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ON A COMBINATORIAL PROBLEM CONNECTED WITH
FACTORIZATIONS

BY

WEIDONG GAO (BEIJING)

0. Let K be an algebraic number field with classgroup G and integer
ring R. For k ≥ 1 and a real number x > 0, let ak = ak(G) be the maximal
number of nonprincipal prime ideals which can divide a squarefree element
of R with at most k distinct factorizations into irreducible elements, and let
Fk(x) be the number of elements α ∈ R (up to associates) having at most
k different factorizations into irreducible elements of R. W. Narkiewicz [8]
derived the asymptotic expression

Fk(x) ∼ ckx(log)−1+1/|G|(log log x)ak ,

where ck is positive and depends on k and K.
Recently, F. Halter-Koch [6–7] used the characterizations of ak(G) to

study nonunique factorizations.
In [8], Narkiewicz showed that ak(G) depends only on k and G, gave

a combinatorial definition of it and proposed the problem of determining
ak(G) (Problem 1145).

Let G be a finite abelian group (written additively). The Davenport
constant D(G) of G is defined to be the minimal integer d such that for
every sequence of d elements in G there is a nonempty subsequence with
sum zero. Narkiewicz and Śliwa [8–9] derived several properties of a1(G)
involving D(G) and proposed the following conjecture:

Conjecture 1. Let G = Cn1 ⊕ . . . ⊕ Cnr with 1 < n1 | . . . |nr. Then
a1(G) = n1 + . . .+ nr, where Cn denotes the cyclic group of order n.

They affirmed Conjecture 1 for G = Cn
2 , C

n
2 ⊕ C4, C

n
2 ⊕ C2

4 or Cn
3 .

In this paper we derive several properties of ak(G), affirm this conjecture
for a more general case and determine a2(Cn

2 ) and ak(Cn) provided that
n is substantially larger than k. The paper is organized in the following
way: In Section 1 we repeat the combinatorial definition of ak(G) due to
Narkiewicz [8] and give some preliminaries on a1(G) and D(G). In Section
2 we derive some new properties of a1(G) and show the following:
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Theorem 1. Let G = Cn1 ⊕ . . . ⊕ Cnr with 1 < n1 | . . . |nr, let p be a
prime with 2 ≤ p ≤ 151, and let us adopt the convention C0

n = C1. Then
a1(G) = n1 + . . . + nr provided that G is of one of the following forms
(m ≥ 1):

(1) C2t3s ⊕ C2t3sm, 0 ≤ t ≤ 1 or 0 ≤ s ≤ 1,
(2) C2

2t3sp, 0 ≤ t ≤ 1 or 0 ≤ s ≤ 1,
(3) C2

4p,
(4) C2tp ⊕ C2tpm, 0 ≤ t ≤ 1,
(5) C2t5s ⊕ C2t5sm, 0 ≤ t ≤ 1,
(6) C2

3×5s ,
(7) C2

4×5s ,
(8) Cn

2 ⊕ Ct
4 ⊕ C2m , 0 ≤ t ≤ 1,

(9) Cn
2 ⊕ Ct

4 ⊕ C2ml, 0 ≤ t ≤ 1, l ≥ 4 and 2m ≥ n+ 3t+ 1,
(10) Cn

3 ⊕ Ct
9 ⊕ C3m , 0 ≤ t ≤ 1,

(11) Cn
3 ⊕ Ct

9 ⊕ C3ml, 0 ≤ t ≤ 1, l ≥ 4, and 3m ≥ 2n+ 8t+ 1,
(12) C2

5 ⊕ C25m,m = 1 or m ≥ 4.

In Section 3 we derive some properties of ak(G) and show the following

Theorem 2. If k ≥ 2 and if

k ≤
− log2 n+

√
(log2 n)2 + n

2
+ 1,

then ak(Cn) = n.

R e m a r k 1. It is proved in [8, Proposition 9] that max{D(G),
∑r

i=1 ni}
≤ ak(G) ≤ al(G) for 1 ≤ k ≤ l; therefore if Conjecture 1 is true, then
D(G) ≤ n1 + . . .+ nr and the best known estimation (see [3])

D(G) ≤ nr

(
1 +

log |G|
log nr

)
would be improved. So it seems very difficult to settle Conjecture 1 in
general.

1. In what follows we always let G denote a finite abelian group.
For a sequence S = (a1, . . . , am) of elements in G, we use

∑
S to denote

the sum
∑m

i=1 ai. By λ we denote the empty sequence and adopt the con-
vention that

∑
λ = 0. We say S a zero-sum sequence if

∑
S = 0. A subse-

quence T of S is a sequence T = (ai1 , . . . , ail
) with {i1, . . . , il} ⊂ {1, . . . ,m};

we denote by IT the index set {i1, . . . , il}, and identify two subsequences
S1 and S2 if IS1 = IS2 . We say two subsequences S1 and S2 are disjoint
if IS1 ∩ IS2 = ∅ (the empty set) and define multiplication of two disjoint
subsequences by juxtaposition.
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A nonempty sequence B of nonzero elements in G is called a block in G
provided that

∑
B = 0; we call a block irreducible if it cannot be written

as a product of two blocks.
By a factorization of a block B = (b1, . . . , bk) we shall understand any

surjective map

ϕ : {1, . . . , k} → {1, . . . , t}
with a certain positive integer t = t(ϕ) such that, for j = 1, . . . , t, the
sequences Bj = (bi : ϕ(i) = j) are blocks. If they are all irreducible, we
speak about an irreducible factorization of B. Obviously, we have B =
B1 . . . Bt. Two such factorizations ϕ and ψ are called strongly equivalent if
t(ϕ) = t(ψ) (= t say) and for a suitable permutation δ the sets {i : ϕ(i) = j}
and {ψ(i) = δ(j)} coincide for j = 1, . . . , t. For k ≥ 1, we define Bk(G) to
be the set consisting of all blocks which have at most k strongly inequivalent
irreducible factorizations, and let ak(G) = max{|B| : B ∈ Bk(G)}.

