C OLLOQUIUM MATHEMATICUM

on a Combinatorial Problem CONNECTED WITH FACTORIZATIONS

BY
WEIDONG GAO (BEIJING)
0. Let K be an algebraic number field with classgroup G and integer ring R. For $k \geq 1$ and a real number $x>0$, let $a_{k}=a_{k}(G)$ be the maximal number of nonprincipal prime ideals which can divide a squarefree element of R with at most k distinct factorizations into irreducible elements, and let $F_{k}(x)$ be the number of elements $\alpha \in R$ (up to associates) having at most k different factorizations into irreducible elements of R. W. Narkiewicz [8] derived the asymptotic expression

$$
F_{k}(x) \sim c_{k} x(\log)^{-1+1 /|G|}(\log \log x)^{a_{k}}
$$

where c_{k} is positive and depends on k and K.
Recently, F. Halter-Koch [6-7] used the characterizations of $a_{k}(G)$ to study nonunique factorizations.

In [8], Narkiewicz showed that $a_{k}(G)$ depends only on k and G, gave a combinatorial definition of it and proposed the problem of determining $a_{k}(G)$ (Problem 1145).

Let G be a finite abelian group (written additively). The Davenport constant $D(G)$ of G is defined to be the minimal integer d such that for every sequence of d elements in G there is a nonempty subsequence with sum zero. Narkiewicz and Śliwa [8-9] derived several properties of $a_{1}(G)$ involving $D(G)$ and proposed the following conjecture:

Conjecture 1. Let $G=C_{n_{1}} \oplus \ldots \oplus C_{n_{r}}$ with $1<n_{1}|\ldots| n_{r}$. Then $a_{1}(G)=n_{1}+\ldots+n_{r}$, where C_{n} denotes the cyclic group of order n.

They affirmed Conjecture 1 for $G=C_{2}^{n}, C_{2}^{n} \oplus C_{4}, C_{2}^{n} \oplus C_{4}^{2}$ or C_{3}^{n}.
In this paper we derive several properties of $a_{k}(G)$, affirm this conjecture for a more general case and determine $a_{2}\left(C_{2}^{n}\right)$ and $a_{k}\left(C_{n}\right)$ provided that n is substantially larger than k. The paper is organized in the following way: In Section 1 we repeat the combinatorial definition of $a_{k}(G)$ due to Narkiewicz [8] and give some preliminaries on $a_{1}(G)$ and $D(G)$. In Section 2 we derive some new properties of $a_{1}(G)$ and show the following:

[^0]Theorem 1. Let $G=C_{n_{1}} \oplus \ldots \oplus C_{n_{r}}$ with $1<n_{1}|\ldots| n_{r}$, let p be a prime with $2 \leq p \leq 151$, and let us adopt the convention $C_{n}^{0}=C_{1}$. Then $a_{1}(G)=n_{1}+\ldots+n_{r}$ provided that G is of one of the following forms ($m \geq 1$):
(1) $C_{2^{t} 3^{s}} \oplus C_{2^{t} 3^{s} m}, 0 \leq t \leq 1$ or $0 \leq s \leq 1$,
(2) $C_{2^{t} 3^{s} p}^{2}, 0 \leq t \leq 1$ or $0 \leq s \leq 1$,
(3) $C_{4 p}^{2}$,
(4) $C_{2^{t} p} \oplus C_{2^{t} p m}, 0 \leq t \leq 1$,
(5) $C_{2^{t} 5^{s}} \oplus C_{2^{t} 5^{s} m}, 0 \leq t \leq 1$,
(6) $C_{3 \times 5^{s}}^{2}$,
(7) $C_{4 \times 5^{s}}^{2}$,
(8) $C_{2}^{n} \oplus C_{4}^{t} \oplus C_{2^{m}}, 0 \leq t \leq 1$,
(9) $C_{2}^{n} \oplus C_{4}^{t} \oplus C_{2^{m} l}, 0 \leq t \leq 1, l \geq 4$ and $2^{m} \geq n+3 t+1$,
(10) $C_{3}^{n} \oplus C_{9}^{t} \oplus C_{3^{m}}, 0 \leq t \leq 1$,
(11) $C_{3}^{n} \oplus C_{9}^{t} \oplus C_{3^{m} l}, 0 \leq t \leq 1, l \geq 4$, and $3^{m} \geq 2 n+8 t+1$,
(12) $C_{5}^{2} \oplus C_{25 m}, m=1$ or $m \geq 4$.

In Section 3 we derive some properties of $a_{k}(G)$ and show the following
Theorem 2. If $k \geq 2$ and if

$$
k \leq \frac{-\log _{2} n+\sqrt{\left(\log _{2} n\right)^{2}+n}}{2}+1
$$

then $a_{k}\left(C_{n}\right)=n$.
Remark 1. It is proved in [8, Proposition 9] that $\max \left\{D(G), \sum_{i=1}^{r} n_{i}\right\}$ $\leq a_{k}(G) \leq a_{l}(G)$ for $1 \leq k \leq l$; therefore if Conjecture 1 is true, then $D(G) \leq n_{1}+\ldots+n_{r}$ and the best known estimation (see [3])

$$
D(G) \leq n_{r}\left(1+\frac{\log |G|}{\log n_{r}}\right)
$$

would be improved. So it seems very difficult to settle Conjecture 1 in general.

1. In what follows we always let G denote a finite abelian group.

For a sequence $S=\left(a_{1}, \ldots, a_{m}\right)$ of elements in G, we use $\sum S$ to denote the sum $\sum_{i=1}^{m} a_{i}$. By λ we denote the empty sequence and adopt the convention that $\sum \lambda=0$. We say S a zero-sum sequence if $\sum S=0$. A subsequence T of S is a sequence $T=\left(a_{i_{1}}, \ldots, a_{i_{l}}\right)$ with $\left\{i_{1}, \ldots, i_{l}\right\} \subset\{1, \ldots, m\}$; we denote by I_{T} the index set $\left\{i_{1}, \ldots, i_{l}\right\}$, and identify two subsequences S_{1} and S_{2} if $I_{S_{1}}=I_{S_{2}}$. We say two subsequences S_{1} and S_{2} are disjoint if $I_{S_{1}} \cap I_{S_{2}}=\emptyset$ (the empty set) and define multiplication of two disjoint subsequences by juxtaposition.

A nonempty sequence B of nonzero elements in G is called a block in G provided that $\sum B=0$; we call a block irreducible if it cannot be written as a product of two blocks.

By a factorization of a block $B=\left(b_{1}, \ldots, b_{k}\right)$ we shall understand any surjective map

$$
\varphi:\{1, \ldots, k\} \rightarrow\{1, \ldots, t\}
$$

with a certain positive integer $t=t(\varphi)$ such that, for $j=1, \ldots, t$, the sequences $B_{j}=\left(b_{i}: \varphi(i)=j\right)$ are blocks. If they are all irreducible, we speak about an irreducible factorization of B. Obviously, we have $B=$ $B_{1} \ldots B_{t}$. Two such factorizations φ and ψ are called strongly equivalent if $t(\varphi)=t(\psi)(=t$ say $)$ and for a suitable permutation δ the sets $\{i: \varphi(i)=j\}$ and $\{\psi(i)=\delta(j)\}$ coincide for $j=1, \ldots, t$. For $k \geq 1$, we define $B_{k}(G)$ to be the set consisting of all blocks which have at most k strongly inequivalent irreducible factorizations, and let $a_{k}(G)=\max \left\{|B|: B \in B_{k}(G)\right\}$.

For a sequence S of elements in G, we use $\sum(S)$ to denote the set consisting of all elements in G which can be expressed as a sum over a nonempty subsequence of S, i.e.,

$$
\sum(S)=\left\{\sum T: \lambda \neq T, T \subseteq S\right\}
$$

where $T \subseteq S$ means that T is a subsequence of S.
Lemma 1 ([9, Proposition 2]). Let $B=B_{1} \ldots B_{r} \in B(G)$ and let B_{1}, \ldots, B_{r} be irreducible blocks. Then $B \in B_{1}(G)$ if and only if for all disjoint nonempty subsets X, Y of $\{1, \ldots, r\}$ we have

$$
\sum\left(\prod_{i \in X} B_{i}\right) \cap \sum\left(\prod_{i \in Y} B_{i}\right)=\{0\}
$$

Lemma 2 ([9, Proposition 6]). If $B=B_{1} \ldots B_{r} \in B_{1}(G)$ and if B_{1}, \ldots, B_{r} are irreducible blocks, then $\left|B_{1}\right| \ldots\left|B_{r}\right| \leq|G|$.

Lemma 3 ([9, Proposition 3]). Let $B=B_{1} \ldots B_{r} \in B_{1}(G)$ and let B_{1}, \ldots, B_{r} be irreducible blocks. Then $|B| \leq D(G)+r-1$.

