fed?C M. It is easy to see that 07 == 0% ~ H. Therefore f¢ O,
since Z(f) = @. )

X Let us now give a simple characterization of the basic cloged set
S*(f) for fe H (ef. 2.3). Pirst we state a lemma.
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Levma 7.4. Let p e N* and fe H. If 2 =1 on some N*-neighborhood
of p, then fé M” .

Proof. Suppose that f¥ =1 on some N*-neighborhood ¥ of p. We
may assume that ¥ = el ENE for some subset E of N and that f(n) > ¥
for n ¢ B. Define g« ¢(N) by letting g(n) = f(n)™ for n ¢ H and g(n)=1
for n ¢ B. Then LmJ(n) = 1, so that ge<H. Furthermore, (f§)*(p)=1,

100

so that f¢ M. ‘
PrOPOSITION 7.5. For feH, S*f) is a regulor closed subset of N*;
moreover, 8*(f) = cl{g e N*: 7% (g) < 1} and mb8*(f) = {g «N*: f* () <1}
Proof. By 7.2, it is clear that cl{g e N*: FRg) < 1} C 8%(f). Suppose
that p e 8%(f). By 7.4, in every N*-neighborhood of p, there is a point ¢
such that F%(q) < 1; that is, p « cl{g e N*: f(g) < 1}. _
By Proposition 7.2, we have {ge¢N*: gy < 13 Cint 8*(f). Suppose
that p ¢ int§%(f) and F’(p)=1; we shall deduce a econtradiction. Let

(ng)ren be an inereaging sequence in N such that limf(ng) = 1. Lefting
koo

B = {ny: k ¢ N}, we may assume that ol ENE C §*(f). Then fP=1onthe
nonvoid open subset clnEN\E of 8*(f), and this contradiets 7.4.

In [1), it is stated that M? = J", for all p « N*. We now show that
this is false; in fact, the equality holds precisely when p is a P-point
of N*.

TaworEM 7.6, The following are equivalent for a point p e N

(a) JP = M7

(b) p is an H-point of N*

(¢) p is a P-point of N*.

Proof. (a) implies (b). Suppose that 4% = M". It p e 8(f), then
p e {geN*: 77 (g) < 1} = int 8*(f). Honce, p is an H-point of N*

(b) implies (c). Let » & non-P-point of N*, and let g C(fN) be
a real-valued funetion which is nonconstant on every N*-neighborhood
of p; we may assume that 0 <g <1 and g(p) = 1. Let f(n) = g(n)" for
n eN; then f = g|N, so that f* = g. Thus f ¢ H, and by 7.5, p ¢ int (/).
Now, in every N*-neighborhood of p, there is a point g such that f Plg) < 1,
by the construetion of f. So p « 87(f), by 7.5. Hence, p is not an H-point
of N*.

(¢) dmpliss (). Suppose that fe M and f¢J%, Then f%(p)=1, but
by 7.4, f° is not identically 1 on any N*-neighborhood of p. Clearly then,
p is not a P-point of N*.
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Fundamental retracts and extensions
of fundamental sequences

by
Karol Borsuk (Warszawa)

In order to extend some standard notions of the homotopy theory
onto arbitrary compacta X, ¥ lying in the Hilbert space H, I introduced
in [2] the notion of the fundamenial sequence from X to Y, defined a8
an ordered triple f = {fx, X, X} consisting of X, Y and of a gequence {fi}
of (continuous) maps of H into itself satisfying the following eondition:

TFor every neighborhood V of ¥ (neighborhoods are understood here
always in the space H) there cxists a neighborkood U of X such thai

folU = fraafU in V. for almost all k.

The set X will be said to be the domain, and the seb Y—the range
of the fundamental sequence f.

Setting ix(z) = @ for every point z e H, we immediately see that
for every compactum X CH the triple {ix, X, X} i8 & fundamental se-
quence ix, called the fundamental identity sequence for X.

Tt ¢ is a point of & compaetum X C H, then setting e(z) = ¢ for every
point @ « H, we get a fundamental sequence gx = {0, X, X} called a con-
stant fundamental sequence for X.

Let us observe that if ¥ is a closed subset of a compactum X C H,
and Y is a cloged subset of a compactum YCH, and it f= {fs, X, T}
is a fundamental sequence, then f=1{f , X, T} is also & fundamental
sequence. -

Two fundamental sequences f= {fx, X, Y} and g= {gx, X, ¥} ave
said to be homotopic (in gymbols: f =~ g) if for every neighborhood ¥
of ¥ there exists a neighborhood U of X such that

fo/U = /U in ¥V for almost all .

The fundamental sequences from X to ¥ may be congidered as & gen-
eralization of the maps of X into ¥, and the classes of all homotopic tun-
damental sequences from X to I (called fundamental classes from Xt X)
may be considered as a generalization of the homotopy classes of maps
of X into Y.
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