For a sequence S of elements in G, we use
∑

(S) to denote the set
consisting of all elements in G which can be expressed as a sum over a
nonempty subsequence of S, i.e.,∑

(S) =
{∑

T : λ 6= T, T ⊆ S
}
,

where T ⊆ S means that T is a subsequence of S.

Lemma 1 ([9, Proposition 2]). Let B = B1 . . . Br ∈ B(G) and let
B1, . . . , Br be irreducible blocks. Then B ∈ B1(G) if and only if for all
disjoint nonempty subsets X,Y of {1, . . . , r} we have∑ ( ∏

i∈X

Bi

)
∩

∑ ( ∏
i∈Y

Bi

)
= {0}.

Lemma 2 ([9, Proposition 6]). If B=B1 . . . Br∈B1(G) and if B1, . . . , Br

are irreducible blocks, then |B1| . . . |Br| ≤ |G|.

Lemma 3 ([9, Proposition 3]). Let B = B1 . . . Br ∈ B1(G) and let
B1, . . . , Br be irreducible blocks. Then |B| ≤ D(G) + r − 1.

For a sequence S of elements in G, let fE(S) (resp. fO(S)) denote the
number of zero-sum subsequences T of S with 2 | |T | (resp. 2 - |T |), where
we count fE(S) including the empty sequence; hence, we have fE(S) ≥ 1.

Lemma 4. Let p be a prime. Then the following hold.

(i) D(Cn1 ⊕ Cn2) = n1 + n2 − 1 (n1 |n2) ([11]).
(ii) D(C3

2pt) = 6pt − 2 ([2]).
(iii) D(C3

3×2t) = 9× 2t − 2 ([3]).

(iv) D(
⊕k

i=1 Cpei ) = 1 +
∑k

i=1(p
ei − 1) ([10]).
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(v) If S is a sequence of elements in
⊕k

i=1 Cpei with |S| ≥ 1 +∑k
i=1(p

ei − 1), then fE(S) ≡ fO(S) (mod p) ([2], [10]).

Lemma 5. Let H = Cn1 ⊕ . . . ⊕ Cnl
with 1 < n1 | . . . |nl, nl |n, and

D(H ⊕ C2
n) = 2(n− 1) +D(H). Then D(H ⊕ Cn) = n− 1 +D(H).

P r o o f. By the definition of Davenport’s constant one can choose a
sequence T = (a1, . . . , aD(H⊕Cn)−1) of D(H ⊕ Cn)− 1 elements in H ⊕ Cn

such that 0 6∈
∑

(T ). Put bi = (ai, 0) with 0 ∈ Cn for i = 1, . . . , D(H ⊕
Cn) − 1, and put bi = (0, 1) with 0 ∈ H ⊕ Cn and 1 ∈ Cn for i = D(H ⊕
Cn), . . . , D(H ⊕ Cn) + n − 2. Clearly, bi ∈ H ⊕ C2

n for i = 1, . . . , D(H ⊕
Cn) + n− 2 and the sequence b1, . . . , bD(H⊕Cn)+n−2 contains no nonempty
zero-sum subsequence. This implies that

D(H ⊕ Cn) + n− 1 ≤ D(H ⊕ C2
n).

Similarly, one can prove that

D(H) + n− 1 ≤ D(H ⊕ Cn),

so we have

D(H) + 2(n− 1) ≤ D(H ⊕ Cn) + n− 1 ≤ D(H ⊕ C2
n) = D(H) + 2(n− 1).

This forces that D(H ⊕ Cn) = D(H) + n− 1 as desired.

Lemma 6. Let H = Cn1 ⊕ . . . ⊕ Cnl
with 1 < n1 | . . . |nl, and nl |n.

Suppose that n ≥ D(H) and D(H ⊕ C2
n) = 2(n − 1) + D(H). Then any

sequence S of 2(n − 1) + D(H) elements in H ⊕ Cn contains a nonempty
zero-sum subsequence T with |T | ≤ n.

P r o o f. Suppose S = (a1, . . . , a2(n−1)+D(H)). For i = 1, . . . , 2(n − 1) +
D(H) we define bi = (ai, 1) with 1 ∈ Cn. Clearly, bi ∈ H ⊕ C2

n. Since
D(H ⊕ C2

n) = 2(n− 1) +D(H), the sequence b1, . . . , b2(n−1)+D(H) contains
a nonempty zero-sum subsequence T . By the definition of bi, we must have
n | |T |. But n ≥ D(H) − 1, so |T | ≤ 2(n − 1) + D(H) ≤ 3n − 1, and this
forces that

|T | = n or |T | = 2n.

If |T | = n we are done. Otherwise, |T | = 2n. By Lemma 5, D(H⊕Cn) =
n− 1 +D(H) ≤ 2n− 1, so one can find a nonempty zero-sum subsequence
M of T with |M | < |T |. Setting W equal to the shorter of M and T −M
(the subsequence with index set IT − IM ) completes the proof.

Lemma 7. Let H = Cn1 ⊕ . . . ⊕ Cnl
with 1 < n1 | . . . |nl, and nl |n.

Suppose that n ≥ D(H) and D(H ⊕ C2
n) = 2(n − 1) + D(H). Then any

zero-sum sequence S of elements in H ⊕ Cn with |S| ≥ n+D(H) contains
a zero-sum subsequence T with |S| − n ≤ |T | < |S|.
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P r o o f. We distinguish three cases.

C a s e 1: |S| ≥ 2(n−1)+D(H). Then the lemma follows from Lemma 6.

C a s e 2: n +D(G) ≤ |S| ≤ 2n. By Lemma 5, we have D(H ⊕ Cn) =
n − 1 + D(G), thus there exists a zero-sum subsequence W of S with 1 ≤
|W | < |S|. Setting T equal to the longer of W and S−W proves the lemma
in this case.

