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The primary purpose of this paper is to investigate the
structures of functionals and homomorphisms of unbounded
operator algebras called symmetric #-algebras, EC*algebras
and EW#algebras. First, we give the definitions and the
fundamental properties of such algebras. In particular, we
define several locally convex topologies on such algebras; a
weak topology, a strong topology, a s-weak topology and a
g-strong topology. In the next section, we study the elemen-
tary operations on EW*algebras. We can define induced and
reduced EW#algebras, the product of FEW#%algebras and
homomorphisms called an induction and an amplification. In
the final two sections, we obtain the main results (Theorem
4.8 and 5.5) which are described here. It is shown that a
linear funetional f on a closed EW¥algebra % on © is weakly
continuous (resp. s-weakly continuous) if and only if f(4) =

i (A& ), AeW &, 1,€D(E =1, 2, -+, n)(resp. f(A) =
Dn=1 (A& 70); Eny 1 €DM=1,2,---) and 5. | TE, (17 < oo,
Sa-t U Ty 112 < oo for all TeN)., Also, it is shown that a
o-weakly continuous homomorphism of a closed EW#*algebra 2
onto a closed FW#algebra B is decomposed in the following
three types; a spatial isomorphism, an induction and an
amplification.

1. Introduction. In [2], G. R. Allan defined a class of locally
convex involution algebras called GB*-algebras, and proved that, in
the commutative case, a GB*-algebra is algebraically isomorphic to
an algebra of extended-complex-valued continuous functions on a
compact Hausdorff space. After that, in [4], P. G. Dixon considered
the noncommutative case and characterized GB*-algebras as a certain
class of algebras of closed operators on a Hilbert space. And so, it
seems that we should study representations onto algebras of closed
operators on Hilbert spaces as those of locally convex =-algebras.
Hence, in the previous paper [9] the author studied representations of
locally convex =-algebras onto algebras of closed operators on Hilbert
spaces. In order to investigate such representations in detail, it seems
that we should begin by studying a class of algebras of closed opera-
tors on Hilbert spaces. In this paper we study unbounded operator
algebras called symmetric §-algebras, EC*algebras and EW*algebras.
The author would like to thank Professors R. T. Powers and P. G.
Dixon for giving him the basic ideas in [4, 5, 9].
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2. Definitions and fundamental properties. For the definitions
and the basic properties concerning unbounded representations (resp.
locally convex =-algebras) the reader is referred to [9, 11] (resp.
[2, 4]).

Let © be a closed x-representation on a Hilbert space § of a
pseudo-complete symmetric locally convex =-algebra A. Then zn(A4)
is an algebra of linear operators all defined on a common dense
domain ©(x) in § and we have

(w(@)s|7) = (&|m(2*)7))

for all &, neD(n) and z€ A, and (I + w(x*)w(x)) ' exists and lies in
w(4), where I is an identity operator on ®(x). On the basis of
w(A) we define a certain unbounded operator algebra.

Let © be a pre-Hilbert space with inner product (|) and let §
be the completion of ©. We denote the set of all linear operators
on ® by Z£(D).

DEFINITION 2.1. Let 9 be a subalgebra of &7(D) with an identity
operator I. % is called a symmetric #-algebra on D if the following
conditions (1) and (2) are satisfied;

(1) There exists an involution on 2[; A — A* such that

(A&]n) = (61A%)

for all Ac% and £, 7eD,

(2) (I+ A*A)! exists and lies in U, for all AeQl, where let
2, be the set of all bounded operators in 2.

Let 2 be a symmetric #-algebra on ©. KEach A in U is a closable
operator on § and hence we denote the closure of A by A and put
A={4; Ac).

DEFINITION 2.2. Let 9 be a symmetric #-algebra on ©. If %,
is a C*-algebra (resp. W*-algebra), then 2 is said to be an EC*-algebra
(resp. EW?#algebra).

REMARK. If U is an EC%*algebra (resp. EW#algebra) on D,
then A becomes an EC*-algebra (resp. EW*-algebra) defined by P. G.
Dixon [5].

Let S, T be closed operators on a Hilbert space $. If S+ T
is closable, then S + T is called the strong sum of S and T, and is
denoted S + 7. The strong product is likewise defined to be ST,
if it exists, and is denoted S-7. The strong scalar multiplication
of »e€ (€; the field of complex numbers) and 7 is defined by - T =
AT if %0 and AT =0, if = 0.



ON A CLASS OF UNBOUNDED OPERATOR ALGEBRAS 79

THEOREM 2.3. Let 9 be a symmetric F-algebra on ©. Then we
have

A+B=AFYB, A-B=4A4B, \A = \A, A* = A%,

for all A, Be and ncC€. Therefore A is a =-algebra of closed
operators wnder the operations of strong sum, strong product,
adjoint and strong scalar multiplication and furthermore (I+ A*A)™
exists and lies in A, for all Ac9l.