For a sequence S of elements in G, let $f_{\mathrm{E}}(S)$ (resp. $f_{\mathrm{O}}(S)$) denote the number of zero-sum subsequences T of S with $2||T|$ (resp. $2 \nmid| T \mid$), where we count $f_{\mathrm{E}}(S)$ including the empty sequence; hence, we have $f_{\mathrm{E}}(S) \geq 1$.

Lemma 4. Let p be a prime. Then the following hold
(i) $D\left(C_{n_{1}} \oplus C_{n_{2}}\right)=n_{1}+n_{2}-1\left(n_{1} \mid n_{2}\right)([11])$.
(ii) $D\left(C_{2 p^{t}}^{3}\right)=6 p^{t}-2([2])$.
(iii) $D\left(C_{3 \times 2^{t}}^{3}\right)=9 \times 2^{t}-2([3])$.
(iv) $D\left(\bigoplus_{i=1}^{k} C_{p^{e_{i}}}\right)=1+\sum_{i=1}^{k}\left(p^{e_{i}}-1\right)([10])$.
(v) If S is a sequence of elements in $\bigoplus_{i=1}^{k} C_{p^{e_{i}}}$ with $|S| \geq 1+$ $\sum_{i=1}^{k}\left(p^{e_{i}}-1\right)$, then $f_{\mathrm{E}}(S) \equiv f_{\mathrm{O}}(S)(\bmod p)([2],[10])$.

Lemma 5. Let $H=C_{n_{1}} \oplus \ldots \oplus C_{n_{l}}$ with $1<n_{1}|\ldots| n_{l}, n_{l} \mid n$, and $D\left(H \oplus C_{n}^{2}\right)=2(n-1)+D(H)$. Then $D\left(H \oplus C_{n}\right)=n-1+D(H)$.

Proof. By the definition of Davenport's constant one can choose a sequence $T=\left(a_{1}, \ldots, a_{D\left(H \oplus C_{n}\right)-1}\right)$ of $D\left(H \oplus C_{n}\right)-1$ elements in $H \oplus C_{n}$ such that $0 \notin \sum(T)$. Put $b_{i}=\left(a_{i}, 0\right)$ with $0 \in C_{n}$ for $i=1, \ldots, D(H \oplus$ $\left.C_{n}\right)-1$, and put $b_{i}=(0,1)$ with $0 \in H \oplus C_{n}$ and $1 \in C_{n}$ for $i=D(H \oplus$ $\left.C_{n}\right), \ldots, D\left(H \oplus C_{n}\right)+n-2$. Clearly, $b_{i} \in H \oplus C_{n}^{2}$ for $i=1, \ldots, D(H \oplus$ $\left.C_{n}\right)+n-2$ and the sequence $b_{1}, \ldots, b_{D\left(H \oplus C_{n}\right)+n-2}$ contains no nonempty zero-sum subsequence. This implies that

$$
D\left(H \oplus C_{n}\right)+n-1 \leq D\left(H \oplus C_{n}^{2}\right)
$$

Similarly, one can prove that

$$
D(H)+n-1 \leq D\left(H \oplus C_{n}\right)
$$

so we have
$D(H)+2(n-1) \leq D\left(H \oplus C_{n}\right)+n-1 \leq D\left(H \oplus C_{n}^{2}\right)=D(H)+2(n-1)$.
This forces that $D\left(H \oplus C_{n}\right)=D(H)+n-1$ as desired.
Lemma 6. Let $H=C_{n_{1}} \oplus \ldots \oplus C_{n_{l}}$ with $1<n_{1}|\ldots| n_{l}$, and $n_{l} \mid n$. Suppose that $n \geq D(H)$ and $D\left(H \oplus C_{n}^{2}\right)=2(n-1)+D(H)$. Then any sequence S of $2(n-1)+D(H)$ elements in $H \oplus C_{n}$ contains a nonempty zero-sum subsequence T with $|T| \leq n$.

Proof. Suppose $S=\left(a_{1}, \ldots, a_{2(n-1)+D(H)}\right)$. For $i=1, \ldots, 2(n-1)+$ $D(H)$ we define $b_{i}=\left(a_{i}, 1\right)$ with $1 \in C_{n}$. Clearly, $b_{i} \in H \oplus C_{n}^{2}$. Since $D\left(H \oplus C_{n}^{2}\right)=2(n-1)+D(H)$, the sequence $b_{1}, \ldots, b_{2(n-1)+D(H)}$ contains a nonempty zero-sum subsequence T. By the definition of b_{i}, we must have $n||T|$. But $n \geq D(H)-1$, so $| T \mid \leq 2(n-1)+D(H) \leq 3 n-1$, and this forces that

$$
|T|=n \quad \text { or } \quad|T|=2 n
$$

If $|T|=n$ we are done. Otherwise, $|T|=2 n$. By Lemma 5, $D\left(H \oplus C_{n}\right)=$ $n-1+D(H) \leq 2 n-1$, so one can find a nonempty zero-sum subsequence M of T with $|M|<|T|$. Setting W equal to the shorter of M and $T-M$ (the subsequence with index set $I_{T}-I_{M}$) completes the proof.

Lemma 7. Let $H=C_{n_{1}} \oplus \ldots \oplus C_{n_{l}}$ with $1<n_{1}|\ldots| n_{l}$, and $n_{l} \mid n$. Suppose that $n \geq D(H)$ and $D\left(H \oplus C_{n}^{2}\right)=2(n-1)+D(H)$. Then any zero-sum sequence S of elements in $H \oplus C_{n}$ with $|S| \geq n+D(H)$ contains a zero-sum subsequence T with $|S|-n \leq|T|<|S|$.

Proof. We distinguish three cases.
Case 1: $|S| \geq 2(n-1)+D(H)$. Then the lemma follows from Lemma 6 .
Case 2: $n+D(G) \leq|S| \leq 2 n$. By Lemma 5, we have $D\left(H \oplus C_{n}\right)=$ $n-1+D(G)$, thus there exists a zero-sum subsequence W of S with $1 \leq$ $|W|<|S|$. Setting T equal to the longer of W and $S-W$ proves the lemma in this case.

Case 3: $2 n+1 \leq|S| \leq 2 n-3+D(H)$. We define
$b_{i}= \begin{cases}\left(a_{i}, 1\right) \text { with } 1 \in C_{n} & \text { if } i=1, \ldots,|S|, \\ (0,1) \text { with } 0 \in H \oplus C_{n} \text { and } 1 \in C_{n} & \text { if } i=|S|+1, \ldots, 2(n-1)+D(H),\end{cases}$ and similarly to the proof of Lemma 6 we find a zero-sum subsequence W of $b_{1}, \ldots, b_{2(n-1)+D(H)}$ with $|W|=n$ or $2 n$. Put

$$
J=\left\{\begin{array}{l}
\left.\{1, \ldots,|S|\}-I_{W} \quad \text { if }|W|=n \text { (not necessarily } I_{W} \subseteq\{1, \ldots,|S|\}\right), \\
I_{W}-\{|S|+1, \ldots, 2(n-1)+D(H)\} \quad \text { if }|W|=2 n
\end{array}\right.
$$

and let T be the subsequence of S with $I_{T}=J$. Clearly, $\sum T=0$ and $|S|-n \leq|T|<|S|$. This completes the proof.

We say two nonempty sequences $S=\left(a_{1}, \ldots, a_{m}\right)$ and $T=\left(b_{1}, \ldots, b_{m}\right)$ of elements in C_{n} with the same size m are similar (written $S \sim T$) if there exist an integer c coprime to n and a permutation σ of $1, \ldots, m$ such that $a_{i}=c b_{\sigma(i)}$ for $i=1, \ldots, m$. Clearly, \sim is an equivalence relation. For any $x \in C_{n}$, we denote by $|x|_{n}$ the minimal nonnegative inverse image of x under the natural homomorphism from the additive group of integers onto C_{n}.

Lemma 8 ([1], [4]). Let $S=\left(a_{1}, \ldots, a_{n-k}\right)$ be a sequence of $n-k$ elements in C_{n} with $n \geq 2$. Suppose that $0 \notin \sum(S)$ and suppose that $k \leq n / 4+1$. Then

$$
S \sim(\underbrace{1, \ldots, 1}_{n-2 k+1}, x_{1}, \ldots, x_{k-1}),
$$

with all $x_{i} \neq 0$.
2. In this section we derive some properties of $a_{1}(G)$ and prove Theorem 1.

Proposition 1. Let $G=\bigoplus_{i=1}^{k} C_{p^{e_{i}}}$ with p an odd prime, let $B=$ $B_{1} \ldots B_{r} \in B_{1}(G)$ and let B_{1}, \ldots, B_{r} be irreducible blocks. Suppose that exactly t of $\left|B_{1}\right|, \ldots,\left|B_{r}\right|$ are odd. Then $|B| \leq D(G)+t-1$.

