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ON A CLASS OF TRANSFORMATIONS WHICH HAVE
UNIQUE ABSOLUTELY CONTINUOUS

INVARIANT MEASURES
BY

ABRAHAM BOYARSKY1 AND MANNY SCAROWSKY

Abstract. A class of piecewise C2 transformations from an interval into
itself with slopes greater than 1 in absolute value, and having the property
that it takes partition points into partition points is shown to have unique
absolutely continuous invariant measures. For this class of functions, a
centra] limit theorem holds for all real measurable functions. For the
subclass of piecewise linear transformations having a fixed point, it is shown
that the unique absolutely continuous invariant measures are piecewise
constant.

1. Introduction. In [1], Lasota and Yorke established the existence of
absolutely continuous invariant measures for the class of piecewise C2 point
transformations (see Definition 1 below) t from an interval into itself and
satisfying inix\dT/dx\ > 1, wherever the slope exists. In [2], it was shown that
if a function in this class has n discontinuities, then there are at most n
independent, absolutely continuous invariant measures under t.

The purpose of this paper is to show that a certain subclass C of the
aforementioned class of functions possesses unique absolutely continuous
invariant measures. Functions in (2 are characterized by a cornmunication
property on the intervals that form the partition of the function. Using the
method of symbolic dynamics [3], this property establishes the existence of a
dense orbit, from which uniqueness follows.

In [9], it is shown that a central theorem holds for the C2 transformations
of [1] for a class of real Holder functions. In §5, we obtain a central limit
theorem for transformations in 6 in a simpler way, and the theorem holds for
all real measurable functions. In §6, it is shown that if t G 6 is piecewise
linear and has a fixed point, then the unique absolutely continuous measure
invariant under r is piecewise constant.

2. Uniqueness theorem. Denote by (£,, || ||) the space of all integrable
functions on the interval J = [a, b]. Let m denote the Lebesgue measure on /.
Let t: J -* J be a measurable nonsingular transformation. By "nonsingular"

Received by the editors April 10, 1978 and, in revised form, August 1, 1978.
AMS (MOS) subject classifications (1970). Primary 28A65; Secondary 60F05.
'The research of this author was supported by a National Research Grant No. A-9072.

© 1979 American Mathematical Society
0002-9947/79/0000-OS 10/$06.00

243

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



244 ABRAHAM BOYARSKY AND MANNY SCAROWSKY

we mean that m(T~x(A)) = 0 whenever m (A) = 0 for A a measurable set. A
measure ¡i is said to be invariant under r if for all measurable sets A c J, we
have p.(A) = h(t~1(A)), where t~x(A) = {x G J: t(x) G A), ¡x is absolutely
continuous if there exists an/ G £,,/(x) > 0, such that fi(A) = fAf(x)dx for
every Lebesgue measurable set A g J. We refer to / as the invariant density
(of /x) under t. It is well known [1] that the invariant density/is a fixed point
of the Frobenius-Perron operator Pr: tx -► £, defined by

PJ{X)  =   JZ    f    ,„        n/W*dx   ^T-i([o, x])

Definition 1. A transformation t: J^*J is called piecewise Cr if there
exists a partition 3 = {(a0, a,), (a,, a2), . . . , (aN_x, aN)}, a0 = a, aN = 6,
such that for each i G (1, . . ., N), t restricted to (a,_,, a,) is a C function
which can be extended to the closed interval [a,_„ a¡] as a C function, t need
not be continuous at the points a,.

Definition 2. Let Q be the partition points of the partition í. We say the
transformation t: J -» J takes partition points into partition points if r(Q) G
Q. If t is discontinuous, we require T(a,_)andT(a,+) to be in Q.

The transformation t is often called a Markov map [14].
Definition 3. We say that the partition 5 has the communication property

under the transformation r: /—» J if for any /,, 7, G 5, there exist integers n
and m such that 7, c t"(/,) and V, c rm(I¡).

A point transformation t: /—»/ is in ctos 6 if it satisfies the following
conditions for the fixed partition Í :

(1) t is piecewise C2 with respect to 5,
(2) vaixeJ\dT/dx\ > 0 and infx6y|í/T'/í/x| > 1 for some integer /,
(3) t' takes partition points into partition points,
(4) the partition í has the communication property under t.
In view of [5], condition (1) can be replaced by (V): t is piecewise C1 and

t, = tL    „jj has the property that 1/|t,'| is of bounded variation on [a¡_x, a¡].
Without loss of generality, we shall assume that r(Q) c Q. If this were not

the case, we would define a new partition 5 whose partition points Q would
satisfy t(Q) c Q. It is clear that properties (1) and (2) would remain valid for
the new partition. Note that condition (3) is equivalent to the statement that
the partition points are eventually periodic. The point x G J is an eventually
periodic point of the function t if there exists an n = n(x) such that t"(x) is
periodic where t" = t°t°  •••   ° r, n times.