Proof. We shall show that A* = A* for every Ae . Suppose
A*=A. Then (I + A)*c¥, and we have

AT+ A =T+ A) - DT+ A" =T+ Ay — I+ 4)”

and hence AXI + A?)*c,. For each £cD we get ||A(I + Ay ¢[P
[|AX(T + A%7%][|&]?%, and so A(I + A% e N,. Furthermore we have

(il — AY(—iI — A)(I + A)™
=@l - A{— I+ A) — Al + Ay} =1
and
{(—i(I + A" — AT+ A6 - A) = 1.

Therefore (¢ — A)™* exists and lies in ;. For each v = a + Bie
€ — R (R; the field of real numbers) we have

O — A) = ,e{u - —é_(A - aI)}

and therefore (A[ — A)™* exists and lies in %,. Therefore N — Ay =
(A — A)™ is bounded for all A c@ — R, i.e., A has a real spectrum.
Furthermore, since A* D A* = A, A is hermitian. Therefore A is
selfadjoint, i.e., we have A* = A = A%,

For each A ¢ we show that 4* = A%, Let H, = A*A and H, =
((A5*)*(A%*. Clearly we have H, D A*A and H, > A*A. Since (4*A) =
A*A, A*A is self-adjoint. Since self-adjoint operators are maximal,
it follows that H, = H,= A’A. Hence we have D(A) = D(H") =
D(H;?) = D((AH*). Therefore we get A = (4%)*, and so A* = A%

We shall that A + B= A + Bfor all Aand Bin . Since 4 - B
A + B, clearly A - B A + B. Since 4 = (4%*, we have

A+B=UAY +BYcA+B)y=(A+B»=4+B.

Similarly we can show that A-B = AB and A-A = XA, For all Ac¥,
since (I + A*A)™" = (I + A*A)~ and (I + A*A) e, (I + A*A)™" lies
in %,.
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Let % be a symmetric g-algebra on ©. Then there is a natural
induced topology 7, on ©. This topology is defined as follows.
Suppose that & is a finite subset of elements of 2. We define the
seminorm || || on ® as

lells = 311481

where ||£]|| is the Hilbert space norm of & We define the induced
topology 7, on ® as the topology generated by the family {|| |ls; &}
of the seminorms.

DEFINITION 2.4. Let ¥ be a symmetric #-algebra on ©. If D
is complete under the topology 7,, then 2 is said to be closed.

ProposITION 2.5. Let U be a symmetric F-algebra on D. Let

D =NDA), Az = Az, (zD).

Ade¥

Then % = {A; Ac} is a closed symmetric #-a,lggbm on D and a
minimal closed extension of . Hereafter we call U the closure of .

Proof. By a slight modification of (j11] Lemma 2.6). Proposition
2.5 is easily shown.

PROPOSITION 2.6. If % 4s a closed symmiric #-algebra on D,
then we have

D :Agl D(A) :Afe]ﬂ D(A*) .

Proof. By Proposition 2.5 we get D = Nuca D(A). Since A* =
A* for all Ac?, we have

AOu@(A*) - Q‘.’I@(A#) - Aou@(g) =D.

We define several locally convex topologies in a symmetric %-
algebra U on 9.

(1) The weak topology. The locally convex topology, induced
by the seminorms;

Te%_’Pe,v(T) = 1(T§|77)i
for each &, 7ne?®, is called the weak topology. Under the weak
topology U is a locally convex f-algebra. Since
ATen) = (TE+ e+ 1) —(TE—niE—7)
+ UTE + )& + ) —uT(E — )& — ),
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the weak topology is in accord with the topology induced by the
seminorms {P; ( ); £eD}.

If ¥ is an EC*algebra on ®, then A is a GB*-algebra defined
by P. G. Dixon [4] under the weak topology.

(2) The strong topology. The strong topology is the locally
convex topology induced by the seminorms;

TeN— P(T)=||TE|,£eD.
(3) The o-weak topology. Let
Do) = (8o = (G Gur 2 Gy =+ ) ,€D,m = 1,2, -+~ and
S 178, < o for all Ted).

For each Eoo = (51, 52’ ) Em ¢ ') a'nd 7700 = (7]17 Nay ==y Wy = ') in @w(%),
putting

PewrulT) = |33 (T5,17,)

’ Te%,

Py ) is a seminorm on . We call the o-weak topology in U
the locally convex topology in % induced by the family {Pie y( ); &wor
N € D(A)} of seminorms. Under the o-weak topology 2 is a locally
convex #-algebra. The o-weak topology is in accord with the topology
induced by the seminorms {P;. c.( ); o€ D.(WA}.

(4) The o-strong topology. For each &. = (&, &, +++, &, ++*)€E
D (%), putting

PT) = (S 11T6, )", Tex,

P.( ) is a seminorm on 2. The locally convex topology induced
by the family {P..( ); & € D.()} of seminorms is called the o-strong
topology in .

DEFINITION 2.7. Let 20 be a symmetric #-algebra on ©. We
define the commutant ' of A by

A = (CeZ(D); (CAZ|7) = (C5| A™) for all Ae9 and & e},

where let <Z(9) be the set of all bounded linear operators on §.