Proof. Without loss of generality, we assume that $\left|B_{1}\right|, \ldots,\left|B_{t}\right|$ are odd and that $\left|B_{t+1}\right|, \ldots,\left|B_{r}\right|$ are even. Let $D_{i} \subseteq B_{i}$ with $\left|D_{i}\right|=\left|B_{i}\right|-1$ for $i=1, \ldots, t$, and put $S=D_{1} \ldots D_{t} B_{t+1} \ldots B_{r}$. By the choice of D_{1}, \ldots, D_{t} and the hypothesis of the proposition, all zero-sum subsequences of S consist
of all products of the form $B_{i_{1}} \ldots B_{i_{l}}$ with $l \geq 0$ and $t+1 \leq i_{1}<\ldots<i_{l} \leq r$. This gives

$$
f_{\mathrm{E}}(S)=\binom{r-t}{0}+\binom{r-t}{1}+\binom{r-t}{2}+\ldots+\binom{r-t}{r-t}=2^{r-t}
$$

and $f_{\mathrm{O}}(S)=0$. But $p \nmid 2$, therefore $f_{\mathrm{E}}(S) \not \equiv f_{\mathrm{O}}(S)(\bmod p)$. Now it follows from Lemma $4(\mathrm{v})$ that $|B|-t=|S| \leq \sum_{i=1}^{k}\left(p^{e_{i}}-1\right)=D(G)-1$, that is, $|B| \leq D(G)+t-1$.

Proposition 2. Let $H=C_{n_{1}} \oplus \ldots \oplus C_{n_{l}}$ be a finite abelian group with $1<n_{1}|\ldots| n_{l}$, and let $G=H \oplus C_{n m}$ with $n_{l} \mid n$. Suppose that (i) $m \geq 4$ and $n \geq D(H)$, and (ii) $D\left(H \oplus C_{n}^{2}\right)=2(n-1)+D(H)$. Then $a_{1}(G) \leq a_{1}\left(H \oplus C_{n}\right)+n m-n$; moreover, if $a_{1}\left(H \oplus C_{n}\right)=n+n_{1}+\ldots+n_{l}$ then $a_{1}(G)=n m+n_{1}+\ldots+n_{l}$.

Remark 2. From Lemma 4(ii)-(iv) we see that there exists a large class of pairs of (H,n) satisfying conditions (i) and (ii) of Proposition 2.

Lemma 9. Let s, r, a, b be positive integers such that $a \geq 2,2 a<b$ and $(r-1) b \geq s \geq$ ar. Let l, x_{1}, \ldots, x_{l} be positive integers satisfying
(i) $l \geq r$,
(ii) $x_{1}+\ldots+x_{l}=s$,
(iii) $a \leq x_{1}, \ldots, x_{l} \leq b$.

Suppose $x_{1}=n_{1}, \ldots, x_{l}=n_{l}$ are such that the product $x_{1} \ldots x_{l}$ attains its minimal possible value. Then (a) there is at most one i such that $a \neq n_{i} \neq b$; and we may assume (b) $l=r$.

Proof. (a) If there are i, j with $1 \leq i \neq j \leq l$ such that $a<n_{i}, n_{j}<$ b, without loss of generality, we assume that $a<n_{i} \leq n_{j}<b$. Then $\left(n_{i}-1\right)\left(n_{j}+1\right)<n_{i} n_{j}$, therefore if we take $x_{i}=n_{i}-1, x_{j}=n_{j}+1$ and $x_{k}=n_{k}$ for $k \neq i, j$, then $x_{1} \ldots x_{l}<n_{1} \ldots n_{l}$, a contradiction. This proves (a).
(b) Let l be the smallest integer satisfying $l \geq r$ and the hypothesis of the lemma. If $l \geq r+1$, then since $s \leq(r-1) b$, there are at most $r-2$ distinct indices i such that $n_{i}=b$, so by (a), there are at least two indices i and j such that $n_{i}=n_{j}=a$; without loss of generality, we assume $n_{l-1}=n_{l}=a$. Now let $x_{i}=n_{i}$ for $i=1, \ldots, l-2$ and set $x_{l-1}=n_{l-1}+n_{l}=2 a \leq b$. Then $x_{1} \ldots x_{l-1} \leq n_{1} \ldots n_{l}$, a contradiction. This proves (b) and completes the proof.

Proof of Proposition 2. Let $t=a_{1}(G)-n m-n_{1}-\ldots-n_{l} \geq 0$. It is sufficient to prove that there exists a block in $B_{1}\left(H \oplus C_{n}\right)$ of length not less than $n_{1}+\ldots+n_{l}+n+t$. To do this we consider a block $A=A_{1} \ldots A_{r} \in$ $B_{1}(G)$ with $|A|=a_{1}(G)=n m+n_{1}+\ldots+n_{l}+t$, where A_{1}, \ldots, A_{r} are irreducible blocks.

By rearranging the indices we may assume that

$$
A=\left(a_{1}, \ldots, a_{m n+n_{1}+\ldots+n_{l}+t-r}, b_{1}, \ldots, b_{r}\right)
$$

with $b_{i} \in A_{i}$ for $i=1, \ldots, r$.
We assert that

$$
\begin{equation*}
r \leq n_{1}+\ldots+n_{l} \tag{1}
\end{equation*}
$$

Assume $r>n_{1}+\ldots+n_{l}$. Since it is well known that $D(H) \geq n_{1}+\ldots+$ $n_{l}-l+1$ (see for example [2]), we have $n \geq D(H) \geq n_{1}+\ldots+n_{l}-l+1$. Now by Lemma 9 ,

$$
\begin{aligned}
\left|A_{1}\right| \ldots\left|A_{r}\right| & \geq\left(n m+n_{1}+\ldots+n_{l}+t-2 r\right) 2^{r} \\
& >\left(m n+t-n_{1}-\ldots-n_{l}\right) 2^{n_{1}+\ldots+n_{l}} \\
& \geq((m-1) n-l+1) 2^{n_{1}} \ldots 2^{n_{l}} \\
& \geq((m-1) n-l+1)\left(2 n_{1}\right) \ldots\left(2 n_{l}\right) \\
& \geq m n n_{1} \ldots n_{l}=|G| ;
\end{aligned}
$$

this contradicts Lemma 2 and proves (1).
It is well known that there exists a homomorphism φ from $H \oplus C_{n m}$ onto $H \oplus C_{n}$ with $\operatorname{ker} \varphi=C_{m}$ (up to isomorphism).

For a sequence $S=\left(s_{1}, \ldots, s_{u}\right)$ of elements of $H \oplus C_{n m}$, let $\varphi(S)$ denote the sequence $\left(\varphi\left(s_{1}\right), \ldots, \varphi\left(s_{u}\right)\right)$ of elements of $H \oplus C_{n}$. Since $n m+n_{1}+$ $\ldots+n_{l}+t-r \geq n m=(m-2) n+2 n$ and $n \geq D(H)$, by Lemmas 6 and 7 one can find $m-1$ disjoint nonempty subsequences B_{1}, \ldots, B_{m-1} of $\left(a_{1}, \ldots, a_{m n+n_{1}+\ldots+n_{l}+t-r}\right)$ with $\sum \varphi\left(B_{i}\right)=0$ for $i=1, \ldots, m-1$, and $\left|B_{i}\right| \leq n$ for $i=1, \ldots, m-2$. Therefore

$$
\sum B_{i} \in \operatorname{ker} \varphi=C_{m}
$$

for $i=1, \ldots, m-1$.
Since $A=A_{1} \ldots A_{r}$ is the unique irreducible factorization of A and $b_{i} \in$ A_{i} for $i=1, \ldots, r$, the sequence $\sum B_{1}, \ldots, \sum B_{m-1}$ contains no nonempty zero-sum subsequence, and it follows from Lemma 8 that $\sum B_{1}=\ldots=$ $\sum B_{m-1}=a$ (say) and a generates C_{m}.

Let $A_{i_{1}}, \ldots, A_{i_{v}}(v \geq 0)$ be all irreducible blocks contained in $A-B_{1}-$ $\ldots-B_{m-2}$. Since $A \in B_{1}(G)$, it follows that $A_{i_{1}}, \ldots, A_{i_{v}}$ are disjoint, so one can write

$$
A-B_{1}-\ldots-B_{m-2}=A_{i_{1}} \ldots A_{i_{v}} B^{\prime}
$$

Then B^{\prime} contains no nonempty zero-sum subsequence and

$$
\sum B^{\prime}=\sum A-\sum B_{1}-\ldots-\sum B_{m-2}-\sum A_{i_{1}}-\ldots-\sum A_{i_{v}}=2 a
$$

Now we split the proof into steps.

