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1. Introduction. Let S he the family of analytic functions:

(1) fiz) = z + a2z2 + • • • ,

which are regular and univalent in \z\ <1. Let/_1(z) be the inverse

function oi fiz). We have:

(2) /   (z) = z — atf  + (2a2 — a/)z + ■ • ■ .

The function /(z) will be called bi-univalent if both fiz) and /_1(s)

are univalent in \z\ <l;/(z) will be said to belong to a iff (i) fiz)C/S

and (ii) there exists a function g(z)£S such that/(g(z)) =gifiz)) =2

in some neighborhood of the origin.

Z. Nehari remarked1 that if <piz) =<^iz+c/>2z2+ • • ■ and ypiz)

= ypiZ+ypiZ2+ • • • , with ypi=<pi, are two functions mapping the open

unit circle onto a schlicht domain containing the open unit circle,

then the function

(3) /(•) = <b[yp^iz)}

is bi-univalent. It will belong to a ii both/(s) and/_1(z) are regular in

It is not clear whether all functions of <r are representable in the

form (3). If they are, the representation may not be unique. The func-

tion/(z) in (3) will belong to a even though </>(z) or xpiz) or both have

poles in \z\ < 1, on condition that if z = p$ and z = pj, are the respective

poles, the following two inequalities be satisfied:

| <K^) |^l    and     | ftp*) | ^ 1.

It is also not clear whether all functions of cr, even if they are of the

form (3), can be represented by functions <j>iz) and i^(z) which are both

regular in \z\ <1.

It is the purpose of this paper to obtain the following theorem: For

fiz)E<r, Io,| < 1.51.

2. Application of the area-theorem. The area-theorem applied to

the function/(z)G-S' in (1) yields:
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(4) £p\cP\*^l,
P-i

where
1 w

— = z-1 + Z cp3p.
/(S) p_0

Let /n(z)=[/(2n)](1/n> for integral ra^l. If f(z)ES, then fn(z)ES.

It follows that ii f(z)E& then /„(z)£<r. Applying inequality (3) to

fn(z) we obtain

(ra - 1) | a212 + (2ra - 1) | a, - ((ra + l)/2ra)a212 g »2

and hence:

»+l   il      /«2- (»- l)|a2K1/2
(5) as-a 2=1-J

2«       I      V 2« - 1 /

Applying (4) to the function f„1(z) we get:

3»-l  2|      /ra2-(ra-l)|a2K1/2

(6) fl3-^ra-a2|-V-2.-1 j     •

Inequalities (5) and (6) imply:

(ra- 1)   ,      ,        /ra2- (ra- l)|a2|2\1/2

2« '       \ 2« - 1 /

By squaring both sides a quadratic inequality for [a2|2 is obtained,

whence:
2ra2

(7) \a2 2 ^-
11        (ra- l)((2ra)1/2+1)

For ra = 2, 3 and 4 the right-hand side of (7) takes the values 2.67,

2.61 and 2.78 respectively. We thus get the best result for ra = 3, so

that:

|a2|2 < 2.61,

or:

(8) | a2\ < 1.62,

This bound can be improved by the use of Grunsky's inequalities.

3. The /-sequence {h}. We use the sequence {h} introduced by

E. Jabotinsky [3]. Let/(s, z) be the s-iterate of

f(z) = z A- a2z* + • • • .

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1967] COEFFICIENT PROBLEM FOR UNIVALENT FUNCTIONS 65

That is, let/(s, z) be defined for integer 5 by:

fil, z) = fiz)    and   /(,, z) = f[is - I), fiz)].
Then:

QO

fis, z) = z+zZ aPis)zp,
p=2

where avis) is a polynomial of degree ip — 1) in s. We define:

d ,
(9) 4 = — Ok-iis) I ,_o.

ds

The sequences   {a,-}  and   {lk}  determine each other uniquely.  In

particular:
2 5 3

(10) a2 = h,    a3 = h + h,    a4 = h + — hh + h',

also:
2 5 3    3

(11) h = a^,    1^ = az — ai,   h = #4-a2a3 H-a*.

The sequence [4} has the following two properties:

(A) Let {\k\ be the /-sequence of the function/_l(z) =/( — l, z),

then:

(12) X* = - k.

(B) Let {hM} be the /-sequence of the function /n(z) = [/"(z")]1'".

We have:

a3) („, = (l/»)4/„     if « U;
*    = 0 if raj k.