PROPOSITION 2.8. Let U be a (resp. closed) symmetric -algebra
on D. Then W is a von Neumann algebra and furthermore for
each C e we have CDCD (resp. CDC D) and CAE = ACE (resp. CAE =
ACE) for all Ae¥W and £eD.
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Proof. This follows from ([11] Lemma 4.6),

Let & be an EW*algebra. Then we investigate the relations
between the von Neumann algebra U, and the von Neumann algebra
D)

PropOSITION 2.9. Let ¥ be an EC*algebra on ©. Then we have
A =) and A" = Q). In particular, if A is an EW*algebra
on D, then we have A"’ = ,.

Proof. Let Ce%. By Proposition 2.8 we have CA& = AC¢ for
all Ac¥ and £e€D. In particular, we have CA: = ACe for all Ac ¥,
and hence CA = AC, i.e., Cc(3,).

Conversely suppose that Ce(¥,). By ([5] Prop. 2.4) A is
affiliated with (20,)"(A7(A,)") for every A e and it follows that for
each £,7eD

Therefore we get Ce3l'.

DEFINITION 2.10. Let 9 be a symmetric #-algebra on ©. An
element T of 9 is called hermitian, if 7% = T and we denote by U,
the set of all hermitian elements of . Let Te%,. If (T€|6)=0
for all £e¢D, then T is called positive and write T'= 0. The set of
all positive hermitian elements of A is denoted 2.

ProrosiTiON 2.11. Let ¥ be an EC*algebra on D and let T e U,.
Then the following conditions are equivalent;

(1) T=z=0,

(2) T = A for some Ac¥;,

(3) T = S*S for some Se¥,

(4) T =0 (i.e., (Tx|z) = 0 for every xcD(T)).

Proof. If U is an EC*algebra, A is a GB*-algebra under the
weak topology. Therefore, by ([4] Prop. 5.1) and Theorem 2.3 we
can easily prove the above proposition.

PrOPOSITION 2.12. Let U be an EW*algebra on D and Te?ll.
Then there exist Ue W, and |T|e WU such that T =U|T|, where U

ts @ partial isometry whose initial domain 1s R(T*) (we denote the
range of T by R(T)) end [T] is a positive self-adjoint operator such
that R(T|) = R(T*). Furthermore such decomposition 18 unique.

Proof. By the polar decomposition of a closed operator 7,
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Theorem 2.3 and 7%, (Prop. 2.9) we can easily prove the above
propositition.

DEFINITION 2.13. The decomposition T =U|T| of Proposition
2.12 is called the polar decomposition of 7.

3. Elementary operations on EW#algebras. We define reduced
and induced EW#algebras. Let ¥ be a symmetric #-algebra on 9.
Define 9, = {Ee?; E* = E* = E} and let Ec¥,. For each T e we
define T, = ET/ED {(the restriction of ET onto ED) and U, =
{Tz; TeW}). Then T, is a linear operator on ED. We put B =
{T'e¥; TE = ET = T). Then B is a #-subalgebra of U and we have
B = EUE. The mapping T— T, is an isomorphism of B onto ;.

THEOREM 3.1. Let U be o symmetric F-algebra on D. Suppose
EcU,. Then U, is a smmetric g-algebre on ED. In particular, if
A is an EW:-glgebra on D, then U, is en EWialgebra on ED and
we hawve

(e = W)z = (W))z = (Ta)s) -

Proof. We can easily show that 2, is a symmetric %-algebra
on EY. Suppose that ¥ is an EW*algebra. Then we have only
to show that (), is a von Neumann algebra. Clearly we have
(U)z < Q) and it follows that ((31),) < ((¥,)5). Since ¥, is a von
Neumann algebra and (,) = %', we have ((%)z) = (A,))z = ()7
Next we shall ghow that (W)z C(¥z). Let Ce¥'. Foreach s nedD
and T e we have

(CzTE¢|Eny = (CETE: | En) = (CE|[(ETEY En)

= (CE: | ET*En) = (CzEs| T En)

and hence Cze(Uy), and so (W) (Wz)Y. On the other hand we
have ((2;),) D (Uz). Therefore we have

(@) < ((A)z) = Uz = (Wz < @) < (@)Y
and it follows that
(A0, = (W)a) = (W)z = Uy .
Therefore we have
(@Q))" = (W) = Az < Qy), -

Consequently 9, is an EW*algebra on ED.

DEFINITION 3.2. Let 9 be an EW*algebra on ® and let Ee,.
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We call 9%, the reduced EW+*algebra of 2.

PROPOSITION 3.3. Let 9 be a closed symmetric F-algebra on D
and let M be an W-invariant To-closed subspace of D. Let Ay be
the restriction of A onto M and let Ay = {Ap; AU,  Then the
Jollowing conditions are satisfied.

(1) Uy 25 a closed symmetric F-algebra on M and we have

M = N D(4s) = 1 D(AZ) .

(2) Let E, be the projection onto M. Then we have Ex® = M
and E,c.

(3) If Ec(W),, then ED is an U-inveriant t,closed subspace
of D.