Step 1: $\varphi\left(B_{1}\right), \ldots, \varphi\left(B_{m-2}\right)$ and $\varphi\left(A_{i_{1}}\right), \ldots, \varphi\left(A_{i_{v}}\right)$ are irreducible blocks in $H \oplus C_{n}$. If for some i with $1 \leq i \leq m-2, \varphi\left(B_{i}\right)$ is not an irreducible block in $H \oplus C_{n}$, then there exist two disjoint nonempty subsequences $B_{i}^{\prime}, B_{i}^{\prime \prime}$ of B_{i} such that $\sum \varphi\left(B_{i}^{\prime}\right)=\sum \varphi\left(B_{i}^{\prime \prime}\right)=0\left(\right.$ in $\left.H \oplus C_{n}\right)$ and $B_{i}=B_{i}^{\prime} B_{i}^{\prime \prime}$. Then $\sum B_{i}^{\prime} \in C_{m}, \sum B_{i}^{\prime \prime} \in C_{m}$, and the sequence $\sum B_{1}, \ldots, \sum B_{i-1}, \sum B_{i}^{\prime}, \sum B_{i}^{\prime \prime}$, $\sum B_{i+1}, \ldots, \sum B_{m-1}$ contains a nonempty zero-sum subsequence. This contradicts $b_{i} \in A_{i}$ for $i=1, \ldots, r$ and proves $\varphi\left(B_{1}\right), \ldots, \varphi\left(B_{m-2}\right)$ are irreducible blocks.

If for some $j, \varphi\left(A_{i_{j}}\right)$ is not an irreducible block in $H \oplus C_{n}$, then there exist two disjoint nonempty subsequences $A_{i_{j}}^{\prime}, A_{i_{j}}^{\prime \prime}$ of $A_{i_{j}}$ such that $\sum \varphi\left(A_{i_{j}}^{\prime}\right)=$ $\sum \varphi\left(A_{i_{j}}^{\prime \prime}\right)=0$ (in $H \oplus C_{n}$) and $A_{i_{j}}=A_{i_{j}}^{\prime} A_{i_{j}}^{\prime \prime}$. It follows from $A \in B_{1}(G)$ that $\sum B_{1}, \ldots, \sum B_{m-2}, \sum A_{i_{j}}^{\prime}$ contains no nonempty zero-sum subsequence, so by Lemma $8, \sum A_{i_{j}}^{\prime}=a$, and therefore, $\sum B^{\prime} A_{i_{j}}^{\prime} B_{1} \ldots B_{m-3}=0$. This clearly contradicts $A=A_{1} \ldots A_{r} \in B_{1}(G)$ and completes the proof of this step.

Step 2: $\varphi\left(B_{1}\right) \varphi\left(A_{i_{1}}\right) \ldots \varphi\left(A_{i_{v}}\right) \in B_{1}\left(H \oplus C_{n}\right)$. Assume otherwise. Then there exist $B_{1}^{\prime} \subseteq B_{1}, A_{i_{1}}^{\prime} \subseteq A_{i_{1}}, \ldots, A_{i_{v}}^{\prime} \subseteq A_{i_{v}}$ such that $\sum \varphi\left(B_{1}^{\prime}\right)=$ $\sum \varphi\left(A_{i_{1}}^{\prime} \ldots A_{i_{v}}^{\prime}\right)$ and $A_{i_{j}} \neq A_{i_{j}}^{\prime} \neq \lambda$ for at least one j with $1 \leq j \leq v$. Therefore, $\sum B_{1}^{\prime}-\sum A_{i_{1}}^{\prime} \ldots A_{i_{v}}^{\prime} \in C_{m}$, so $\sum\left(B_{1}-B_{1}^{\prime}\right) A_{i_{1}}^{\prime} \ldots A_{i_{v}}^{\prime} \in C_{m}$. Noting that $m \geq 4, \sum B_{2}=a$ and $\sum B^{\prime}=2 a$, it follows from Lemma 8 that the sequence $\sum\left(B_{1}-B_{1}^{\prime}\right) A_{i_{1}}^{\prime} \ldots A_{i_{v}}, \sum B_{2}, \ldots, \sum B_{m-2}, \sum B^{\prime}$ contains a nonempty zero-sum subsequence. Clearly, such a subsequence must contain the term $\sum\left(B_{1}-B_{1}^{\prime}\right) A_{i_{1}}^{\prime} \ldots A_{i_{v}}^{\prime}$, contrary to $A \in B_{1}(G)$.

Step 3: We distinguish two cases.
Case 1: $\left|B^{\prime}\right| \leq 2 n$. Then

$$
\begin{aligned}
\left|\varphi\left(B_{1}\right) \varphi\left(A_{i_{1}}\right) \ldots \varphi\left(A_{i_{v}}\right)\right| & =\left|B_{1} A_{i_{1}} \ldots A_{i_{v}}\right| \\
& =|A|-\left|B^{\prime}\right|-\left|B_{2}\right|-\ldots-\left|B_{m-2}\right| \\
& \geq|A|-2 n-(m-3) n \geq n+n_{1}+\ldots+n_{l}+t
\end{aligned}
$$

as desired.
Case 2: $\left|B^{\prime}\right|>2 n$. Then $\left|B^{\prime}\right|>n+D(H)$. By Lemma 7, there exists a subsequence T of B^{\prime} such that $\sum \varphi(T)=0$ and $\left|B^{\prime}\right|-n \leq|T|<\left|B^{\prime}\right|$. Put $W=B^{\prime}-T$. Then

$$
1 \leq|W| \leq n
$$

Since a generates C_{m} and B^{\prime} contains no nonempty zero-sum subsequence, $\sum T=f a$ with $1 \leq f \leq m-1$. If $3 \leq f \leq m-1$, let $A_{u_{1}}, \ldots, A_{u_{h}}$ be all irreducible blocks which meet T (i.e. $I_{A_{u_{i}}} \cap I_{T} \neq \emptyset$ for $i=1, \ldots, h$). Since $\sum T B_{1} \ldots B_{m-f}=\sum T B_{2} \ldots B_{m-f+1}=0$, it follows from $A=A_{1} \ldots A_{r} \in$
$B_{1}(G)$ that $B_{1} \ldots B_{m-f}=A_{u_{1}} \ldots A_{u_{h}}-T=B_{2} \ldots B_{m-f+1}$. This contradicts the disjointness of B_{1}, \ldots, B_{m-2}. Hence

$$
\sum T=a \text { or } 2 a
$$

But $\sum T+\sum W=2 a$ and $\sum W \neq 0$, so we must have $\sum T=\sum W=a$. Let T^{\prime} be a nonempty subsequence of T with $\sum \varphi\left(T^{\prime}\right)=0$. Then by using the same method one can prove that $\sum T^{\prime}=a$. This forces that $T^{\prime}=T$ and implies that

$$
\varphi(T) \text { is an irreducible block in } H \oplus C_{n} \text {. }
$$

We assert that

$$
\varphi(T) \varphi\left(A_{i_{1}}\right) \ldots \varphi\left(A_{i_{v}}\right) \in B_{1}\left(H \oplus C_{n}\right)
$$

Assume to the contrary that there exist $T^{\prime} \subseteq T, A_{i_{1}}^{\prime} \subseteq A_{i_{1}}, \ldots, A_{i_{v}}^{\prime} \subseteq A_{i_{v}}$ such that $\sum \varphi\left(T^{\prime} A_{i_{1}}^{\prime} \ldots A_{i_{v}}^{\prime}\right)=0$ and $A_{i_{j}} \neq A_{i_{j}}^{\prime} \neq \lambda$ for some $1 \leq j \leq v$. Then $\sum T^{\prime} A_{i_{1}}^{\prime} \ldots A_{i_{v}}^{\prime} \in C_{m}$. Notice that the sequence $\sum B_{1}, \ldots, \sum B_{m-2}$, $\sum W, \sum T^{\prime} A_{i_{1}}^{\prime} \ldots A_{i_{v}}^{\prime}$ must contain a nonempty zero-sum subsequence and such a subsequence must contain the term $\sum T^{\prime} A_{i_{1}}^{\prime} \ldots A_{i_{v}}^{\prime}$. This clearly contradicts $A=A_{1} \ldots A_{r} \in B_{1}(G)$ and proves the assertion. Now the theorem follows from $\left|\varphi(T) \varphi\left(A_{i_{1}}\right) \ldots \varphi\left(A_{i_{v}}\right)\right|=n m+n_{1}+\ldots+n_{l}+t-$ $\left|B_{1}\right|-\ldots-\left|B_{m-2}\right|-|W| \geq n+n_{1}+\ldots+n_{l}+t$. This completes the proof.

Proposition 3. If $D\left(C_{n}^{3}\right)=3 n-2$, then
(i) $a_{1}\left(C_{n} \oplus C_{2 n}\right) \leq a_{1}\left(C_{n}^{2}\right)+n$;
(ii) $a_{1}\left(C_{n} \oplus C_{3 n}\right) \leq a_{1}\left(C_{n}^{2}\right)+2 n$;
(iii) $a_{1}\left(C_{2 n}^{2}\right) \leq a_{1}\left(C_{n}^{2}\right)+2 n$, and
(iv) $a_{1}\left(C_{3 n}^{2}\right) \leq a_{1}\left(C_{n}^{2}\right)+4 n$.