C a s e 3: 2n+ 1 ≤ |S| ≤ 2n− 3 +D(H). We define

bi =
{

(ai, 1) with 1 ∈ Cn if i = 1, . . . , |S|,
(0, 1) with 0∈H ⊕Cn and 1∈Cn if i=|S|+ 1, . . . , 2(n−1)+D(H),

and similarly to the proof of Lemma 6 we find a zero-sum subsequence W
of b1, . . . , b2(n−1)+D(H) with |W | = n or 2n. Put

J =
{
{1, . . . , |S|} − IW if |W | = n (not necessarily IW ⊆ {1, . . . , |S|}),
IW − {|S|+ 1, . . . , 2(n− 1) +D(H)} if |W | = 2n,

and let T be the subsequence of S with IT = J . Clearly,
∑
T = 0 and

|S| − n ≤ |T | < |S|. This completes the proof.

We say two nonempty sequences S = (a1, . . . , am) and T = (b1, . . . , bm)
of elements in Cn with the same size m are similar (written S ∼ T ) if there
exist an integer c coprime to n and a permutation σ of 1, . . . ,m such that
ai = cbσ(i) for i = 1, . . . ,m. Clearly, ∼ is an equivalence relation. For any
x ∈ Cn, we denote by |x|n the minimal nonnegative inverse image of x under
the natural homomorphism from the additive group of integers onto Cn.

Lemma 8 ([1], [4]). Let S = (a1, . . . , an−k) be a sequence of n−k elements
in Cn with n ≥ 2. Suppose that 0 6∈

∑
(S) and suppose that k ≤ n/4 + 1.

Then
S ∼ (1, . . . , 1︸ ︷︷ ︸

n−2k+1

, x1, . . . , xk−1),

with all xi 6= 0 .

2. In this section we derive some properties of a1(G) and prove Theo-
rem 1.

Proposition 1. Let G =
⊕k

i=1 Cpei with p an odd prime, let B =
B1 . . . Br ∈ B1(G) and let B1, . . . , Br be irreducible blocks. Suppose that
exactly t of |B1|, . . . , |Br| are odd. Then |B| ≤ D(G) + t− 1.

P r o o f. Without loss of generality, we assume that |B1|, . . . , |Bt| are
odd and that |Bt+1|, . . . , |Br| are even. Let Di ⊆ Bi with |Di| = |Bi|−1 for
i = 1, . . . , t, and put S = D1 . . . DtBt+1 . . . Br. By the choice of D1, . . . , Dt

and the hypothesis of the proposition, all zero-sum subsequences of S consist
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of all products of the form Bi1 . . . Bil
with l ≥ 0 and t+1 ≤ i1 < . . . < il ≤ r.

This gives

fE(S) =
(
r − t

0

)
+

(
r − t

1

)
+

(
r − t

2

)
+ . . .+

(
r − t

r − t

)
= 2r−t

and fO(S) = 0. But p - 2, therefore fE(S) 6≡ fO(S) (mod p). Now it follows
from Lemma 4(v) that |B| − t = |S| ≤

∑k
i=1(p

ei − 1) = D(G) − 1, that is,
|B| ≤ D(G) + t− 1.

Proposition 2. Let H = Cn1 ⊕ . . . ⊕ Cnl
be a finite abelian group

with 1 < n1 | . . . |nl, and let G = H ⊕ Cnm with nl |n. Suppose that (i)
m ≥ 4 and n ≥ D(H), and (ii) D(H ⊕ C2

n) = 2(n − 1) + D(H). Then
a1(G) ≤ a1(H⊕Cn)+nm−n; moreover , if a1(H⊕Cn) = n+n1 + . . .+nl

then a1(G) = nm+ n1 + . . .+ nl.

R e m a r k 2. From Lemma 4(ii)–(iv) we see that there exists a large
class of pairs of (H,n) satisfying conditions (i) and (ii) of Proposition 2.

Lemma 9. Let s, r, a, b be positive integers such that a ≥ 2, 2a < b and
(r − 1)b ≥ s ≥ ar. Let l, x1, . . . , xl be positive integers satisfying

(i) l ≥ r,
(ii) x1 + . . .+ xl = s,
(iii) a ≤ x1, . . . , xl ≤ b.

Suppose x1 = n1, . . . , xl = nl are such that the product x1 . . . xl attains its
minimal possible value. Then (a) there is at most one i such that a 6= ni 6= b;
and we may assume (b) l = r.

P r o o f. (a) If there are i, j with 1 ≤ i 6= j ≤ l such that a < ni, nj <
b, without loss of generality, we assume that a < ni ≤ nj < b. Then
(ni − 1)(nj + 1) < ninj , therefore if we take xi = ni − 1, xj = nj + 1 and
xk = nk for k 6= i, j, then x1 . . . xl < n1 . . . nl, a contradiction. This proves
(a).

(b) Let l be the smallest integer satisfying l ≥ r and the hypothesis of the
lemma. If l ≥ r+ 1, then since s ≤ (r− 1)b, there are at most r− 2 distinct
indices i such that ni = b, so by (a), there are at least two indices i and j
such that ni = nj = a; without loss of generality, we assume nl−1 = nl = a.
Now let xi = ni for i = 1, . . . , l−2 and set xl−1 = nl−1 +nl = 2a ≤ b. Then
x1 . . . xl−1 ≤ n1 . . . nl, a contradiction. This proves (b) and completes the
proof.

P r o o f o f P r o p o s i t i o n 2. Let t = a1(G)− nm− n1 − . . .− nl ≥ 0.
It is sufficient to prove that there exists a block in B1(H⊕Cn) of length not
less than n1+ . . .+nl +n+t. To do this we consider a block A = A1 . . . Ar ∈
B1(G) with |A| = a1(G) = nm + n1 + . . . + nl + t, where A1, . . . , Ar are
irreducible blocks.
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By rearranging the indices we may assume that

A = (a1, . . . , amn+n1+...+nl+t−r, b1, . . . , br)

with bi ∈ Ai for i = 1, . . . , r.
We assert that

(1) r ≤ n1 + . . .+ nl.