Proof. (1) Under (Ay)* = (A%g, clearly Uy is a symmetric -
algebra on M. By Theorem 2.3 we have (4Ay)* = (4Hy = (Ax)* for all
Ac¥. Furthermore, since M is 7,-closed, Ap is closed. Therefore
we have

= AO?! @(—A—;) - AD‘)I DA% -

(2) We shall show E,® = . Clearly we have M c E,D.
Let 6. For each 7¢I and Ae A we have

(Awﬂﬂ Exé) = (EﬂnAmﬂ?[é) = (A‘I][E) = (7]|A*5)

and it follows that Epfe Nica D(AE) = M. Consequently we have
M = EyD. We shall show E,ecW. For each AeI and &, 7D we
have

(EyAs|n) = (A2 Eyn) = (8| A*Eyn) = (Exé| APEy)
= (AEmE1Em7]) = (ESRAE]HE177) = (Awa!??)
and hence E, c.

(3) By Proposition 2.8 it is clear that ED is an Y-invariant
subspace of ©. We can easily show that ED is z,-closed.

DEFINITION 3.4 Let ¥ be a closed symmetric #-algebra on ©
and let Ee®¥'),. By Proposition 3.3 (3), M = ED is an W-invariant
7,-closed subspace of ©. We define

Ay =Ay, and U, ={4; AcA}.

By Proposition 3.3 (1), %, is a closed symmetric #-algebra on I.
Clearly the map A— A, of ¥ onto A, is a homomorphism. We call
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this homomorphism the induction of ¥ and ¥, is called the induced
algebra of .

THEOREM 3.5. Let U be a closed EW?*-algebra on © and let E e
X),. Then Uz is a closed EW*-algebra on ED and we have () =
@&);.

Proof. We shall show that ((;),) = (¥')z. Let Ce ()., i.e.,
C is a bounded linear operator on ED such that CA, = A,C for
every Ape(¥Uz),. We shall show CEc'. For each Ac¥ let A=
UlA| be the polar decomposition of A. Let [A] = wadET(x) be the
spectral decomposition of [A|. Then we have U, E:(x)e%Ib for all
X and hence Uy, E,(\); e (Uz),. Since (71?) = (U)L'y (B \)e) = (B )z
and Ce((Wy),), we have C(U); = (0),C and C(E,(\))» = (E,(M):C
and hence CE commutes with U and E,(\). Therefore CE commutes
with A. Then, clearly we have CE e’ and hence C = (CE); € (A')z.
Therefore we get ((3;),) ©(¥)z. Conversely we can easily show
(@)Y D (W)z. Consequently we have ((3;),) = (W')z. We shall show
(¥z),)” = (1,),. By the above argument, ([3] Ch. I, §2, Prop. 1) and
Proposition 2.9 we have

(@) = (@)2) = (W) = (W) -

On the other hand, clearly we have (¥,), < (%), and hence ((¥;),)’ =
)z < @), and it follows that ((1,),)" = (Wz),. Consequently ¥ is
an EWt'algebra on ED. Furthermore we have () = ((U;),) =
(2, by Proposition 2.9.

DEFINITION 3.6. Let U be a closed EW*algebra on © and let
Ee @), Then %, is called the induced EW*algebra of .

Next we shall study the product of EW*algebras. Let {2, D},
be a family of symmetric #-algebras %, on ®,.. Let $, be the comp-
letion of ®, for each ¢e 4 and let $ be the direct sum of {9.}...
We denote the product of {2},., by ¥« = I1...¥, and define ¥ as
follows. Let

D) = {(£)es€D; 66D, for all ¢ed and
SNALIP< e for all A4,e9}.
ted

We define

AE = (Az):eA(Ez):eA - (AzEz)zeA
for all £ =(£),, D) and A = (A).c, . It is clear that TT..,.
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is a %-algebra on D) under the following operations; A + B =
(A: + Bz)zeAy >\'A = ()\’Az)ze/]; AB = (Ath):e As A# = (Af)r for ea'Ch A =
(At)te,hB - (Bz)ze/leﬂce/l QI; al’ld NG@.

THEOREM 38.7. Let {2}... be a family of (resp. closed) symmetric
£-algebras A, on D.. Then N = [... A, is a (resp. closed) symmetric
t-algebra on DN). In particular, if A, is an EWi-algebra on D,
for every ce A, then U is an EWialgebra on DRL) and we have

A = @1% and A, = @1(—%_[—);, ,

where we denote by @...B. the direct sum of a family {B}., of
von Neumann algebras.

Proof. If A, is a (resp. closed) symmetric #-algebra on D, for
all ced, it is easily shown that J]... 2. is a (resp. closed) symmetric
g-algebra on D). We shall show that U, = ®.., ), if A, is an
EW*algebra on ®, for every ce4. Suppose that 4 = (4)..eU,.
We can easily show that A4, (), for every ce 4 and sup..,[|4. || =
{[All. For each & = (£).c, D) we have A& = (4)...& and hence
A=(A4).cs, and so Ac@®,.,(),. Conversely suppose X = (X,).c.€
®..,(¥),. Then there is an element A, in (), such that X, = A4,
for all ce 4. Let A = (A)..,. We can easily show that A&, and
A=(A)..= X. Therefore we have X cA,. Consequently we have
A = @...(A),. Since @...(A), is a von Neumann algebra, U is an
EW*algebra on (). Furthermore we have %' = (A,) = (@... ), =
®D... (M) = B... ¥, by Proposition 2.9.