Our first objective is to show that a large class of transformations t admit a
dense orbit. To do this, we use symbolic dynamics [3]. We associate with each
of the N intervals [a¡_x, a¡] a symbol such as a, ß, y, . . . and code the orbit
by a sequence <x> = .aßy • • • , if x G 1(a), t(x) G I(ß), r2(x) G I(y), . . .
where 1(a) is the interval in á whose symbol is a. Note that this coding is well
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TRANSFORMATIONS WITH CONTINUOUS INVARIANT MEASURES 245

defined except for possibly the points Q eventually entering the partition
points Q. We shall need the following three lemmas.

Lemma 1. Let r: J-*J be piecewise monotonie and satisfy condition (2)
defining class G. Then <x> = <( v) implies x = v.

Proof. Assume x =£ v, but <x> = < v>. By condition (2), there exists an
integer / such that

%\>ä>l. (1)
Now, <x> = <>>> implies that t"/+,(x) and t"/+'(v) belong to the same
interval for each n and /, 0 < / < / — 1, but (1) imphes that

\rnl+i (x) - Tnl+i (y)\ > d"c'\x - v|^ oo,        i < n - I,

as n —> oo, where c = infJT'|. This is a contradiction.   Q.E.D.
The converse of Lemma 1 is true if x, v £ Q. With a convention for coding

points x G Q, the converse of Lemma 1 is true also for x, v G Q.

Lemma 2. Let r be as in Lemma 1. If a = . a ^0:3 • • • ¿sa sequence with
the property that r(I(ak)) D I(ak+1), k = 1, 2, 3, ... , r/je« r/iere exw¿$ a
unique x G J such that <x> = a.

Proof. Let J¡ = (x G J: x G I(ax),. . ., t'_1(x) G I(a¡)}. Each 7, is a
nonempty closed interval since t is monotonie on each interval, and J¡ D Ji+X
by the hypothesis. Thus D ,•>„ ̂ / ^^' an^ by Lemma 1, D ,>o J¡ consists of a
single point.   Q.E.D.

Lemma 3. Let t be as in Lemma 1. Let £ c 5 èe a collection of intervals
satisfying the communication property: for IX,I2 G £ //lere emf n and m such
that Ix G rm(I2) and I2 c t"(Ix). Assume | contains at least two intervals and
let V = U /e{7. Then there exists an x G V such that (t'(x)} ¿ï ¿/e/we in V.

(Note that if t satisfies condition (4), there exists a dense orbit in all of J.)
Proof. Consider the set of all possible finite sequences .axa2- • • ak, where

I(oj) GÍ, j =\,2,...,k,   and   </(«,)) d /(a,+ 1),   1 < j < k - 1,   k =
1, 2, 3, ... . This set is countable. Let S,, 52, S3, . . . be an enumeration, and
form the sequence

<x>= -SXTXS2T2S3T3 ■ ■ ■ ,

where the T¡ are finite sequences joining the last symbol of S¡ to the first
symbol of Si+X. That this can be done follows from the assumption that there
exists n such that Tn(I(a)) D I(ß) for 1(a), I(ß) G |. Thus, by Lemma 2, a
real x exists corresponding to the coding <x>.

Now, given v G V and e > 0, we claim there exists n such that \t"'(x) — y\
< e. To see this, note that for any m, the symbol S corresponding to
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v G 1(a), r(y) G I(ß), . . . ,Tm(y) G I(y) occurs in the coding of x. This
implies that for some n, t"i+'(x) and t'(v) belong to the same intervals,
/ = 0, 1, . . . , ml. Now

|t"'(x)-v|<Í|t<" + »'(x)-t'(v)|

<^\r(n+m)'(x)-T^(y)\<^<s,

for m sufficiently large, where M = maxxey t(x). Thus the orbit of x is dense
inF.

Remark. There are uncountably many ways of ordering Sx, S2, S3, ...
and, in general, these result in uncountably many distinct sequences. Thus
there are, in general, uncountably many such x.

Theorem 1. Let t G C. Then r has a unique absolutely continuous invariant
measure.

Proof. From [1], we know there exists an absolutely continuous measure
invariant under t. Let us assume there are two such measures with densities/,
and f2. In view of [2, Lemma 2.6], the following two facts follow: (1) there
exist two invariant densities ff > 0, /J > 0, \\ff\\ = 1, ||/J"|| = 1, such that
Sx = sptff and S2 = sptf^ are disjoint, where spt/denotes the support of/,
the set on which/(x) is nonzero, and (2) S¡, i = 1, 2, is a union of disjoint
closed intervals.