Assume r > n1 + . . .+nl. Since it is well known that D(H) ≥ n1 + . . .+
nl − l + 1 (see for example [2]), we have n ≥ D(H) ≥ n1 + . . .+ nl − l + 1.
Now by Lemma 9,

|A1| . . . |Ar| ≥ (nm+ n1 + . . .+ nl + t− 2r)2r

> (mn+ t− n1 − . . .− nl)2n1+...+nl

≥ ((m− 1)n− l + 1)2n1 . . . 2nl

≥ ((m− 1)n− l + 1)(2n1) . . . (2nl)
≥ mnn1 . . . nl = |G|;

this contradicts Lemma 2 and proves (1).
It is well known that there exists a homomorphism ϕ from H⊕Cnm onto

H ⊕ Cn with kerϕ = Cm (up to isomorphism).
For a sequence S = (s1, . . . , su) of elements of H⊕Cnm, let ϕ(S) denote

the sequence (ϕ(s1), . . . , ϕ(su)) of elements of H ⊕ Cn. Since nm + n1 +
. . . + nl + t − r ≥ nm = (m − 2)n + 2n and n ≥ D(H), by Lemmas 6
and 7 one can find m − 1 disjoint nonempty subsequences B1, . . . , Bm−1

of (a1, . . . , amn+n1+...+nl+t−r) with
∑
ϕ(Bi) = 0 for i = 1, . . . ,m − 1, and

|Bi| ≤ n for i = 1, . . . ,m− 2. Therefore∑
Bi ∈ kerϕ = Cm

for i = 1, . . . ,m− 1.
Since A = A1 . . . Ar is the unique irreducible factorization of A and bi ∈

Ai for i = 1, . . . , r, the sequence
∑
B1, . . . ,

∑
Bm−1 contains no nonempty

zero-sum subsequence, and it follows from Lemma 8 that
∑
B1 = . . . =∑

Bm−1 = a (say) and a generates Cm.
Let Ai1 , . . . , Aiv (v ≥ 0) be all irreducible blocks contained in A−B1 −

. . . − Bm−2. Since A ∈ B1(G), it follows that Ai1 , . . . , Aiv are disjoint, so
one can write

A−B1 − . . .−Bm−2 = Ai1 . . . AivB
′.

Then B′ contains no nonempty zero-sum subsequence and∑
B′ =

∑
A−

∑
B1 − . . .−

∑
Bm−2 −

∑
Ai1 − . . .−

∑
Aiv = 2a.

Now we split the proof into steps.
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S t e p 1: ϕ(B1), . . . , ϕ(Bm−2) and ϕ(Ai1), . . . , ϕ(Aiv ) are irreducible
blocks in H⊕Cn. If for some i with 1 ≤ i ≤ m−2, ϕ(Bi) is not an irreducible
block in H⊕Cn, then there exist two disjoint nonempty subsequences B′

i, B
′′
i

of Bi such that
∑
ϕ(B′

i) =
∑
ϕ(B′′

i ) = 0 (in H⊕Cn) and Bi = B′
iB

′′
i . Then∑

B′
i ∈ Cm,

∑
B′′

i ∈ Cm, and the sequence
∑
B1, . . . ,

∑
Bi−1,

∑
B′

i,
∑
B′′

i ,∑
Bi+1, . . . ,

∑
Bm−1 contains a nonempty zero-sum subsequence. This con-

tradicts bi ∈ Ai for i = 1, . . . , r and proves ϕ(B1), . . . , ϕ(Bm−2) are irre-
ducible blocks.

If for some j, ϕ(Aij
) is not an irreducible block inH⊕Cn, then there exist

two disjoint nonempty subsequences A′ij
, A′′ij

of Aij such that
∑
ϕ(A′ij

) =∑
ϕ(A′′ij

) = 0 (inH⊕Cn) and Aij
= A′ij

A′′ij
. It follows from A ∈ B1(G) that∑

B1, . . . ,
∑
Bm−2,

∑
A′ij

contains no nonempty zero-sum subsequence, so
by Lemma 8,

∑
A′ij

= a, and therefore,
∑
B′A′ij

B1 . . . Bm−3 = 0. This
clearly contradicts A = A1 . . . Ar ∈ B1(G) and completes the proof of this
step.

S t e p 2: ϕ(B1)ϕ(Ai1) . . . ϕ(Aiv
) ∈ B1(H ⊕ Cn). Assume otherwise.

Then there exist B′
1 ⊆ B1, A

′
i1
⊆ Ai1 , . . . , A

′
iv
⊆ Aiv such that

∑
ϕ(B′

1) =∑
ϕ(A′i1 . . . A

′
iv

) and Aij 6= A′ij
6= λ for at least one j with 1 ≤ j ≤ v.

Therefore,
∑
B′

1 −
∑
A′i1 . . . A

′
iv
∈ Cm, so

∑
(B1 − B′

1)A
′
i1
. . . A′iv

∈ Cm.
Noting that m ≥ 4,

∑
B2 = a and

∑
B′ = 2a, it follows from Lemma 8 that

the sequence
∑

(B1 − B′
1)A

′
i1
. . . Aiv ,

∑
B2, . . . ,

∑
Bm−2,

∑
B′ contains a

nonempty zero-sum subsequence. Clearly, such a subsequence must contain
the term

∑
(B1 −B′

1)A
′
i1
. . . A′iv

, contrary to A ∈ B1(G).

S t e p 3: We distinguish two cases.

C a s e 1: |B′| ≤ 2n. Then

|ϕ(B1)ϕ(Ai1) . . . ϕ(Aiv
)| = |B1Ai1 . . . Aiv

|
= |A| − |B′| − |B2| − . . .− |Bm−2|
≥ |A| − 2n− (m− 3)n ≥ n+ n1 + . . .+ nl + t,

as desired.