DEFINITION 3.8. Let (resp. B) be a symmetric #-algebra on
D(resp. €). The map. @ of A into B is called a homomorphism if
it is linear, if @(ST) = O(S)P(T), S, T ¢ A, and if O(S*) = @(S)}, Se .
If @ is a bijective homomorphism of 2 onto B, then it is called an
isomorphism of U onto B. Then U and B are called isomorphic.
Let @ be an isomorphism of 2 onto B. If there is an isometric
mapping U of © onto & such that @(S) = USU™ for every Se?,
then @ is called a spatial isomorphism and we call % and B are
spatial isomorphic and write by U = B.

ProprOSITION 8.9. Let U be a closed EWHalgebra on D and let
{E}cs be ¢ family of mutually orthogonal projections in W such
that >, K. = 1. Then there exist a family {N}... of EW*algebras
and a spatial isomorphism @ of U onto the EWH-subalgebra of
.. %, such that OQA), = D.., ),.
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Proof. Let ©, = ED and let $, be the completion of ©,. Then
A, = Uy, is a closed EWtalgebra on ©, by Theorem 3.5. It is easy
to show that @; A —(A)...(A = A;) is an isomorphism of 2 into
M. ¥. We define the mapping U of ® into @.., 9. by Uz = (E.£).c4
Then U is an isometric mapping of ® onto DO(). In fact, let £eD
and then & = E£ec D, for all ce 4 and we have, for each 4,20,

S A&IF = 3 AEEIP = S| EA2|P = | 42]F < o

and hence (E.8).., € DO(A). Conversely suppose that (£).., € D(... ),
ie,8,eD,=EDand D, ||ALIP < oo forall AcU. Let 6= 3,,&.
Then we have

S [[4elf = S AEE = S A& < o

for all Ac 9 and therefore £cD(A) for all AcA. Since U is closed,
we have £ €D and Ut = (£,).... Consequently U is onto. Furthermore
we have

NUEIP = [[(E&)eal* = S INEEIF = [I£]]

and hence U is an isometric mapping of $ onto @.., .. Finally we
shall show that UAU* = (A).., for all AcU. For each £ D we
have

UA U_l(EzE)zeA = UAE - (EzAE)zE4 = (AE:E):ed = (A:E:E)ze4
and
(A:):e /A(E:S)ze 1= (A:Eté)ze,d

and hence UAU™' = (A).... By ([3] Ch. I, §2, 2) it is easy to show
that 0), = @.., (A),. Consequently O() is an EWisubalgebra of
HteA QIz With @(%)b = $ze/1 (%[:)w

PropPoSITION 3.10. Let U, be a closed EW*algebra on D, for all
ced and let A =T11,..N. If F.e@), for every ctecd, then F =
(F)icre ), and furthermore we have

%IF = z];l (S\)I:)F: a%d (QIF)’ - zéel (S‘)I")F! *

Proof. Clearly F = (F),.,c(U),. Let B =11..(@)r. Then
we have

@(S‘)IF) = F@(QI) = {(Ff:):e/l; S = (Er)csd S @(%[)}

and
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DEB) = ((F'&)es; £,€D, for all ted and
S(A)FE|P < for all A4,e),

and so it is easy to show that D(U;) = D(B). Consequently we have
Wp = [Mics (WA)r,. By Theorem 3.5 and Theorem 3.7 we have

@ = (IL@):,) = @ (@) = B ), -

We define the amplification of an EW*algebra 90 onto %@I.
Let 9, and ¥, be EW?*algebras on ®, and D, respectively. Let D
be the subspace of § = &, R 9, generated by {£, ® &,; £, €D, £,€D,}
and denoted by ©, X D,. Clearly ® is a dense subspace of . For
each T, e, and T,c ¥, we get an operator T, ® T, on D defined by
(T, QTHE® &) = (T48) R (T:8,), for each £¢D, and £,¢D, Then
we have, for each 7,8, and T, S,;e, T'® T, is a bilinear
function of T, and T, (T, R T XS, ® S,) = T.S, ® T,S,; (T, R To)f =
T! & Ti. Then the following proposition is easily shown.

PROPOSITION 3.11. Let 9, be an EWi-algebra on D, and let 9,
be a Hilbert space. Putting

A X I@g ={T,® IHZ; T,e},

where Iy, is an identity operator on £, A, X I, is an EW*algebra
on D, K Y, and we have

(%1 ® Isz)b = (ﬁl—)_b @ Ibz .
Putting

DR B = N AT DL (1. O Lo = T ® Lo, 2D @ H

A &I, = {T, @ Ls; T,e W} is the closure of %, Q Is, and so %A, & I,
is a closed EWtalgebra on D, X ..