Now, let x G J be a point which has a dense orbit in J. By Lemma 3 such a
point exists. Let v, G int S¡, i = 1, 2, where int denotes interior. The dense-
nessof the orbit (t"(x)} implies there exist points z, = t"'(x) and z2 = t^z,)
such that z, G int S, and z2 G int S2. By the piecewise continuity of t there
exists an open ball Ox centered at z, and in Sx such that for zx G 0„
z2 = t"2(zx) G int S2. But this contradicts the fact that Sx and S2 are invariant
sets [2, Lemma 2.5], i.e. t(S¡) = S¡ a.e. Hence there exists only one absolutely
continuous invariant measure under t.    Q.E.D.

Example 1. Consider the piecewise linear continuous function t: [1, 5]-»
[1, 5] defined by t(1) = 3, t(2) = 5, t(3) = 4, t(4) = 2, t(5) = 1, where t is
linear on each segment [n, n + 1], n = 1, 2, 3, 4. The line segments have slope
- 1, ±2. The third iterate of t, t3, however, has slopes > 1 in absolute value
for all segments. Let Q = {1, 2, 3, 4, 5}. Then it is clear that t(Q) g Q.
Finally, it is easy to show that the partition Í = {(1, 2), (2, 3), (3, 4), (4, 5)}
has the communication property under t. In fact, four is the maximum value
of n, m needed to ensure that 7, c rm(Ij) and Ij c t"(I¡), where 7,, 7, G í.
Therefore t G G, and Theorem 1 applies, ensuring the uniqueness of the
absolutely continuous measure under t. Theorem 1 of [2] claims that there are
no more than three (linearly independent) invariant densities under t. Using
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TRANSFORMATIONS WITH CONTINUOUS INVARIANT MEASURES 247

the results of §6 it is easy to show that the unique invariant density is given
by

/(*)-

2/7 on (1,2),
1/7 on (2,3),
2/7 on (3,4),
2/7 on (4,5).

To show that this is, indeed, an invariant density, one need only verify that
PJ = f.

Example 2. Consider the nonlinear, piecewise monotonie function t: [0, 1]
—> [0, 1] shown in Figure 1, with \dr/dx\ > 1 where it is defined. It is easy to
check that t takes the partition points {0, .2, .4, .6, .8, 1.0} of the partition
{(0, .2), (0.2, 0.4), (0.4, 0.6), (0.6, 0.8), (0.8, 1.0)} into the same set. Also, the
communication property follows readily from

4 5
r(/, ) = U   /„    t(/2) = 73 u 74,    t(/3) = 73 u 74,    t(75) = (J   /,-

Thus, by Theorem 1, there exists a unique absolute continuous invariant
measure under t.

Figure 1
A nonlinear piecewise monotonie function with unique

absolutely continuous invariant measure
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248 ABRAHAM BOYARSKY AND MANNY SCAROWSKY

Let us define the discontinuous, nonlinear piecewise monotonie function t,
as follows:

r(x), as in Figure 1,       x G (0, .8),
a smooth, nonlinear arc

rx(x) = - with slope > 1 in absolute x G (.8, 1.0).
value joining (.8, .8) and

(1.0, 0),
Clearly t,(75) = Uf=1 7„ and Theorem 1 applies once again to guarantee the
existence of a unique absolutely continuous invariant measure under t,.

3. Consequences of uniqueness. (I) The Birkhoff ergodic theorem applies.
For almost all x G J,

£&   \   n^oS(ri(x))=fjg(x)f(x)dx,

where / is the unique density invariant under r and g is any bounded
measurable function. (We note that if f(x) > 0 on /, g J, then for almost all
x, (t"(x)} is dense in /,.)

(II) Theorem 1 of [6] can be applied to approximate the unique density/as
closely as desired.

(III) Uniqueness is preserved for topologically conjugate transformations:
We prove this as follows.

Let t be a piecewise monotonie transformation and h: J -» J a
homeomorphism. Then rx = h ° t ° h~x is a transformation from J into J
and t and t, are said to be topologically conjugate [3].

Proposition 1. Let r G G. Assume that for the homomorphism A: J —>
J,h~x is differentiable. Then t, = h ° t ° h~x has a unique invariant density,
and it is given by f(h~x(x))(dh~x/dx), where f(x) is the unique invariant
density under t satisfying f > 0, ||/|| = 1.