C a s e 2: |B′| > 2n. Then |B′| > n+D(H). By Lemma 7, there exists
a subsequence T of B′ such that

∑
ϕ(T ) = 0 and |B′|−n ≤ |T | < |B′|. Put

W = B′ − T . Then

1 ≤ |W | ≤ n.

Since a generates Cm and B′ contains no nonempty zero-sum subsequence,∑
T = fa with 1 ≤ f ≤ m − 1. If 3 ≤ f ≤ m − 1, let Au1 , . . . , Auh

be all
irreducible blocks which meet T (i.e. IAui

∩ IT 6= ∅ for i = 1, . . . , h). Since∑
TB1 . . . Bm−f =

∑
TB2 . . . Bm−f+1 = 0, it follows from A = A1 . . . Ar ∈
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B1(G) that B1 . . . Bm−f = Au1 . . . Auh
− T = B2 . . . Bm−f+1. This contra-

dicts the disjointness of B1, . . . , Bm−2. Hence∑
T = a or 2a.

But
∑
T +

∑
W = 2a and

∑
W 6= 0, so we must have

∑
T =

∑
W = a.

Let T ′ be a nonempty subsequence of T with
∑
ϕ(T ′) = 0. Then by using

the same method one can prove that
∑
T ′ = a. This forces that T ′ = T

and implies that

ϕ(T ) is an irreducible block in H ⊕ Cn.

We assert that

ϕ(T )ϕ(Ai1) . . . ϕ(Aiv ) ∈ B1(H ⊕ Cn).

Assume to the contrary that there exist T ′ ⊆ T,A′i1 ⊆ Ai1 , . . . , A
′
iv
⊆ Aiv

such that
∑
ϕ(T ′A′i1 . . . A

′
iv

) = 0 and Aij 6= A′ij
6= λ for some 1 ≤ j ≤ v.

Then
∑
T ′A′i1 . . . A

′
iv
∈ Cm. Notice that the sequence

∑
B1, . . . ,

∑
Bm−2,∑

W,
∑
T ′A′i1 . . . A

′
iv

must contain a nonempty zero-sum subsequence and
such a subsequence must contain the term

∑
T ′A′i1 . . . A

′
iv

. This clearly
contradicts A = A1 . . . Ar ∈ B1(G) and proves the assertion. Now the
theorem follows from |ϕ(T )ϕ(Ai1) . . . ϕ(Aiv )| = nm + n1 + . . . + nl + t −
|B1| − . . .− |Bm−2| − |W | ≥ n+n1 + . . .+nl + t. This completes the proof.

Proposition 3. If D(C3
n) = 3n− 2, then

(i) a1(Cn ⊕ C2n) ≤ a1(C2
n) + n;

(ii) a1(Cn ⊕ C3n) ≤ a1(C2
n) + 2n;

(iii) a1(C2
2n) ≤ a1(C2

n) + 2n, and
(iv) a1(C2

3n) ≤ a1(C2
n) + 4n.

P r o o f. Put H = Ck ⊕ Cn and G = Clk ⊕ Cnm. It is well known that
there exists a homomorphism ϕ from G onto H such that kerϕ = Cl ⊕ Cm

(up to isomorphism). We use the same notation A = A1 . . . Ar ∈ B1(G), ϕ,
ϕ(S) as in the proof of Proposition 2.

(i) k = 1, l = n, m = 2. Let t = a1(Cn ⊕ C2n) − 3n. Clearly, it is
sufficient to prove that there exists a block in B1(C2

n) of length not less
than 2n + t. If t = 0, then the proposition follows from Remark 1, so we
may assume that t ≥ 1, and r ≥ 3 follows from Lemma 3. We assert that

max{|A1|, . . . , |Ar|} ≥ 2n+ t.

Otherwise by Lemma 9 we get |A1| . . . |Ar| > (2n+ t)n > 2n2 = |Cn⊕C2n|;
this contradicts Lemma 2 and proves the assertion. So we may assume that

|Ar| ≥ 2n+ t.

By using Lemmas 7 and 4(i) one can find a subsequence B1 of Ar such
that

∑
ϕ(B1) = 0 and |Ar| − n ≤ |B1| < |Ar|. Put B2 = Ar − B1. Then
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∑
ϕ(B2) = 0. So

∑
B1 ∈ C2,

∑
B2 ∈ C2, and clearly

∑
B1 =

∑
B2 =1.

It is easy to prove that ϕ(B1), ϕ(B2), ϕ(A1), . . . , ϕ(Ar−1) are all irreducible
blocks in C2

n, and similarly to the proof of Proposition 2 one can get
ϕ(B1)ϕ(A1) . . . ϕ(Ar−1) ∈ B1(C2

n). Now (i) follows from |ϕ(B1)ϕ(A1) . . .
. . . , ϕ(Ar−1)| ≥ 2n+ t.

(ii) k = 1, l = n,m = 3. Let t = a1(Cn ⊕ C3n) − 4n. Similarly
to (i) we may assume that t ≥ 1 and by Lemma 3 we have r ≥ 3, and
similarly to (i) we get max{|A1|, . . . , |Ar|} ≥ 3n + t, so we may assume
that |Ar| ≥ 3n + t. By using Lemmas 4(i), 6, and 7 we get three disjoint
subsequences B1, B2, B3 of Ar such that