Proof. Put $H=C_{k} \oplus C_{n}$ and $G=C_{l k} \oplus C_{n m}$. It is well known that there exists a homomorphism φ from G onto H such that $\operatorname{ker} \varphi=C_{l} \oplus C_{m}$ (up to isomorphism). We use the same notation $A=A_{1} \ldots A_{r} \in B_{1}(G), \varphi$, $\varphi(S)$ as in the proof of Proposition 2.
(i) $k=1, l=n, m=2$. Let $t=a_{1}\left(C_{n} \oplus C_{2 n}\right)-3 n$. Clearly, it is sufficient to prove that there exists a block in $B_{1}\left(C_{n}^{2}\right)$ of length not less than $2 n+t$. If $t=0$, then the proposition follows from Remark 1 , so we may assume that $t \geq 1$, and $r \geq 3$ follows from Lemma 3 . We assert that

$$
\max \left\{\left|A_{1}\right|, \ldots,\left|A_{r}\right|\right\} \geq 2 n+t
$$

Otherwise by Lemma 9 we get $\left|A_{1}\right| \ldots\left|A_{r}\right|>(2 n+t) n>2 n^{2}=\left|C_{n} \oplus C_{2 n}\right|$; this contradicts Lemma 2 and proves the assertion. So we may assume that

$$
\left|A_{r}\right| \geq 2 n+t
$$

By using Lemmas 7 and 4(i) one can find a subsequence B_{1} of A_{r} such that $\sum \varphi\left(B_{1}\right)=0$ and $\left|A_{r}\right|-n \leq\left|B_{1}\right|<\left|A_{r}\right|$. Put $B_{2}=A_{r}-B_{1}$. Then
$\sum \varphi\left(B_{2}\right)=0$. So $\sum B_{1} \in C_{2}, \sum B_{2} \in C_{2}$, and clearly $\sum B_{1}=\sum B_{2}=1$. It is easy to prove that $\varphi\left(B_{1}\right), \varphi\left(B_{2}\right), \varphi\left(A_{1}\right), \ldots, \varphi\left(A_{r-1}\right)$ are all irreducible blocks in C_{n}^{2}, and similarly to the proof of Proposition 2 one can get $\varphi\left(B_{1}\right) \varphi\left(A_{1}\right) \ldots \varphi\left(A_{r-1}\right) \in B_{1}\left(C_{n}^{2}\right)$. Now (i) follows from $\mid \varphi\left(B_{1}\right) \varphi\left(A_{1}\right) \ldots$ $\ldots, \varphi\left(A_{r-1}\right) \mid \geq 2 n+t$.
(ii) $k=1, l=n, m=3$. Let $t=a_{1}\left(C_{n} \oplus C_{3 n}\right)-4 n$. Similarly to (i) we may assume that $t \geq 1$ and by Lemma 3 we have $r \geq 3$, and similarly to (i) we get $\max \left\{\left|A_{1}\right|, \ldots,\left|A_{r}\right|\right\} \geq 3 n+t$, so we may assume that $\left|A_{r}\right| \geq 3 n+t$. By using Lemmas $4(\mathrm{i}), 6$, and 7 we get three disjoint subsequences B_{1}, B_{2}, B_{3} of A_{r} such that $\sum \varphi\left(B_{1}\right)=\sum \varphi\left(B_{2}\right)=\sum \varphi\left(B_{3}\right)=$ 0 and $\left|B_{1}\right| \leq n,\left|A_{r}-B_{1}\right|-n \leq\left|B_{2}\right|<\left|A_{r}-B_{1}\right|$, and $B_{3}=A_{r}-B_{1}-B_{2}$. Clearly, $\sum B_{1}=\sum B_{2}=\sum B_{3}=a$ (say) and $a=1$ or 2 . Now (ii) follows in a similar way to (i).
(iii) $k=n, l=m=2$. Let $t=a_{1}\left(C_{2 n}^{2}\right)-4 n$. If $t=0$, then (iii) follows from Remark 1, so we may assume that $t \geq 1$. Clearly, it is sufficient to prove that there exists a block in $B_{1}\left(C_{n}^{2}\right)$ of length not less than $2 n+t$.

Since $a_{1}\left(C_{2 n}^{2}\right) \geq 4 n+1$, by Lemmas 3 and 4(i) we have $r \geq 3$. If $\max \left\{\left|A_{1}\right|, \ldots,\left|A_{r}\right|\right\}<3 n$, then by Lemma 9 we have $\left|A_{1}\right| \ldots\left|A_{r}\right| \geq 2(n+$ $2-2)(3 n-1)>4 n^{2}=\left|C_{2 n}^{2}\right|$. This contradicts Lemma 2, so we may assume that $\left|A_{r}\right| \geq 3 n$, and by using Lemmas 6 and 7 we find three disjoint subsequences B_{1}, B_{2}, B_{3} of A_{r} such that $\sum \varphi\left(B_{1}\right)=\sum \varphi\left(B_{2}\right)=\sum \varphi\left(B_{3}\right)=$ 0 and $\left|B_{1}\right| \leq n,\left|A_{r}-B_{1}\right|-n \leq\left|B_{2}\right|<\left|A_{r}-B_{1}\right|$, and $B_{3}=A_{r}-B_{1}-B_{2}$. Noticing that $D\left(C_{2}^{2}\right)=3$ we can prove (iii) similarly to (i).
(iv) $k=n, l=m=3$. Let $t=a_{1}\left(C_{3 n}\right)-6 n$. Similarly to (iii) we may assume that $t \geq 1$, and $r \geq 3$ follows from Lemmas 3 and 4(i). Furthermore, we may assume $n \geq 3$ for otherwise (iv) reduces to (iii). If $\max \left\{\left|A_{1}\right|, \ldots,\left|A_{r}\right|\right\}<5 n$, then by Lemma 9 we have $\left|A_{1}\right| \ldots\left|A_{r}\right| \geq 2(n+$ $2-2)(5 n-1)>9 n^{2}=\left|C_{3 n}^{2}\right|$. This contradicts Lemma 2 and proves that $\max \left\{\left|A_{1}\right|, \ldots,\left|A_{r}\right|\right\} \geq 5 n$. Now (iv) follows in a similar way to (iii) upon noting that $D\left(C_{3}^{2}\right)=5$. This completes the proof.

Corollary 1. If $a_{1}\left(C_{n}^{2}\right)=2 n$ and $D\left(C_{n}^{3}\right)=3 n-2$, then
(i) $a_{1}\left(C_{n} \oplus C_{2 n}\right)=3 n$;
(ii) $a_{1}\left(C_{n} \oplus C_{3 n}\right)=4 n$;
(iii) $a_{1}\left(C_{2 n}^{2}\right)=4 n$, and
(iv) $a_{1}\left(C_{3 n}^{2}\right)=6 n$.

Proof. This follows from Remark 1 and Proposition 3.
Lemma 10 ([2, Theorem (2.8)]). Let p be a prime, H a finite abelian p-group, and let S be a sequence of $D(H)-2$ elements in H. Suppose that $f_{\mathrm{E}}(S)-f_{\mathrm{O}}(S) \not \equiv 0(\bmod p)$. Then all elements not in $\sum(S)$ are contained in a fixed proper coset of a subgroup of H.
P. van Emde Boas ([2, Theorem (2.8)]) stated the conclusion of Lemma 10 for the case $f_{\mathrm{E}}(S)=1$ and $f_{\mathrm{O}}(S)=0$, but his method does work for the general case. For covenience, we repeat the proof here.

Proof of Lemma 10. In the proof we shall use mutiplicative notation for H, and in all other cases in this paper, additive notation will be used.

Let $H=C_{p^{e_{1}}} \oplus \ldots \oplus C_{p^{e_{r}}}$ with $1 \leq e_{1} \leq \ldots \leq e_{r}$, and suppose $S=$ $\left(g_{1}, \ldots, g_{k}\right)$, where $k=D(H)-2=-k-1+\sum_{i=1}^{k} p^{e_{i}}$. Put $N(S, g):=$ $N_{\text {even }}-N_{\text {odd }}$ where $N_{\text {even(odd) }}$ is the number of solutions of the equation

$$
g_{1}^{m_{1}} g_{2}^{m_{2}} \ldots g_{k}^{m_{k}}=g, \quad m_{i}=0,1
$$

with $\sum_{i=1}^{k} m_{i}$ even (odd).
We denote by F_{p} the p-element field. We multiply out the product

$$
\left(1-g_{1}\right)\left(1-g_{2}\right) \ldots\left(1-g_{k}\right)
$$

in the group ring $F_{p}[H]$. Then

$$
\begin{equation*}
\prod_{i=1}^{k}\left(1-g_{i}\right)=\sum_{g \in H} N(S, g) g \tag{2}
\end{equation*}
$$

If $g^{p^{n}}=1(g \in H)$, then it is well known that the following equalities hold in $F_{p}[H]$:

$$
\begin{equation*}
(1-g)^{p^{n}}=0 \tag{3}
\end{equation*}
$$

$$
\begin{align*}
& (1-g)^{p^{n}-1}=\sum_{v=0}^{p^{n}-1} g^{v} \tag{4}\\
& (1-g)^{p^{n}-2}=\sum_{v=1}^{p^{n}-1} v g^{v-1} \tag{5}
\end{align*}
$$