Proof. From Theorem 1, we know there exists a unique invariant density/
under r. Thus

f        f dm = \ f dm,
Jt-'(A) JA

where m denotes the Lebesgue measure on J and A g J is a measurable set.
Let A = h ~ x[a, x], x G J. Since t, = A°t°A_1, we have

f fdm = f fdm. (2)
Jh-Wr'[a,x] Jh-l[a,x]

Without loss of generality, we assume that A ~ ' is strictly increasing. Then the
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right-hand side of (1) can be expressed as

dh~l(u)Jrh-'(x) rx «    in
<>/*-//(»-») -jli*. (3)

Now, for all intervals B = [a, x], it follows from (3) that

Jr r dh~x (x)
fdm=     f{h-x(x))^^- dm. (4)

h-'(B) JB dX

Equation (4) is also valid for open sets B and, from that, for all measurable
sets B. Hence

j fdm = J      fdm,
*T¡   '[o, x] "'[o, x]

where/= (f ° h~x)(dh~x/dx) is an invariant density under t,. It remains to
show that/is unique.

Assume it is not. Then there exist two densities /, and /2, both invariant
under r,. By the foregoing argument, (/, ° h)(dh/dx) and (f2 ° h)(dh/dx) are
densities invariant under t. Requiring these densities to have £, norm equal
to 1 and invoking the uniqueness of invariant densities under t implies that
fx(h(u)) = f2(h(u)) for all u. Hence,/, = f2.

Actually, this proof shows that uniqueness of invariant densities is pre-
served under transformations of the form A, ° t ° A2, where A, and A2 are
homeomorphisms satisfying the conditions of Proposition 2.

4. Some matrix theoretic results. Let t be a piecewise monotonie function
from J-+J with the fixed partition §N consisting of the N intervals
{Ix, . . . , IN}. We define an induced motion on these intervals, referred to as
the state space, as follows:

(x G/:Zn(x) = i}<^{x GJ:r"(x) G 7,},

n = 0, 1, 2, ... , where Z„: J -» {1, 2, . . . , N}. If t"(x) G Q, the partition
points of iN, we make the convention that Z„(x) = /, where 7, is to the left of
x. Then, for any x, the sequence (coding) of Z„'s is well defined. Let

7'W> ■■■ = {xGJ:xGlio, r(x) G 7,,, r2(x) G 7,v . . . }

= {x G J: Z0(x) = z'0, Z, (x) = /'„ Z2(x) = i2, . . .}.

In [7], sufficient conditions are presented which guarantee that the motion
on the state space can be described by a Markov chain. We state the
following lemma which is a modified version of Theorem 2 of [7].
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Lemma 4. Let t. J ^> J be piecewise monotonie from J -^ J, and let Zn be the
motion induced on the state space (7,}f_,. Let the random variable Z0 have a
distribution on {1, . . . , TV} given by m(I¡). Then the flow of distributions
{i">i}n>o induced by the random variables {Z„}n>0 can be described by a
Markov chain if the following two conditions hold:

(aH/„-%* + /%> 1 < U< N,
(b) tUj) = 7, a.e. ifl0 ^0, 1 < i,j < N.
If (a) and (b) are fulfilled, the transition probabilities associated with the

Markov chain are

P{z„wz„-0-^.
The requirement that t is piecewise linear will guarantee (a). Further, if we

assume that t G G then (b) will be satisfied. As well
n¡

r(Ii) = U   /v       «, is finite. (5)
9=1

For any piecewise continuous t G G, let rL be the piecewise linear approxi-
mation to t obtained by joining the endpoints of t by straight lines. Clearly
\t'l\ > 0. Since t takes partition points into partition points, so does tl and (5)
remains valid for rL. Since rL satisfies (a) and (b) we know that it induces a
Markov chain on the state space.

Let ty denote the transition matrix (ptj) of the Markov chain induced by
tl, i.e. Pij = m(Iy)/m(Ij). By Lemma 4 we know that the matrix <^"\
9 • 9 • • • 1?, n times, represents the «-state transition matrix, i.e. ^f)f =
7>{Z„=7-yz0= z}-Thus,

= P{Z0=i,Zn=j) = m{xGJ:xGli,T"(x)GlJ)
P{Z0=i) m{I,)

m{7,. n t-"(7,)}9P-     l        ,M • (6)
m(I¡)

We are now ready to prove the following result, the purpose of which is to
facilitate the checking of the communication condition.

Proposition 2. Let t G G. Let tl be its piecewise linear approximation and
let <? be the transition matrix of the Markov chain induced by tl. If there exists
an integer n such that <3*") > 0 (all entries of ^n) are > 0), then tl has the
communication property.

Proof. Let <3*n) > 0. Then, by (6), w(7, n r£n(Ij)) > 0. But
^n(/,nTL-«(7,)) = Ti:(7,.)n7,.

and we obtain
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It therefore follows that

™K</,) n ij) > o. (7)
Since \t'l\ > 0, |(t£)'| > 0. Also since tl takes partition points into partition
points, so does r£. Hence t£(7,) = U£=i 7,, and (7) implies that t£(7,) d Ij.
Recalling that t has the same endpoints as tl, we obtain t"(7() = t£(7,) d 7y.
Q.E.D.