DEFINITION 3.12. The isomorphism; 7, — T1®I®2 is called an
amplification of ¥, onto U, C>N<)I{,2.

4. Preduals of EW*.algebras. Let ¥ be a symmetric #-algebra
on ., Let 9. = By D, Where §, is the replica of & for n =1,
2,---. For each &£ =(6,8, -+, &, »--) D) and T e, putting
Tt = (T¢, TE, ---, TE,, -++), we get a linear operator 7., on D ().
Let %, = {T,; Te¥A}. Then we have, for each S and 7 in %, T. +
S. =(T + 8w, M. = AD)eoy T.S.. = (TS).., T = (T%., and so the
following lemma is easily shown.
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LEMMA 4.1. Let % be a (resp. closed) symmetric #-algebra on
D, Then U, is a (resp. closed) symmetric #-algedbra on D.(A).
Furthermore, if A 15 an EWialgebra on D, then U. is en EW*
algebra on D, (A).

Let A be a symmetric $-algebra on . A linear functional @
on A 1s called positive if P(A*A) = 0 for every A e and we denote
by ¢ = 0.

For each £€D and y e 9, putting

;. (T) = (T¢ly), Te¥,
W, , 18 o strongly continuous linear functional on . In particular,

we denote W, (£€D) by w..

LEmMMA 4.2. Let 9 be a closed symmetric -algebra on D. Sup-
pose that @ is a positive linear functional on W and £e€D. If
@ < W, then there exists a Ce W such that 0 S C I and @ = wg,.

Proof. For each S, T we have
[P(S*T)|* = P(S* S)P(T*T) = || SEIPII TS .
Putting B(T¢, S¢) = o(S*T), B(,) is an hermitian positive sesquilinear

form on ¢ with norm =< 1, so that there is an hermitian positive
operator C, in <Z(UZ) such that {[{C,|| <1 and for all S and T in ¥
o(S*T) = (T¢|C,S8). Since Us is an Y-invariant subspace of D, the
projection E. onto & belongs to 9 (Proposition 3.3). Putting C' =
C,E., for each A, B and T in 20 we have
(TC' As|Bg) = (TC.E.As| Bs) = (TC,A¢| Bg) = (A£|C,T*B¢)

= @((T*By'A) = p(B*TA) = (TA£|C,B¢)

= (C,TAE|Bg) = (C'T A% Bg)
and since 20¢ is dense in E.D under the induced topology 7,, we get

(TC'E¢ | Exn) = (CTEE | E:n)

for every &, 7, ¢D and furthermore we have

(TC(I ~ E)& (1) = 0 = (CGTE — E)éln) = (CTUT — EJaln) .

Hence we have (1'C'¢,|n) = (C'T&,|n,) for every Te¥ and &, 7,€9D.
Consequently we get ¢’ e’ and clearly ¢’ is an hermitian positive
operator and ||C']| £1. Now, putting C = C"*?, for all Te ¥,

PT) = (T€|C°8) = 0T .

ProrosiTION 4.3. Let U be a closed symmetric E-algebra on D
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and let @ be a positive linear functional on . Then
(1) the following conditions are equivalent;
(1) @ is weakly continuous;
(2) @:Z?ﬁwepfie@;i:lyzy"',n;
(II) the following conditions are equivalent;
(3) @ is o-weakly continuous,
(4) @ZZfﬁw%,Sw:(Esz,"'95%7 "')e@m(%)'

Proof. (2)= (1) and (4) = (3); clear.

(3) = (4); By Lemma 4.1. 2, is a closed symmetric #-algebra on
D). Putting @.(T..) =2(T), T e, ., is a positive linear functional
on .. Furthermore, since @ is o-weakly continuous, there is an
Do = Dy Ny + 20y Ny < ++) In D(A) such that

|PAT)| = |P(T)] = Ig(Tmlm)\ = (T ]9} -

Hence ., is a positive linear functional on %, and . < @,.. By
Lemma 4.2, there is a &, =(&, &, -+, &,y »++) in D(Y) such that
Po = W;o. For each T €A we have

PL) = PT.) = 0:lT) = 3 (T6,1E,) = 3 0:,(T) -

(1) = (2); By a slight modification of the argument (3) = (4) we
can easily show (1) = (2).

DEFINITION 4.4. We denote by .(resp. AL) the set of all o-
weakly continuous (resp. positive) linear functionals on 9 and 9, is
called the predual of 2.

For Ac¥ and fe,, we define actions of 2 on f by;

(fANT) = f(AT), (ANT) = F(T4A)

for each Te2. Then we have fA4, Af e¢¥U,.

Let U be a closed EW#*algebra on ©. By Lemma 4.1. ¥, is a
closed EW#-algebra on ©,(¥). For each T e and @ e W, (resp. AL)
putting @.(T..) = (1), ?.. is a weakly continuous (resp. positive) linear
functional on .. Moreover, for each T ¢, and @ U, (resp. AL)
putting @(T) = @(T), % belongs to the predual (,).(resp. A,);) of a
von Neumann algebra ;.