Proof of A. Let Liz) = zZt-i hzk+1 (where A is a large but other-

wise arbitrary integer). Liz) then defines an analytic function /*(z)

= z+a^z2 + ■ • ■ and Liz) is the coefficient of 5 in the Taylor expan-

sion of/*(s, z) about s = 0. The existence of such an expansion is

proved in [2]. On the other hand the first A+1 coefficients of the

respective power-series expansions of /*(z) and /(z) coincide. (If

fis, z) admits a power-series expansion in s, we may define i(z)

= E*°=i hzk+1 which has then a positive radius of convergence [3], so

that/*(z)=/(z).) Let now g*iz) be the inverse of/*(z) so that

(14) fis,z)=f*i-s,z).

It follows immediately that

(15) £<••>(») = - L</*>(2)

whence (12) holds for every k^N.
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Since A may be taken arbitrarily large, (12) holds for every k.

Proof of B. Define Fn(z) = [fCz")]1'-.

It is easily seen that

(16) Fn(s, z) = [f*(s, *»))"».

Differentiating both sides with respect to 5 gives:

dFn(s,z)       1 df*(s, z")
(17) -±±l = —f*rSit»yi*-i J  K'    ' .

ds n ds

Putting now s = 0 and noting that/*(0, z)=z, we obtain

1
(18) Z>>(z) = — 81-»£(a»),

n

or
«J IN N       1

/in\ V 7<n> "+1 1_n N^ / / V+1        V* 7   ni+1(19) Y I>z      =—z      Yh(z)      =  Y ~hz
v=i n *-i t=i   n

whence, by equating coefficients, B is obtained immediately.

4. Grunsky's inequalities. Grunsky [l] established a necessary

and sufficient condition for the function f(z) =2-f-a2z2+ • • • to be

univalent in \z\ <1. Let the numbers gm„ be defined by:

f(z)-f(w) f(z) f(w) -
log - =  log-h log-1-    Y gmnZmWn.

Z — W Z W m,n

Then Grunsky's condition is:

N »       L   J!
(20) Y    gmnXmXn      S    Y   -

m,n—l p=l P

for every choice of the complex numbers xk and all A.

In [3] the gmn corresponding to the function f(z) are given ex-

plicitly in terms of the /* of that function. In particular:

gn = h,

gi2 = ?2i = h Ar ̂ hh,
2 2

gi3 = g3i = h A- hh + 2^2 + 3/1/2,

2

g22 = UA- hh A- §hh,

gn = h + 2hh A- hh A- \hl\ + 2/1/4 + ihhh + \ll A- llh + \hh-

For bi-univalent functions, Grunsky's inequalities (20) will come

in pairs for every A, obtained from each other by replacing, according
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to (12), every lk by —lk. Hence, in these inequalities, odd powers of

the I's can be separated from the even powers, yielding separate in-

equalities, by using the fact that if |a+&| ^k and \a — b\ ^k then

\a\ ^k and |&| ^k.

5. A bound for | 441. Grunsky's inequality (20) for A = 2 becomes:

(21) | hxl + 2(4 + |/i4)*i*2 + (4 + 44 + \hh)xl | £ | *i |2 + i |*212.

Taking xi = 0, x2 = l and omitting all odd powers of the I's, we get,

for bi-univalent functions:

(22) | 441 =s §•

This result can be improved for functions in a by the use of (8)

(valid for functions of a only). Indeed, choosing *i = 4, x2=j8>0 and

omitting all odd powers of the I's, (21) yields, for functions in a:

| 44 | (2/3 + /?2) ̂  |4|2 + ^2.

Here the best result for |44|, given |4|2, is obtained by taking:

8=  |4|2+ (|4|4+2|4|2)l/2,

whence:
, 1

(23) 44   ^-;—;-
1       (l+2/|4|2)1/2+l

Using the fact that 4 =a2, and the bound (8) obtained by taking ra = 3

in (7):

(24) 44   ^-< 0.43.3 + (11 + 2.6) l/«

We shall use this bound to improve (8).

6. An improved bound for |a2| =|4|. Grunsky's inequality (20)

for A = 3, written for/2(z) = (/(z2))1'2, using (13) and taking x2 = 0, is:

I ihxi + (4 + i4)*i*s + (14 + ihh + t&4)*8 |

S  | *i |2 + i | x3|2,

Choosing *i = 4, Xz = 8>0 and omitting all even powers of the I's,

(25) becomes:

I 43(* + \8 + &P) + ih821 =s  | 4 |2 + \B\

whence:

(26) | 4 Hi + \8 + A/32) <  ! 4 |2 + iP2 + h I 4 | 82.
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Multiplying by \k\ and substituting for |/i/3| from (24) this becomes

Ihl'Q + iB + AB*) ~ \li\*-tf\h\ <— B2

Choosing /S = 1.5 this yields, for functions in a:

(25) | os I < LSI

Further improvement of both bounds (8) and (24) by the interplay

of inequalities (23) and (26) yields very little. We have not succeeded

in bringing down the bound in (25) to f.
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