Example 3. For Example 1,

9 =
0     0 .5     .5
0     0 10
0    .5 .5     0
10 0     0

3*6) > 0, and we have the communication property, which we already knew
by checking directly.

Corollary 1. Let t G G. If <3*'l) > 0, then tl has a unique absolutely
continuous invariant measure.

Proof. Theorem 1.
We now prove a matrix theoretic result which will be needed for the central

limit theorem of §5, and which is useful in its own right.

Proposition 3. Let r G G have a fixed point and let tl be the piecewise
linear approximation to r with respect to the basic partition §. Let §M be a finer
partition of J then I, and let fL be the piecewise linear approximation to t with
respect to $M. Assume that r takes partition points of iM into partition points of
iM. Let M$ be the transition matrix of the Markov chain induced by rLfor the
partition $M, i.e. w9,y = ( Mptj), where

n   = _1_v      " jm  jM r &
J m(lM) ' ' J M'

If there exists an integer n such that <3>(") > 0, then the larger matrix  M9 also
has the property that there exists ri = n'(M) such that  M<^""> > 0.

Proof. Let t g G and assume 3n B <3,(n) > 0. From Proposition 2 and
Lemma 3, it follows that there exists a dense orbit in J. We shall now improve
this result in the following way: for each if1 G $M,yj G ij4 G §M, and any
tj > 0, i,j = 1, 2, . . . , M, 3x¡j G I¡M and an n, independent of / and/ such
that

Ir-^-v^e, (8)
for all /,/ = 1, . . ., M.
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To show this, we proceed as in Lemma 3, where the coding is now with
respect to the partition $M. Let Sj be the symbol corresponding to the
intervals containing v7, r(yX ■ ■ ■ , Tmi(yf), where mx will be chosen later.

Since t has a fixed point, t takes partition points into partition points, and
|t'| > 0 (recall |(t')'| > 1), it follows that there is a symbol a with the
property that r(I(a)) D 7(a), where 7(a) G iM. Let a, correspond to if* G
$u, and form the sequences

<*,7> = •«, • • • «-a • • • Sj- ■ ■ ,

where Sj starts in the nth place, i,j = 1, 2, . . ., M. Since there exists a dense
orbit, we can go from a, to a and from a to a, in a finite number of iterations.
To choose the same n for each xip a sufficient number of a's are inserted in
each sequence so that each Sj starts at the nth place, independent of i,j.

Now, under the assumption itú\drl/dx\ > d > 1, we have

<-^\T"+m!(xiJ)-^(yJ)\

< -^ < eJ>

if m, = ml is sufficiently large, where C = max^gy t(x). From this, it follows
that for all i,j = 1, .. ., M, 3n such that Tn(7,M) n int If ^0. Piecewise
continuity of r then establishes: w(t"(7,a/) n if1) > 0. Since t takes partition
points of iM into partition points, it follows that t"(I¡m) d If, j =
\,...,M, and thus t"(7,m) d Uy if = /• Noticing that 7L(lf) = r(I,M),
we have r£(I,u) D /, i - 1, . . ., M. It also follows that

m(l» n VW))       n
^   - -7-5TT-    >0

and so „^ > 0.   Q.E.D.
Corollary 2. Lei t Aaue iAe property that the set of eventually periodic

points is dense in J. Then for any nonempty open set U G J, there exists an
integer n > 1 such that rn(U) = J. (The condition t"(U) = J implies 'strong
transitivity' [11].)

Proof. Since the eventually periodic points are dense in J, the partition íM
can be chosen sufficiently fine so that if c U for some i. By the theorem,
3« 3Tn(IiM) = J.   Q.E.D.

Example 4. Consider t defined in Example 1 with iw, a partition of [1, 5]
having M = 4.2" equal subintervals, where n > X. Here, obviously t = tl. It
can readily be checked that t takes the partition points of $M into the
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partition points of iM. In Example 3, it was seen that for the basic partition
5 = {(1, 2), (2, 3), (3, 4), (4, 5)}, <3>(6) > 0. Thus, Proposition 2 implies that
the M X M matrix Mty also has the property that A/'3)C0 > 0 for some/ The
matrix M9 consists of sixteen equal sized 2" X 2" blocks and is of the form

32

*13

0
B33

7'    0        0

r
o
o

where

and

*„-(!), *.-$.