LEMMA 4.5. Let U be a closed EWialgebra on ©. Let @ and

P in W,
(1) If @ =+, then @ = .
(2) If =0, then @ = 0.
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Proof. (1) ForeachTe¥, let T.=U,|T.| be the polar decom-
position of 7.,. Then we have U,e(U.), and |T.[e@.);. Let

IT.| = wadE(x) be the spectral decomposition of |7T..| and for each
n, putting X, = gnxdE(x), we get X, e (), Since D) D(T-),
for each &. ¢ @w(sﬁ) we have lim, ., X,&. = |T..|&. = | T..|&. and hence
lim,_.. U, X, 60 = U| T |6 = Twfw. That is, U,X, converges strongly
to T... Since @.. and +r.. are weakly continuous, we have
lim P (U.X,) = 9o(T) = P(T)

and lim, .., Yo U X,) = oo T) = +(T) and furthermore 3=+ and U, X, €
#.),, and so we have @ (U.X,) = +v.(U.X,). Therefore we get
P(T) = ¥(T).

(2) Suppose T e ;. Then it is easy to show T. ¢ (%.)i. Let
T. = wadE(x) be the spectral decomposition of 7T, and putting, for
each an—n = S"xdE(x). By (1), we have lim,., 9.(X,) = ®.(T.).
Furthermore, 0since =0 and X, e (W), P-(X,) =0 for each =.
Therefore we get o(T) = @.(T.) = 0.

PRrOPOSITION 4.6. Suppose that U is a closed EWi-algebra on D
ond fe,.. Then there exists o couple (@, U) with the following
properties;

(a) peU; and @] =11 B

() U is a partial isometry of A, having S(P) as the final
projection UU* = UU*, where S(@) denotes the support of @;

(&) f=9Uo=fU%

(d) such decomposition 1s unique.

Proof. Using Lemma 4.5 and thg polar decomposition of a o-
\feakly continuous linear functional f on a von Neumann algebra
A, we can easily show Proposition 4.6.

DEFINITION 4.7. The @ of Proposition 4.6 is called the absolute
value of f and we denote @ by |f|. This decomposition is called
the polar decomposition of f.

THEOREM 4.8. Let % be a closed EW*algebra on 2.
(1) The following conditions are equivalent;

(1) f s weakly continuous;

(2) f:Z?zl We, 3, & 7]16@(7': 1,2, ""n)'

(11} The following conditions are equivalent;

(3) fes‘)l*;
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(4) f:;::la)fn,ﬂn’gw:(SI’Sz; v, &y "')yy]oo:(pu M)
s "')egm(%) .

Proof. (2)=(1) and (4) = (3); clear.

(3)=(4) Suppose feU,. Let f =]|f|U be the polar decomposi-
tion of f. By Proposition 4.3 there is a £.=(&,&, -+, &, *++*)€E
D (N) such that | f| =D, w,,. For each T e we have

F(T) = (F1UXT) = 3 (UTE,18) = 3 (T5,|U%.)

and so putting 7, = U*,, n = 1,2, «++, Doe = (Y1 Nap =+, Ty =+ ) € DeoA)
and f =20 @y,

(1)=1(2) By a slight modification of the argument (3) = (4), (1) —
(2) is easily shown.

5. The structure of a o-weakly continuous homomorphism.
In this section we shall show that a o-weakly continuous homo-
morphism of a closed EW?*algebra is decomposed in the following
three types; a spatial isomorphism, an induction and an amplification.

DerFINITION 5.1. Let %U(resp. B, B,) be a symmetric #-algebra
on D(resp. €, €). Let @(resp. @) be a homomorphism of 2 onto
B(resp. B)). Then @ and @, are called unitarily equivalent if there
is an isometric isomorphism U of € onto & such that

Ud(T): = &(T)Uz
for all Te¢ A and £c¢ € and we denote by @ = 9,.

LEMMA 5.2. Let % be a closed EW*algebra on D and @ = i1, ®;,
£eDE =1, -+, n)(resp. ? = 2L, W, £ = (&, -+, & 0 *) €D(A)).
Let & be o Hilbert space with dimewnsion n(resp. a separable Hilbert
space) and let @ be an amplification T — T Q I, of U onto A IL.
Then there exists an element z of DX K such that (T) = (O(T)z|x)
Jor all T e,

Proof. Suppose that {e};—,.... is an orthogonal basis in & Let
=328 ®e. Then we have 37, & ® ¢, — a(n — o) and

2

T3 = S re @l =3 1T

— 0 (n, m —> <o)

and hence we get, for all Te¥, 2ecDTRI) and TR Lz =
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2 Tt ®e. That is, 2D XK and (T & L)x = 32, TE e
Furthermore we have

(@(T)z|x) = (T & L)w|z)
= <g Té, ® ezlg} & ®ez> = i{(TEzlEz) = @(T) .

=

Let % be a closed symmetric #-algebra on ® and let £e€D. We
denote by X! the subspace of ® generated by {T¢; T e2}. Let (X%~
be the closure of X! under the induced topology 7, and let E¥ be
the projection onto X¥. Then, by Proposition 3.3, E¥ ¢ Y’ and E¥® =
(%)

DEFINITION 5.3. If (X)) = D, then & is called a strongly cyeclic
vector for 2.