∑
ϕ(B1) =

∑
ϕ(B2) =

∑
ϕ(B3) =

0 and |B1| ≤ n, |Ar −B1| − n ≤ |B2| < |Ar −B1|, and B3 = Ar −B1 −B2 .
Clearly,

∑
B1 =

∑
B2 =

∑
B3 = a (say) and a = 1 or 2. Now (ii) follows

in a similar way to (i).
(iii) k = n, l = m = 2. Let t = a1(C2

2n)− 4n. If t = 0, then (iii) follows
from Remark 1, so we may assume that t ≥ 1. Clearly, it is sufficient to
prove that there exists a block in B1(C2

n) of length not less than 2n+ t.
Since a1(C2

2n) ≥ 4n + 1, by Lemmas 3 and 4(i) we have r ≥ 3. If
max{|A1|, . . . , |Ar|} < 3n, then by Lemma 9 we have |A1| . . . |Ar| ≥ 2(n +
2 − 2)(3n − 1) > 4n2 = |C2

2n|. This contradicts Lemma 2, so we may
assume that |Ar| ≥ 3n, and by using Lemmas 6 and 7 we find three disjoint
subsequences B1, B2, B3 of Ar such that

∑
ϕ(B1) =

∑
ϕ(B2) =

∑
ϕ(B3) =

0 and |B1| ≤ n, |Ar −B1| − n ≤ |B2| < |Ar −B1|, and B3 = Ar −B1 −B2.
Noticing that D(C2

2 ) = 3 we can prove (iii) similarly to (i).
(iv) k = n, l = m = 3. Let t = a1(C3n) − 6n. Similarly to (iii)

we may assume that t ≥ 1, and r ≥ 3 follows from Lemmas 3 and 4(i).
Furthermore, we may assume n ≥ 3 for otherwise (iv) reduces to (iii). If
max {|A1|, . . . , |Ar|} < 5n, then by Lemma 9 we have |A1| . . . |Ar| ≥ 2(n+
2 − 2)(5n − 1) > 9n2 = |C2

3n|. This contradicts Lemma 2 and proves that
max {|A1|, . . . , |Ar|} ≥ 5n. Now (iv) follows in a similar way to (iii) upon
noting that D(C2

3 ) = 5. This completes the proof.

Corollary 1. If a1(C2
n) = 2n and D(C3

n) = 3n− 2, then

(i) a1(Cn ⊕ C2n) = 3n;
(ii) a1(Cn ⊕ C3n) = 4n;
(iii) a1(C2

2n) = 4n, and
(iv) a1(C2

3n) = 6n.

P r o o f. This follows from Remark 1 and Proposition 3.

Lemma 10 ([2, Theorem (2.8)]). Let p be a prime, H a finite abelian
p-group, and let S be a sequence of D(H)− 2 elements in H. Suppose that
fE(S)− fO(S) 6≡ 0 (mod p). Then all elements not in

∑
(S) are contained

in a fixed proper coset of a subgroup of H.
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P. van Emde Boas ([2, Theorem (2.8)]) stated the conclusion of Lemma
10 for the case fE(S) = 1 and fO(S) = 0, but his method does work for the
general case. For covenience, we repeat the proof here.

P r o o f o f L e m m a 10. In the proof we shall use mutiplicative nota-
tion for H, and in all other cases in this paper, additive notation will be
used.

Let H = Cpe1 ⊕ . . . ⊕ Cper with 1 ≤ e1 ≤ . . . ≤ er, and suppose S =
(g1, . . . , gk), where k = D(H) − 2 = −k − 1 +

∑k
i=1 p

ei . Put N(S, g) :=
Neven −Nodd where Neven(odd) is the number of solutions of the equation

gm1
1 gm2

2 . . . gmk

k = g, mi = 0, 1,

with
∑k

i=1mi even (odd).
We denote by Fp the p-element field. We multiply out the product

(1− g1)(1− g2) . . . (1− gk)

in the group ring Fp[H]. Then

(2)
k∏

i=1

(1− gi) =
∑
g∈H

N(S, g)g.

If gpn

= 1 (g ∈ H), then it is well known that the following equalities
hold in Fp[H]:

(1− g)pn

= 0,(3)

(1− g)pn−1 =
pn−1∑
v=0

gv,(4)

(1− g)pn−2 =
pn−1∑
v=1

vgv−1.(5)

Let x1, . . . , xr be a basis for H where xi has order pei . Then gi =
xfi1

1 . . . xfir
r , 0 ≤ fij ≤ pej − 1, i = 1, . . . , k, j = 1, . . . , r. Now, we have

k∏
i=1

(1− gi) =
k∏

i=1

(1− xfi1
1 . . . xfir

r )

=
k∏

i=1

(1− (1− (1− x1))fi1 . . . (1− (1− xr))fir )

=
k∏

i=1

r∑
j=1

(fij(1− xj) + hij(1− xj)2 + αij(1− xj)3),
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where hij = 1
2 (fij − 1)fij and αij ∈ Fp[H]. Now from (3) and k = −1 +∑r

i=1(p
ei − 1) we derive that

k∏
i=1

(1− gi) =
k∏

i=1

r∑
j=1

(fij(1− xj) + hij(1− xj)2),

and it follows from (3)–(5) that

(6)
k∏

i=1

(1− gi) = c0

r∏
i=1

pei−1∑
j=0

xj
i +

r∑
i=1

ci

( pei−1∑
v=1

vxv−1
i

) r∏
j=1
j 6=i

pej−1∑
v=0

xv
j

where ci ∈ Fp.
For every g ∈ H, write g = x

τ1(g)
1 . . . x

τr(g)
r . Then from (6) we derive

that
k∏

i=1

(1− gi) =
∑
g∈H

(c0 + c1(τ1(g) + 1) + . . .+ cr(τr(g) + 1))g.

This together with (2) implies

N(S, g) =
r∑

i=1

ciτi(g) +
r∑

i=0

ci.

Now by the hypothesis of the lemma we have
r∑

i=0

ci = N(S, 1) = fE(S)− fO(S) 6= 0 (in Fp).

It follows that all elements g not in
∑

(S) satisfy the equation
r∑

i=1

ciτi(g) = −
r∑

i=0

ci 6= 0,

and this equation defines a proper coset. This completes the proof.