77 =

is an 2"_1 X 2" matrix; and

.5.5
.5.5

B32

.5.5

=(-£)• *-(*>

where the 2"-1 X 2" matrix G is

G =
.5.5

.5.5
.5.51

and the 2" X 2" matrix

7' =

1

If n = 4, say, WÍP has 4096 entries of which only 192 are nonzero. Nonethe-
less, Proposition 2 guarantees that eventually all entries will be greater than 0.

In matrix theoretic language, Proposition 3 presents a condition which
ensures that the special matrices M9 are primitive, i.e. there exists an n such
that all entries of A/<3*',) are positive. Proposition 3 can be employed in the
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following way as well: given a K X K matrix Q; if from Q we can reconstruct
a piecewise linear function t, whose associated transition probability matrix is
Q, and if t has a fixed point, takes partition points into partition points and
has slopes as described earlier, then Q is primitive. We will not pursue these
ideas further here.

We observe that it is always possible to find finer and finer partitions of J
for which t takes partition points into partition points if the eventually
periodic points of t are dense in J. In [4], it is shown that this is true for the
class of piecewise linear functions which have integer slopes {d¡, i =
1, . . . , N} and rational intercepts.

It is also easy to see that if t has its eventually periodic points dense in J,
then so does any topologically conjugate transformation of the form
A ° t o A ~ ', where A: J -» J is a homeomorphism.

We now present two examples of nonlinear functions which have the
property that their eventually periodic points are dense in the domain.

Example 5. Let t: [0, 1] -> [0, 1] be defined by

r(x) =

2x+\,

-* + !.

-2x + \,

-x + 1,

*e[0, J],
xg[\, J],
*e[i,!],

This is a compressed version of t in Example 1; its unique invariant density/
is given by {f, \, f, f} on the intervals (0, \),(\, |), (£, |), (|, 1),
respectively. Let A: [0,1] -»[0,1] be the homeomorphism defined by
A(x) = Vx . Then

t,(x) = A"1 °t°A(x) =

(2VX- + I)2,

(-v^ + i)2,

(-2Vx~+|)2,

(-VÍ+ l)2,

i [ft 4].
[ 16 '   4 J'

■ L 4 >    16 J'

is topologically conjugate to t and, therefore, has eventually periodic points
which are dense in [0, 1] since t does. The unique invariant density for t, is
/,(x) = /(Vx )/2Vx . The functions t and t, are sketched in Figure 2(a), (b).
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Example 6. For t and A as in Example 3, define t2 = h ° t ° h~x. Then

\>/2

zW-

{2x2+\y/\        xg[0,\],

(-x2 + |),/2,     xe[i.q\

(-2x2+l)l/2,     xG^.fl,

(-x2+l)'/2,

The unique invariant density under t2 is /2(x) = f(x2)2x. The function t2(x)
is sketched in Figure 2(c).

0      .25     .50     .75    (1.0)
(a)

0,0)
0      .25     .50    .75       1.0

(b)

0,0)

(1,0)
0      .25    .50     .75     1.0

(c)

Figure 2

We note that both t, and t2 have regions with slopes less than 1 in absolute
value (t,(1) = 0, t2(0) = 0), and yet have absolutely continuous invariant
measures (in fact, unique ones). This is interesting in view of the counter-
example in [1], where a transformation which has slope greater than 1 except
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at the point (0, 0), where the slope is 1, has no absolutely continuous invariant
measure. It is easy to see, however, that the counterexample has the property
that any function topologically conjugate to it will also have slope < 1 at
(0,0).  '

Furthermore, we now show that t2 has the property that every iterate has a
region with slope < 1 in absolute value, and thus the existence of an
absolutely invariant measure under t2 cannot be proved using Theorem 1 of
[1]. Since

rB(*)|(«*_„«,) = cix + d¡,       i = 1,2, ... ,N,

where c, is an integer and d¡ a rational number, both depending on n, it
follows that

t2"(x) =yjcix2 + 4 ,       x2 G (a,._„ a,),

and
c,x

(t2")'(x) = ,       x2 G (a,_„ a¡),
yc,x2 + d¡

which can be made arbitrarily small in absolute value for x near 0 if dx =£ 0.
Now 4 = 0 only if n is a multiple of 4 since the orbit of 0 under r has period
4. Thus, t2 has an interval with arbitrarily small slope if n is not a multiple of
4. But,

-±r   ¿aw   {x)t\-~d}-dx— ■
The function di2/ dy is bounded, and by the foregoing argument
(dr2m~x/dx)(x) can be made arbitrarily small near 0. Hence, the same is true
for T2m, and we conclude that every iterate of t2 has a region on which its
slope < 1 in absolute value. It would be of interest to know if there exists a
piecewise linear function which has both this property and an absolutely
continuous invariant measure.