Let x_{1}, \ldots, x_{r} be a basis for H where x_{i} has order $p^{e_{i}}$. Then $g_{i}=$ $x_{1}^{f_{i 1}} \ldots x_{r}^{f_{i r}}, 0 \leq f_{i j} \leq p^{e_{j}}-1, i=1, \ldots, k, j=1, \ldots, r$. Now, we have

$$
\begin{aligned}
\prod_{i=1}^{k}\left(1-g_{i}\right) & =\prod_{i=1}^{k}\left(1-x_{1}^{f_{i 1}} \ldots x_{r}^{f_{i r}}\right) \\
& =\prod_{i=1}^{k}\left(1-\left(1-\left(1-x_{1}\right)\right)^{f_{i 1}} \ldots\left(1-\left(1-x_{r}\right)\right)^{f_{i r}}\right) \\
& =\prod_{i=1}^{k} \sum_{j=1}^{r}\left(f_{i j}\left(1-x_{j}\right)+h_{i j}\left(1-x_{j}\right)^{2}+\alpha_{i j}\left(1-x_{j}\right)^{3}\right)
\end{aligned}
$$

where $h_{i j}=\frac{1}{2}\left(f_{i j}-1\right) f_{i j}$ and $\alpha_{i j} \in F_{p}[H]$. Now from (3) and $k=-1+$ $\sum_{i=1}^{r}\left(p^{e_{i}}-1\right)$ we derive that

$$
\prod_{i=1}^{k}\left(1-g_{i}\right)=\prod_{i=1}^{k} \sum_{j=1}^{r}\left(f_{i j}\left(1-x_{j}\right)+h_{i j}\left(1-x_{j}\right)^{2}\right)
$$

and it follows from (3)-(5) that
(6) $\prod_{i=1}^{k}\left(1-g_{i}\right)=c_{0} \prod_{i=1}^{r} \sum_{j=0}^{p_{i}-1} x_{i}^{j}+\sum_{i=1}^{r} c_{i}\left(\sum_{v=1}^{p^{e_{i}}-1} v x_{i}^{v-1}\right) \prod_{\substack{j=1 \\ j \neq i}}^{r} \sum_{v=0}^{p^{e_{j}}-1} x_{j}^{v}$
where $c_{i} \in F_{p}$.
For every $g \in H$, write $g=x_{1}^{\tau_{1}(g)} \ldots x_{r}^{\tau_{r}(g)}$. Then from (6) we derive that

$$
\prod_{i=1}^{k}\left(1-g_{i}\right)=\sum_{g \in H}\left(c_{0}+c_{1}\left(\tau_{1}(g)+1\right)+\ldots+c_{r}\left(\tau_{r}(g)+1\right)\right) g
$$

This together with (2) implies

$$
N(S, g)=\sum_{i=1}^{r} c_{i} \tau_{i}(g)+\sum_{i=0}^{r} c_{i} .
$$

Now by the hypothesis of the lemma we have

$$
\sum_{i=0}^{r} c_{i}=N(S, 1)=f_{\mathrm{E}}(S)-f_{\mathrm{O}}(S) \neq 0 \quad\left(\text { in } F_{p}\right)
$$

It follows that all elements g not in $\sum(S)$ satisfy the equation

$$
\sum_{i=1}^{r} c_{i} \tau_{i}(g)=-\sum_{i=0}^{r} c_{i} \neq 0
$$

and this equation defines a proper coset. This completes the proof.
Lemma 11. Let p be an odd prime, and let $A=A_{1} \ldots A_{r} \in B_{1}\left(C_{p}^{2}\right)$ with A_{1}, \ldots, A_{r} irreducible blocks. Suppose that $|A|=2 p+t$ and $t \geq 1$. Then at least $4+t$ of $\left|A_{1}\right|, \ldots,\left|A_{r}\right|$ are odd.

Proof. Suppose that exactly l of $\left|A_{1}\right|, \ldots,\left|A_{r}\right|$ are odd. Then $l \geq 2+t$ follows from Proposition 1 and Lemma 4(iv).

Assume the conclusion of the lemma is false. Then $l=2+t$ follows from the obvious fact $l \equiv 2 p+t \equiv t(\bmod 2)$. Without loss of generality, we may assume that $\left|A_{1}\right|, \ldots,\left|A_{2+t}\right|$ are odd and that $\left|A_{3+t}\right|, \ldots,\left|A_{r}\right|$ are even. We next show that

$$
p\left|\left|A_{1}\right| .\right.
$$

We fix $a_{i} \in A_{i}$ for $i=1, \ldots, 2+t$, take any $x \in A_{1}-\left(a_{1}\right)$, and set

$$
S=\left(A_{1}-\left(a_{1}, x\right)\right)\left(A_{2}-\left(a_{2}\right)\right) \ldots\left(A_{2+t}-\left(a_{2+t}\right)\right) A_{3+t} \ldots A_{r} .
$$

Clearly, $f_{\mathrm{E}}(S)=2^{r-2-t}, f_{\mathrm{O}}(S)=0,|S|=2 p-3=D\left(C_{p}^{2}\right)-2$, and
$\left\{-a_{1},-a_{1}-a_{2}, \ldots,-a_{1}-a_{2+t},-x,-x-a_{2}, \ldots,-x-a_{2+t}\right\} \cap \sum(S)=\emptyset$.
Now it follows from Lemma 10 that there exist a subgroup H of C_{p}^{2} and an element $g \in C_{p}^{2}-H$ such that

$$
\left\{-a_{1},-a_{1}-a_{2}, \ldots,-a_{1}-a_{2+t},-x,-x-a_{2}, \ldots-x-a_{2+t}\right\} \subset g+H
$$

This implies that $x-a_{1}=\left(-a_{1}\right)-(-x) \in H, a_{2}=\left(-a_{1}\right)-\left(-a_{1}-a_{2}\right) \in$ H, so we have $H=\left\langle a_{2}\right\rangle$. Since x was arbitrary, any element of A_{1} is in $a_{1}+H=g+H$. Now $\left|A_{1}\right|(g+H)=0$ (in $\left.C_{p}^{2} / H\right)$ follows from $\sum A_{1}=0$; but $g+H \neq 0$ (in $\left.C_{p}^{2} / H\right)$, hence, $p\left|\left|A_{1}\right|\right.$. Similarly, one can prove that $p\left|\left|A_{2}\right|, \ldots, p\right|\left|A_{2+t}\right|$. This yields $|A| \geq\left|A_{1}\right|+\ldots+\left|A_{2+t}\right| \geq(2+t) p>2 p+t$, a contradiction. This completes the proof.

Lemma 12. Let p be a prime with $2 \leq p \leq 151$. Then $a_{1}\left(C_{p}^{2}\right)=2 p$.
Proof. We may assume that $p \geq 5$; for $p \leq 3$ see [9].
Assume to the contrary that $a_{1}\left(C_{p}^{2}\right) \neq 2 p$. Then one can find a block $A=A_{1} \ldots A_{r} \in B_{1}\left(C_{p}^{2}\right)$ with $|A|=2 p+t$ and $t \geq 1$, where A_{1}, \ldots, A_{r} are irreducible blocks. Suppose exactly l of $\left|A_{1}\right|, \ldots,\left|A_{r}\right|$ are odd. Then $l \geq 4+t$ follows from Lemma 11.

If $p=5$, then $2 \times 5+t=|A| \geq 3 l \geq 3(4+t)>10+t$, a contradiction. Hence, $7 \leq p \leq 151$ and it follows from $l \geq 4+t \geq 5$ that $\left|A_{1}\right| \ldots\left|A_{r}\right| \geq$ $3^{4}(2 p+1-12)=162(p-5.5)>p^{2}$, a contradiction to Lemma 2. This completes the proof.

Lemma 13. $a_{1}\left(C_{5^{s}}^{2}\right)=2 \times 5^{s}$.
Proof. We proceed by induction on s. If $s=1$, then the assertion follows from Lemma 12.

Taking $s \geq 2$ we assume that the lemma is true for $s-1$. Assume to the contrary that $a_{1}\left(C_{5^{s}}^{2}\right) \neq 2 \times 5^{s}$. Then one can find a block $A=$ $A_{1} \ldots A_{r} \in B_{1}\left(C_{5^{s}}^{2}\right)$ with $|A|=2 \times 5^{s}+t$ and $t \geq 1$, where A_{1}, \ldots, A_{r} are irreducible blocks. By Proposition 1, at least three of $\left|A_{1}\right|, \ldots,\left|A_{r}\right|$ are odd. If $\max \left\{\left|A_{1}\right|, \ldots,\left|A_{r}\right|\right\}<9 \times 5^{s-1}$, then by Lemma 9 we have $\left|A_{1}\right| \ldots\left|A_{r}\right| \geq 3 \times\left(5^{s-1}-1\right)\left(9 \times 5^{s-1}-1\right)>\left(5^{s}\right)^{2}=\left|C_{5^{s}}^{2}\right|$. This contradicts Lemma 2 and shows that $\max \left\{\left|A_{1}\right|, \ldots,\left|A_{r}\right|\right\} \geq 9 \times 5^{s-1}$. Note $D\left(C_{5}^{2}\right)=9$ and similarly to the proof of Proposition 3 one can derive a contradiction. So we complete the proof.