LEMMA 5.4. Let Aresp. B, B) be a closed symmetric %-algebra
on D(resp. €, &) and let O(resp. @,) be a homomorphism of U onto
B(resp. B,). If there is a strongly cyclic vector &ec@(resp. & eE)
Jor B(resp. B,)) such that

(P(T)18) = (P(T)e:[€)
Sor all Te, then @ = @,

Proof. Putting U, @(T)é — @ (T)%, we have, for all T e¥,
NU(THE 1 = || o(TH 1,

so that U, is an isometric isomorphism of @) onto @A), and
furthermore, since &(resp. &) is a eyclic vector for B(resp. B)), U, is
extended to an isometric isomorphism U of & = € onto & = &,. For
each 7¢€€ there is a net {7,} in % such that lim, &(T)O(T,)s = ¢(T)y
for all Te9 and then we have lim,®/(T,)s = limU®(T,)e = Uy and
lim, (19T )¢, = lim, U(TYI(T,)e = UP(T)7, so that we get Une
Nrea DO(T)) = G and O(T)Un = &,(T)Uy = U(T)y for all Tell.
Similarly we can show U D, and therefore @ = @,.

THEOREM 5.5. Let A(resp. B) be a closed EWialgebra on
D(resp. €) and let © be a o-weakly continuous homomorphism of A
onto B. Then there exist an amplification @, of A onto o closed
EW*algebra A, on D, an induction D, of A, onto a closed EW?*-
algebra A, on D, and a spatial isomorphism @, of U, onto B such
that @ = Q;0D,0D,,

Proof. (1) Suppose that B has a strongly cyclic vector 7 €.
Putting
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ATy = (@(Ty|n), Ted,

@ is a o-weakly continuous positive linear functional on 2. By
Proposition 4.3 there exists a £&.=(£,8&, +=+, &, +++) € DY) such
that ¢ = XL, w,,. Let D, = DR K(8,; a separable Hilbert space), let
oL =AR I, and let @, be an amlification of ¥ onto 2,. By Lemma
5.2 there exists an element x of O, such that @(T) = (9(T)x|x) for
all Te. By Proposition 3.11 ¥, is a closed EW#algebra on 9.
Let ©,= (%) and let E = E%. Let %, = ()r and let &, be an
induction of ¥, onto ¥U,. By Theorem 3.5 %, is a closed F Wi-algebra
on ®, and

(@(T)| ) = P(T) = (2(T)w|x) = (PP )T)x | )

for all TeW. Furthermore, 9,09, is a homomorphism of ¥ onto 2,
Q@ is a homomorphism of 9 onto B and x(resp. ») is a strongly eyclic
vector for 2 (resp. B), so that, by Lemma 5.4, we get @ = 0,:9,.
Putting

@y D@ (T)—> O(T), Te,

@, is a spatial isomorphism of 9, onto B. Clearly we have @ =
Dy0P,00,,

(2) In a general case we shall prove the theorem. Suppose that
{9.}ces is 2 maximal family such that {}..,C€ and € = (X)) is
mutually orthogonal. Let E, = E3 for every ¢c 4 and then K, e¢¥%
and furthermore we get 3., K = I, by the maximality of {9.}.c..
For each ¢e 4 putting

B, =By, and O(T)=OT),, Te¥U,

@' is a o-weakly continuous homomorphism and 9B, is a closed EW*-
algebra on € = K€ with a strongly cyelic vector 7. By (1), for
each ¢ec /4, there exist an amplification @¢ of ¥ onto a closed EW*
algebra i = 91(>~<)Iﬁ§ on DX K, an induction @; of A; onto a closed
EW:¢algebra 9 = (A, (F, e @),) on ;= FD, and a spatial iso-
morphism @; of 9 onto B, such that @ = @;-0;00;. Let & =
D AL =UAR I;, and let @, be an amplification of 2 onto A,. It
is easy to show that 9 = {(T®Iﬁi),eA el Tel. For each
ted we have F,e(), = (AR L), = (X Q F(K)),, so that F =
(Fes €@, (W R FR)), = (WR Z&R)), = %), Let 2, =)z
Then %, is a closed EW*algebra on ®, = FD,. Let @, be an induc-
tion of 2, onto %, and let @, 0,00 (T)— &(T), T cA. We shall show
that @, is a spatial isomorphism of 9, onto B. For each T e we
have
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D,00(T) = (T ® L)r = (TR L)ec )i, s
= (T ® I9)r,).cs (by Proposition 3.10)
= (D0 P)T)).cs -

On the other hand, by Proposition 3.9, B is spatially isomorphic to
{(@(T)).cs€11.c4B,; T cU}. Furthermore, since @ is a spatial iso-
morphism for each ¢e 4, we get (P50 @ )T)).c . — (@(T)).., is a spatial
isomorphism, i.e., @, is a spatial isomorphism of 2, onto B.
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