Lemma 11. Let p be an odd prime, and let A = A1 . . . Ar ∈ B1(C2
p) with

A1, . . . , Ar irreducible blocks. Suppose that |A| = 2p+ t and t ≥ 1. Then at
least 4 + t of |A1|, . . . , |Ar| are odd.

P r o o f. Suppose that exactly l of |A1|, . . . , |Ar| are odd. Then l ≥ 2 + t
follows from Proposition 1 and Lemma 4(iv).

Assume the conclusion of the lemma is false. Then l = 2+ t follows from
the obvious fact l ≡ 2p+ t ≡ t (mod 2). Without loss of generality, we may
assume that |A1|, . . . , |A2+t| are odd and that |A3+t|, . . . , |Ar| are even. We
next show that

p | |A1|.
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We fix ai ∈ Ai for i = 1, . . . , 2 + t, take any x ∈ A1 − (a1), and set

S = (A1 − (a1, x))(A2 − (a2)) . . . (A2+t − (a2+t))A3+t . . . Ar.

Clearly, fE(S) = 2r−2−t, fO(S) = 0, |S| = 2p− 3 = D(C2
p)− 2, and

{−a1,−a1 − a2, . . . ,−a1 − a2+t,−x,−x− a2, . . . ,−x− a2+t} ∩
∑

(S) = ∅.

Now it follows from Lemma 10 that there exist a subgroup H of C2
p and an

element g ∈ C2
p −H such that

{−a1,−a1 − a2, . . . ,−a1 − a2+t,−x,−x− a2, . . .− x− a2+t} ⊂ g +H.

This implies that x − a1 = (−a1) − (−x) ∈ H, a2 = (−a1) − (−a1 − a2) ∈
H, so we have H = 〈a2〉. Since x was arbitrary, any element of A1 is in
a1 +H = g +H. Now |A1|(g +H) = 0 (in C2

p/H) follows from
∑
A1 = 0;

but g + H 6= 0 (in C2
p/H), hence, p | |A1|. Similarly, one can prove that

p | |A2|, . . . , p | |A2+t|. This yields |A| ≥ |A1|+. . .+|A2+t| ≥ (2+t)p > 2p+t,
a contradiction. This completes the proof.

Lemma 12. Let p be a prime with 2 ≤ p ≤ 151. Then a1(C2
p) = 2p.

P r o o f. We may assume that p ≥ 5; for p ≤ 3 see [9].
Assume to the contrary that a1(C2

p) 6= 2p. Then one can find a block
A = A1 . . . Ar ∈ B1(C2

p) with |A| = 2p + t and t ≥ 1, where A1, . . . , Ar

are irreducible blocks. Suppose exactly l of |A1|, . . . , |Ar| are odd. Then
l ≥ 4 + t follows from Lemma 11.

If p = 5, then 2× 5 + t = |A| ≥ 3l ≥ 3(4 + t) > 10 + t, a contradiction.
Hence, 7 ≤ p ≤ 151 and it follows from l ≥ 4 + t ≥ 5 that |A1| . . . |Ar| ≥
34(2p + 1 − 12) = 162(p − 5.5) > p2, a contradiction to Lemma 2. This
completes the proof.

Lemma 13. a1(C2
5s) = 2× 5s.

P r o o f. We proceed by induction on s. If s = 1, then the assertion
follows from Lemma 12.

Taking s ≥ 2 we assume that the lemma is true for s − 1. Assume
to the contrary that a1(C2

5s) 6= 2 × 5s. Then one can find a block A =
A1 . . . Ar ∈ B1(C2

5s) with |A| = 2 × 5s + t and t ≥ 1, where A1, . . . , Ar

are irreducible blocks. By Proposition 1, at least three of |A1|, . . . , |Ar|
are odd. If max{|A1|, . . . , |Ar|} < 9 × 5s−1, then by Lemma 9 we have
|A1| . . . |Ar| ≥ 3× (5s−1− 1)(9× 5s−1− 1) > (5s)2 = |C2

5s |. This contradicts
Lemma 2 and shows that max{|A1|, . . . , |Ar|} ≥ 9× 5s−1. Note D(C2

5 ) = 9
and similarly to the proof of Proposition 3 one can derive a contradiction.
So we complete the proof.

P r o o f o f T h e o r e m 1. Obviously, (1)–(7) follow from Corollary 1,
Lemma 12, Lemma 13, Lemma 4 and Proposition 2. So to prove the theorem
we only need to consider (8)–(12).
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(8) We only consider the case of t=1; one can deal with the case of t=0
similarly. Assume to the contrary that a1(Cn

2 ⊕ C4 ⊕ C2m) 6= 2n+4+2m.
Then one can find a block A=A1 . . . Ar ∈B1(Cn

2 ⊕ Ct
4 ⊕ C2m) with |A|=

2n + 4 + 2m + t and t ≥ 1, where A1, . . . , Ar are irreducible blocks. It
follows from Lemma 3 that r ≥ n + 3 and this implies that |A1| . . . |Ar| ≥
2n+2(2m + 1) > |Cn

2 ⊕ C4 ⊕ C2m |, a contradiction to Lemma 2.
(9) follows from Proposition 2, Lemma 4 and the conclusion of (8).
(10) As in (8) we only consider the case of t = 1. Assume to the contrary

that a1(Cn
3 ⊕ C9 ⊕ C3m) 6= 3n + 9 + 3m. Then one can find a block A =

A1 . . . Ar ∈ B1(Cn
2 ⊕ C9 ⊕ C3m) with |A| = 3n + 9 + 3m + t and t ≥ 1,

where A1, . . . , Ar are irreducible blocks. It follows from Proposition 1 that
at least n + 3 of |A1|, . . . , |Ar| are odd. This implies that |A1| . . . |Ar| ≥
3n+3(3m + 1) > |Cn

3 ⊕ C9 ⊕ C3m |, a contradiction to Lemma 2.
(11) follows from Proposition 2, Lemma 4 and the conclusion of (10).
(12) The proof is similar to that of (10) and we omit it here. Now the

proof is complete.