Proof of Theorem 1. Obviously, (1)-(7) follow from Corollary 1, Lemma 12, Lemma 13, Lemma 4 and Proposition 2. So to prove the theorem we only need to consider (8)-(12).
(8) We only consider the case of $t=1$; one can deal with the case of $t=0$ similarly. Assume to the contrary that $a_{1}\left(C_{2}^{n} \oplus C_{4} \oplus C_{2^{m}}\right) \neq 2 n+4+2^{m}$. Then one can find a block $A=A_{1} \ldots A_{r} \in B_{1}\left(C_{2}^{n} \oplus C_{4}^{t} \oplus C_{2^{m}}\right)$ with $|A|=$ $2 n+4+2^{m}+t$ and $t \geq 1$, where A_{1}, \ldots, A_{r} are irreducible blocks. It follows from Lemma 3 that $r \geq n+3$ and this implies that $\left|A_{1}\right| \ldots\left|A_{r}\right| \geq$ $2^{n+2}\left(2^{m}+1\right)>\left|C_{2}^{n} \oplus C_{4} \oplus C_{2^{m}}\right|$, a contradiction to Lemma 2.
(9) follows from Proposition 2, Lemma 4 and the conclusion of (8).
(10) As in (8) we only consider the case of $t=1$. Assume to the contrary that $a_{1}\left(C_{3}^{n} \oplus C_{9} \oplus C_{3^{m}}\right) \neq 3 n+9+3^{m}$. Then one can find a block $A=$ $A_{1} \ldots A_{r} \in B_{1}\left(C_{2}^{n} \oplus C_{9} \oplus C_{3^{m}}\right)$ with $|A|=3 n+9+3^{m}+t$ and $t \geq 1$, where A_{1}, \ldots, A_{r} are irreducible blocks. It follows from Proposition 1 that at least $n+3$ of $\left|A_{1}\right|, \ldots,\left|A_{r}\right|$ are odd. This implies that $\left|A_{1}\right| \ldots\left|A_{r}\right| \geq$ $3^{n+3}\left(3^{m}+1\right)>\left|C_{3}^{n} \oplus C_{9} \oplus C_{3^{m}}\right|$, a contradiction to Lemma 2.
(11) follows from Proposition 2, Lemma 4 and the conclusion of (10).
(12) The proof is similar to that of (10) and we omit it here. Now the proof is complete.
3. In this section we consider $a_{k}(G)$ with $k \geq 2$.

Proposition 4. Let $B \in B_{2}(G)-B_{1}(G)$, and let $B=\prod_{i=1}^{r_{i}} B_{i_{j}}, i=$ 1,2 , be the two strongly inequivalent irreducible factorizations of B, where $B_{i_{j}}, 1 \leq i \leq 2,1 \leq j \leq r_{i}$, are all irreducible blocks. Then

$$
|B| \leq \max \left\{r_{1}, r_{2}\right\}+D(G)-1
$$

Proof. Suppose $r_{1} \geq r_{2}$ and $B=\left(b_{1}, \ldots, b_{k}\right)$. Put $E_{j}=I_{B_{1_{j}}}$ for $j=1, \ldots, r_{1}$ and $F_{j}=I_{B_{2_{j}}}$ for $j=1, \ldots, r_{2}$. We have $B_{1_{j}}=\left(b_{i}: i \in E_{j}\right)$ and $B_{2_{j}}=\left(b_{i}: i \in F_{j}\right)$.

For $j=1, \ldots, r_{2}$, we define D_{j} to be the set $\left\{i: E_{i} \cap F_{j} \neq \emptyset, 1 \leq i \leq r_{1}\right\}$. We assert that

$$
D_{1}, \ldots, D_{r_{2}} \text { has a system of distinct representatives. }
$$

Deny the assertion; by Hall's Theorem ([5], p. 45) there exists a nonempty subset $\left\{i_{1}, \ldots, i_{t}\right\}$ of $\left\{1, \ldots, r_{2}\right\}$ such that

$$
\left|D_{i_{1}} \cup \ldots \cup D_{i_{t}}\right|<t .
$$

Suppose $D_{i_{1}} \cup \ldots \cup D_{i_{t}}=\left\{f_{1}, \ldots, f_{m}\right\}$. Then $m<t$. By the definition of $D_{j}, 1 \leq j \leq r_{2}$, we have

$$
F_{i_{1}} \cup \ldots \cup F_{i_{t}} \subseteq E_{f_{1}} \cup \ldots \cup E_{f_{m}}
$$

Set $E=\left(E_{f_{1}} \cup \ldots \cup E_{f_{m}}\right)-\left(F_{i_{1}} \cup \ldots \cup F_{i_{t}}\right)$ and $B_{0}=\left(b_{i}: i \in E\right)$. Clearly, B_{0} is a block or the empty sequence, and we have

$$
B=B_{0} B_{2_{i_{1}}} \ldots B_{2_{i_{t}}} \prod_{l \neq f_{1}, \ldots, f_{m}} B_{1_{l}} .
$$

This implies that B can be factored into a product of at least $r_{1}-m+t>$ r_{1} irreducible blocks. Obviously, such an irreducible factorization is not strongly equivalent to $B=\prod_{j=1}^{r_{1}} B_{1_{j}}$ or $B=\prod_{j=1}^{r_{2}} B_{2_{j}}$, a contradiction to $B \in B_{2}(G)$. This proves the assertion.

Let $\left\{s_{1}, \ldots, s_{r_{2}}\right\}$ be a system of distinct representatives of $D_{1}, \ldots, D_{r_{2}}$. Then $F_{j} \cap E_{s_{j}} \neq \emptyset, j=1, \ldots, r_{2}$. Take $u_{i} \in E_{i}$ for $i=1, \ldots, r_{1}$ so that $u_{s_{j}} \in F_{j} \cap E_{s_{j}}$ for $j=1, \ldots, r_{2}$. Put $M=\{1, \ldots, k\}-\left\{u_{1}, \ldots, u_{r_{1}}\right\}$. Clearly, no nonempty subset of M can be expressed as a union of some E_{i} or as a union of some F_{i}. This implies that for any nonempty subset W of M, the sequence $\left(b_{i}: i \in W\right)$ is not a block, so $|M| \leq D(G)-1$ and $|B|=|M|+r_{1} \leq r_{1}+D(G)-1$. This completes the proof.

Corollary 2. $a_{2}\left(C_{2}^{n}\right)=2 n$.
Proof. Since it is proved in [9] that $a_{1}\left(C_{2}^{n}\right)=2 n$, we have $a_{2}\left(C_{2}^{n}\right) \geq$ $a_{1}\left(C_{2}^{n}\right)=2 n$.

To prove the upper bound we consider any $B \in B_{2}\left(C_{2}^{n}\right)$ and show that $|B| \leq 2 n$.

If $B \in B_{1}\left(C_{2}^{n}\right)$, the estimate is trivial.
If $B \in B_{2}\left(C_{2}^{n}\right)-B_{1}\left(C_{2}^{n}\right)$, suppose $B=\prod_{i=1}^{r_{i}} B_{i_{j}}, i=1,2$, are the two strongly inequivalent irreducible factorizations of B, where $B_{i_{j}}, 1 \leq i \leq$ $2,1 \leq j \leq r_{i}$, are irreducible blocks. We assume without loss of generality that $r_{1} \geq r_{2}$. It follows from Proposition 4 that $D\left(C_{2}^{n}\right)+r_{1}-1 \geq|B|=$ $\sum_{j=1}^{r_{1}}\left|B_{1_{j}}\right| \geq 2 r_{1}$, thus, $r_{1} \leq D\left(C_{2}^{n}\right)-1$, and $|B| \leq 2\left(D\left(C_{2}^{n}\right)-1\right)=2 n$ by Lemma 4(iv). This completes the proof.

Lemma 14. Let $B \in B_{k}(G)-B_{k-1}(G)$ with $k \geq 2$, and let $B=$ $\prod_{j=1}^{r_{i}} B_{i_{j}}, i=1, \ldots, k$, be the k strongly inequivalent irreducible factorizations of B, where $B_{i_{j}}, 1 \leq i \leq k, 1 \leq j \leq r_{i}$ are irreducible blocks. Suppose that $r_{1}=\max \left\{r_{1}, \ldots, r_{k}\right\} \geq k$. Then there exists a subset X of $\left\{1, \ldots, r_{1}\right\}$ such that $\prod_{j \in X} B_{1_{j}} \in B_{1}(G)$ and $|X| \geq r_{1}-k+1$.