5. A central limit theorem. Let t G G have a fixed point and let its
eventually periodic points be dense in J. Then there exists an infinite
sequence of finer and finer partitions {ik: k > K), such that for each k > K,
t takes partition points of $k into partition points of ik, and t satisfies the
communication property with respect to $k. Let rk be the piecewise linear
approximation to t with respect to §k. Then rk induces a Markov chain with
transition matrix k9 which is primitive. This ensures the existence of an
invariant measure irk on the k intervals of ik, where mk is the unique solution
OfK)^   =77,.

Since t G G, we know that it has a unique absolutely continuous invariant
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measure it on the infinite state space J. We can, therefore, invoke Theorem 1
of [6], which ensures that irk —» it in £,. Let A be any measurable set in /.
Then

tt(A) = lim   TTk(A) = lim    2   »*(#)> (9)k—>oo

wherey(v4) = {/: 7/ c ^, // G $k).
Let us now define the family of random variables (A'q, Xx,X2, . . . }, where

X¡ = t'(X0) and A^ has the distribution obtained from the invariant measure
77. This is clearly a stationary sequence of random variables. Our aim is to
show that this sequence is uniformly mixing. To that end, let us define a
transition operator on the infinite space J in the following way:

7>(x,.4)=lim     2    kPu,
k—*<x>J^j(A)

(10)

and 4 = ¡k(x) denotes the set 7* G ik which contains the point x.
A sufficient condition for [X0, Xx, . . . } to be uniformly mixing is given by

equation (19.1.7) of [8]:

sup\PM(x,A) - tt(A)\ < CP",
x,A

(H)

where C and p are constants, 0 < p < 1, and the /i-step transition proba-
bilities T^^x, A) are given by

7>0)(x, A) = 7>(x, A),       7>(n)(x, A) = {P("-X)(y, A)P(x, dy).    (12)
•v

To prove (11), we proceed as follows:

|7>C)(xM)-77(/l)|< P("\x,A)-    2     kPff

+ p(") *M) + \TTk(A) - tt(A)\,     (13)

where k denotes the partition §k. In view of (9), the third term on the
right-hand side of (13) vanishes as k -» oo. The definition of P(n\x, A), (10)
and (13), ensures that the first term on the right-hand side goes to 0 as
k -> oo. Now, for the partition $k, the transition k9 matrix satisfies k^ >
0 for some /. Hence, it follows [8, equation (19.1.2)] that there exist constants
Ck, pk, 0 < pk < 1, such that for any ik,

l/tf - «Ahk)\ < c*£- (14)
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From this, we get

2
Jej{A)

(«)kriu 2        »*(//)
J^j(A) ye/04)

**('/)!

< 2 Qp* = *cfcP;,
7 = 1

which goes to 0 as n -* oo. Hence, (11) is established.   Q.E.D.
For the class of functions t under consideration, it follows from Corollary 2

that lim,,^^ tt(t"U) = 1 for all nonempty intervals U G J, with tt(U) > 0.
Hence, by Theorem 2 of [12], 77 is weak-mixing, and by Theorem 1 of [12], t is
Bernoulli under 77. With this last result, it is shown in [9] that a central limit
theorem is true for a class of real Holder functions. The arguments are long
and tedious. For our class of functions r, the uniform mixing condition (11)
was obtained very easily, and it allows us to invoke Theorem 19.1.2 of [8]
directly, to obtain a central limit theorem which is true for all real-valued
measurable functions on J. We state the result.

Theorem 2. Let t G G have a fixed point and let its eventually periodic
points be dense in J. Let f(x) be a real-valued measurable function on J, and let
g(x) be the density of the unique invariant measure it. If

E\f(XQ)\2=jf(x)g(x)dx<<x

and

a2=E{f(X0)-Ef(X0)}2

+ 2 f   E {(/(*„) - Ef(X0))(f(XJ+x) - Ef{Xj+x))} * 0,
7=0

where E denotes the expectation operator with respect to g(x) dx, then for any
initial distribution v on J,

1hm  P
1  aVn    7=0

2  [JiXj) - ej{Xj)] <z.  - -JL- f  *-2/2 du
'277

(15)
where Pv denotes the probability measure induced by v.

Remark. There is a large class of chaotic functions [2] which satisfy the
conditions of Theorem 2 [4]. It has recently become clear in the biological
literature [3], [13] pertaining to chaotic functions, that chaotic orbits (basically
orbits which do not even asymptotically approach any periodic cycle) must be
treated probabilistically. Theorem 2 corroborates that approach. Indeed, if we
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let f(x) = x and define

S = 1 n-l

2   (r'(Xo)-m(J)),
avn    ;=o

then the sequence of random variables 50, S„ S2,. . . approaches normalized
Brownian motion in distribution [15].