Proof. Clearly, for any $i=2, \ldots, k$ there exists an $f=f(i)$ such that $I_{B_{1_{f}}} \neq I_{B_{i_{t}}}$ for any $t=1, \ldots, r_{i}$. Put $Y=\bigcup_{2 \leq i \leq k}\{f(i)\}$. Then $|Y| \leq k-1$. Set $X=\left\{1, \ldots, r_{1}\right\}-Y$. Clearly, $\prod_{j \in X} B_{1_{j}} \in \bar{B}_{1}(G)$ and $|X| \geq r_{1}-k+1$. This completes the proof.

Lemma 15. Let G be a finite abelian group of order n, let $B \in B_{k}(G)-$ $B_{k-1}(G)$ with $k \geq 2$, and let $B=\prod_{j=1}^{r_{i}} B_{i_{j}}, i=1, \ldots, k$, be the k strongly inequivalent irreducible factorizations of B, where $B_{i_{j}}, 1 \leq i \leq k, 1 \leq j \leq r_{i}$, are irreducible blocks. Then

$$
\max \left\{r_{1}, \ldots, r_{k}\right\} \leq k-1+\log _{2} n
$$

Proof. Without loss of generality, assume that $r_{1}=\max \left\{r_{1}, \ldots, r_{k}\right\}$ $\geq k$. By using Lemma 14 one can find a subset X of $\left\{1, \ldots, r_{1}\right\}$ such
that $\prod_{j \in X} B_{1_{j}} \in B_{1}(G)$ and $|X| \geq r_{1}-k+1$. Now $\prod_{j \in X}\left|B_{1_{j}}\right| \leq n$ follows from Lemma 2. Note that all $\left|B_{1_{j}}\right| \geq 2$, we have $|X| \leq \log _{2} n$, and $r_{1} \leq k-1+\log _{2} n$ follows. This completes the proof.

Proof of Theorem 2. Assume to the contrary that $a_{k}\left(C_{n}\right) \neq n$. Since $a_{k}\left(C_{n}\right) \geq a_{k-1}\left(C_{n}\right) \geq \ldots \geq a_{1}\left(C_{n}\right)=n$, we have $a_{k}\left(C_{n}\right)=n+1+t$ for some $t \geq 0$. Let $B \in B_{k}\left(C_{n}\right)$ with $|B|=n+1+t$. Since $a_{1}\left(C_{n}\right)=n$, we must have $B \in B_{m}\left(C_{n}\right)-B_{m-1}\left(C_{n}\right)$ for some $2 \leq m \leq k$. Let $B=\prod_{j=1}^{r_{i}} B_{i_{j}}, 1 \leq$ $i \leq m$, be the m strongly inequivalent irreducible factorizations of B, where $B_{i_{j}}, 1 \leq i \leq m, 1 \leq j \leq r_{i}$, are irreducible blocks.

Suppose $B=\left(b_{1}, \ldots, b_{s}\right)$. Put $E_{i_{j}}=I_{B_{i_{j}}}$ for $i=1, \ldots, m$ and $j=$ $1, \ldots, r_{i}$. For $j=1, \ldots, r_{2}$, we define D_{j} to be the set $\left\{t: E_{1_{t}} \cup E_{2_{j}} \neq\right.$ $\left.\emptyset, 1 \leq t \leq r_{1}\right\}$. Similarly to the proof of Proposition 4 one can show that $D_{1}, \ldots, D_{r_{2}}$ has a system of distinct representatives. Therefore one can find an r_{1}-subset of $\{1, \ldots, s\}$ which meets all $E_{1_{j}}$ and all $E_{2_{j}}$. Hence, one can find an $\left(r_{1}+r_{3}+\ldots+r_{k}\right)$-subset I of $\{1, \ldots, s\}$ such that $I \cap E_{i_{j}} \neq \emptyset$ for $i=1, \ldots, m$ and $j=1, \ldots, r_{i}$. Put $J=\{1, \ldots, s\}-I$ and let T be the subsequence of B with $I_{T}=J$. Clearly, T contains no nonempty zero-sum subsequence. Put $l=n-|T|$. Notice that

$$
\begin{aligned}
l & =n-|T|=n-|J|=n-(n+1+t-|I|) \leq|I|-1 \\
& =r_{1}+r_{3}+\ldots+r_{m}-1 \leq(m-1) r_{1}-1 \\
& \leq(m-1)\left(m-1+\log _{2} n\right)-1 \quad \text { (by Lemma 15) } \\
& \leq(k-1)\left(k-1+\log _{2} n\right) \leq n / 4 \quad \text { (by the hypothesis of the theorem) }
\end{aligned}
$$

so by using Lemma 8 we see that, T contains an $(n-2 l+1)$-subsequence which is similar to the sequence $(\underbrace{1, \ldots, 1}_{n-2 l+1})$. Therefore, B contains an $(n-2 l+1)$-subsequence which is similar to the sequence $(\underbrace{1, \ldots, 1}_{n-2 l+1})$; without loss of generality, we may assume that

$$
B=(\underbrace{1, \ldots, 1}_{n-2 l+1}, x_{1}, \ldots, x_{t+2 l}) .
$$

If $\left|x_{i}\right|_{n} \geq 2 l$, since $(\underbrace{1, \ldots, 1}_{n-\left|x_{i}\right|_{n}}, x_{i})$ is an irreducible block and

$$
\binom{n-2 l+1}{n-\left|x_{i}\right|_{n}} \geq n-2 l+1 \geq n / 2+1>k
$$

(from the hypothesis of the theorem), we must have $B \notin B_{k}\left(C_{n}\right)$, a contradiction. Hence,

$$
1 \leq\left|x_{i}\right|_{n} \leq 2 l-1
$$

for $i=1, \ldots, t+2 l$, and so $2 \leq\left|x_{1}\right|_{n}+\left|x_{2}\right|_{n} \leq 4 l-2 \leq n-2$, hence, $2 \leq\left|x_{1}+x_{2}\right|_{n}=\left|x_{1}\right|_{n}+\left|x_{2}\right|_{n} \leq n-2$.

If $\left|x_{1}+x_{2}\right|_{n} \geq 2 l$, since $(\underbrace{1, \ldots, 1}, x_{1}, x_{2})$ is an irreducible block and ${ }_{n-\left|x_{1}+x_{2}\right|_{n}}$

$$
\binom{n-2 l+1}{n-\left|x_{1}+x_{2}\right|_{n}} \geq n-2 l+1>k,
$$

we have $B \notin B_{k}(G)$, a contradiction. Hence, $\left|x_{1}\right|_{n}+\left|x_{2}\right|_{n}=\left|x_{1}+x_{2}\right|_{n} \leq$ $2 l-1$. Continuing the same process we finally get

$$
\sum_{i=1}^{2 l+t}\left|x_{i}\right|_{n}=\left|\sum_{i=1}^{2 l+t} x_{i}\right|_{n} \leq 2 l-1
$$

but

$$
\sum_{i=1}^{2 l+t}\left|x_{i}\right|_{n} \geq 2 l+t \geq 2 l
$$

a contradiction. This completes the proof.
Acknowledgements. The author is grateful to the referee for helpful suggestions and comments.

REFERENCES

[1] J. D. Bovey, P. Erdős and I. Niven, Conditions for zero-sum modulo n, Canad. Math. Bull. 18 (1975), 27-29.
[2] P. van Emde Boas, A combinatorial problem on finite abelian groups II, ZW-1969-007, Math. Centre, Amsterdam.
[3] P.van Emde Boas and D. Kruyswijk, A combinatorial problem on finite abelian groups III, ZW-1969-008, Math. Centre, Amsterdam.
[4] W. D. Gao, Some problems in additive group theory and additive number theory, Ph.D. thesis, Sichuan University, 1994.
[5] M. H all Jr., Combinatorial Theory, Blaisdell, London, 1967.
[6] F.Halter-Koch, Typenhalbgruppen und Faktorisierungsprobleme, Results Math. 22 (1992), 545-549.
[7] -, Factorization problems in class number two, Colloq. Math. 65 (1993), 255-265.
[8] W. Narkiewicz, Finite abelian groups and factorization problems, ibid. 42 (1979), 319-330.
[9] W. Narkiewicz and J. Śliwa, Finite abelian groups and factorization problems $I I$, ibid. 46 (1982), 115-122.
[10] J. E. Ols o n, A combinatorial problem on finite abelian groups I, J. Number Theory 1 (1969), 8-10.
[11] -, A combinatorial problem on finite abelian groups II, ibid. 1 (1969), 195-199.

Department of Information Engineering
Beijing University of Posts and Telecommunications
Beijing 100088, China
E-mail: zmhu@bupt.edu.cn

Received 9 March 1995; revised 10 February 1996

[^0]: 1991 Mathematics Subject Classification: Primary 20D60.