6. Piecewise constant invariant measures. For t G G, it is usually difficult to
find its unique absolutely continuous invariant density / One can, however,
approximate/in the £, sense as closely as desired with the aid of [6, Theorem
1]. In the special case that të Sis piecewise linear and has a fixed point, we
can find / directly; it is piecewise constant, and the solution of a matrix
equation.

Theorem 3. Let t G G be piecewise linear and let it have a fixed point. Then
the unique absolutely continuous invariant density under t is piecewise constant.

Proof. We claim that the equation

PJ = f (16)
has a solution of the form f(x) = 2f=, é7X/,(*)> where the partition is Í =
{/,}£. i, {£,}/=i is a set of positive constants, and Xa(x) IS the characteristic
function of A. With the requirement that 2f=1 e, = I, f(x) becomes the
unique invariant density under t.

If such an/(x) satisfies (16), we have, for x G I},

ej = PA Í  elXll(x)) = 2  e,/«T(x,,í»).

From the definition of PT, we obtain [1]
N

/=!       1=1

dr-\x)
dx XT,(/,)>

where t, is the restriction of t to the interval 7,. Let, for x G 7y

¿T-'(X)N

(=i
= S xrX^r'W) dx Xr,(/,)'

Then

ej = 2 e/a7/'
/=i

(17)

(18)

(19)

where the equality in x is true except at possibly a finite number of points.
We claim

aji = dx à«,
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where ó), = 1 if 7y c r¡(Ii) and 0 otherwise, i.e.,

«, = fKr* if/.cT^), (20)
[ 0, otherwise.

To see this, note that the ith term occurs in (17) with nonzero value only if
x G Ij, x G t,(7,) and t,_1(x) G I,, i.e., if

7,cr,(7,.)   and   if »(/,) C/,
or

rt-\lj)clt   and   Tf»(/y) C /„

which implies that /" = /. Using this in (18) yields (20).
Let E = (ex, e2, . . ., eN)', where t denotes transpose, and define the TV X

N matrix A = (a,7). Thus equation (17) has a solution if
E = AE, (21)

where 2f=, ^ = 1, has a solution. Note that the system of linear equations
(21) is equivalent to the system

E' = E'A', (22)

where A' = (a,f), al} = |i)'|_1á/y. Recall from §4 that (a¡¡) is the transition
matrix for the Markov chain induced by r on the state space §. Since t G G,
A' is irreducible. The existence of a fixed point implies there exists an
aperiodic state of the Markov chain. Hence, (22) has a solution, and therefore
(21) has a solution.   Q.E.D.

We note from the proof of the theorem that it is not necessary for t to have
a fixed point. What is required is that the matrix A induced by t be primitive.

Remarks. (1) The class of transformations for which the unique absolutely
continuous invariant measure can be computed exactly can be extended to all
the transformations which are topologically conjugate to the piecewise linear
transformations in G possessing fixed points.

(2) It follows from the proof of the theorem that on any segment It,
i = 1, 2, . . . , N, the function t, can be replaced by a linear function with the
same domain and range, and slope equal to — t¡ without altering the in-
variant measure. Thus the theorem gives 2N piecewise linear transformations
all of which have the same invariant measure.

(3) If one attempts to verify the invariant measure obtained from the
theorem by taking time averages, then it is important to choose a starting
point which has a long orbit. The reader is referred to [4] for details on how
the period of an orbit is related to a rational starting point. One should not
necessarily conclude that a long decimal expansion yields a long orbit. For
example in the piecewise linear function
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r(x) =

5x,

-x + 2,
x + 2,

x — 1,
-5x + 25,

[0,1),
:[1>2),
:[2,3),
:[3,4),
i[4,5],

the starting point x0 = V8 to eight decimal places has a surprisingly small
period. Following this orbit, one would never enter the segment [1, 2].
However, the invariant measure for t(x) is (2, 1, 2, 1, 3) on the five segment
partition.

Added in proof. In the final paragraph of the proof of Theorem 3, we
have tacitly assumed that the subintervals of the partition are all of equal
length. Then (a¡^) is a stochastic matrix. Since t G G, (a,p will also be
primitive. Thus (a,) has a unique fixed point.

We remark that (a,j) does not necessarily have to be stochastic to possess a
unique fixed point. Consider, for example, the transformation

t(x) =
2x,        0 < x < 4,

x + <x <  1.

Let the partition consist of the two intervals [j, 5] and [
matrix (a,) is

1]. Then the 2 X 2

possessing the unique fixed point (1, §). The interval [0, |] cannot be visited
after a finite number of steps. Hence (0, 1, f) is the unique invariant density
on the intervals [0, \], [\, \] and [\, 1], respectively.
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