3. In this section we consider ak(G) with k ≥ 2.

Proposition 4. Let B ∈ B2(G) − B1(G), and let B =
∏ri

i=1Bij
, i =

1, 2, be the two strongly inequivalent irreducible factorizations of B, where
Bij , 1 ≤ i ≤ 2, 1 ≤ j ≤ ri, are all irreducible blocks. Then

|B| ≤ max{r1, r2}+D(G)− 1.

P r o o f. Suppose r1 ≥ r2 and B = (b1, . . . , bk). Put Ej = IB1j
for

j = 1, . . . , r1 and Fj = IB2j
for j = 1, . . . , r2. We have B1j = (bi : i ∈ Ej)

and B2j = (bi : i ∈ Fj).
For j = 1, . . . , r2, we define Dj to be the set {i : Ei∩Fj 6= ∅, 1 ≤ i ≤ r1}.

We assert that

D1, . . . , Dr2 has a system of distinct representatives.

Deny the assertion; by Hall’s Theorem ([5], p. 45) there exists a nonempty
subset {i1, . . . , it} of {1, . . . , r2} such that

|Di1 ∪ . . . ∪Dit
| < t.

Suppose Di1 ∪ . . . ∪Dit = {f1, . . . , fm}. Then m < t. By the definition
of Dj , 1 ≤ j ≤ r2, we have

Fi1 ∪ . . . ∪ Fit
⊆ Ef1 ∪ . . . ∪ Efm

.

Set E = (Ef1 ∪ . . . ∪ Efm
) − (Fi1 ∪ . . . ∪ Fit

) and B0 = (bi : i ∈ E).
Clearly, B0 is a block or the empty sequence, and we have

B = B0B2i1
. . . B2it

∏
l 6=f1,...,fm

B1l
.
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This implies that B can be factored into a product of at least r1 −m+ t >
r1 irreducible blocks. Obviously, such an irreducible factorization is not
strongly equivalent to B =

∏r1
j=1B1j

or B =
∏r2

j=1B2j
, a contradiction to

B ∈ B2(G). This proves the assertion.
Let {s1, . . . , sr2} be a system of distinct representatives of D1, . . . , Dr2 .

Then Fj ∩ Esj 6= ∅, j = 1, . . . , r2. Take ui ∈ Ei for i = 1, . . . , r1 so that
usj ∈ Fj ∩ Esj for j = 1, . . . , r2. Put M = {1, . . . , k} − {u1, . . . , ur1}.
Clearly, no nonempty subset of M can be expressed as a union of some Ei

or as a union of some Fi. This implies that for any nonempty subset W
of M , the sequence (bi : i ∈ W ) is not a block, so |M | ≤ D(G) − 1 and
|B| = |M |+ r1 ≤ r1 +D(G)− 1. This completes the proof.

Corollary 2. a2(Cn
2 ) = 2n.

P r o o f. Since it is proved in [9] that a1(Cn
2 ) = 2n, we have a2(Cn

2 ) ≥
a1(Cn

2 ) = 2n.
To prove the upper bound we consider any B ∈ B2(Cn

2 ) and show that
|B| ≤ 2n.

If B ∈ B1(Cn
2 ), the estimate is trivial.

If B ∈ B2(Cn
2 ) − B1(Cn

2 ), suppose B =
∏ri

i=1Bij
, i = 1, 2, are the two

strongly inequivalent irreducible factorizations of B, where Bij , 1 ≤ i ≤
2, 1 ≤ j ≤ ri, are irreducible blocks. We assume without loss of generality
that r1 ≥ r2. It follows from Proposition 4 that D(Cn

2 ) + r1 − 1 ≥ |B| =∑r1
j=1 |B1j | ≥ 2r1, thus, r1 ≤ D(Cn

2 )− 1, and |B| ≤ 2(D(Cn
2 )− 1) = 2n by

Lemma 4(iv). This completes the proof.

Lemma 14. Let B ∈ Bk(G) − Bk−1(G) with k ≥ 2, and let B =∏ri

j=1Bij , i = 1, . . . , k, be the k strongly inequivalent irreducible factoriza-
tions of B, where Bij , 1 ≤ i ≤ k, 1 ≤ j ≤ ri are irreducible blocks. Suppose
that r1 = max{r1, . . . , rk} ≥ k. Then there exists a subset X of {1, . . . , r1}
such that

∏
j∈X B1j ∈ B1(G) and |X| ≥ r1 − k + 1.

P r o o f. Clearly, for any i = 2, . . . , k there exists an f = f(i) such that
IB1f

6= IBit
for any t = 1, . . . , ri. Put Y =

⋃
2≤i≤k{f(i)}. Then |Y | ≤ k−1.

Set X = {1, . . . , r1}− Y . Clearly,
∏

j∈X B1j
∈ B1(G) and |X| ≥ r1 − k+ 1.

This completes the proof.

Lemma 15. Let G be a finite abelian group of order n, let B ∈ Bk(G)−
Bk−1(G) with k ≥ 2, and let B =

∏ri

j=1Bij
, i = 1, . . . , k, be the k strongly

inequivalent irreducible factorizations of B, where Bij , 1 ≤ i ≤ k, 1 ≤ j ≤ ri,
are irreducible blocks. Then

max{r1, . . . , rk} ≤ k − 1 + log2 n.

P r o o f. Without loss of generality, assume that r1 = max{r1, . . . , rk}
≥ k. By using Lemma 14 one can find a subset X of {1, . . . , r1} such
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that
∏

j∈X B1j ∈ B1(G) and |X| ≥ r1 − k + 1. Now
∏

j∈X |B1j | ≤ n
follows from Lemma 2. Note that all |B1j | ≥ 2, we have |X| ≤ log2 n, and
r1 ≤ k − 1 + log2 n follows. This completes the proof.

P r o o f o f T h e o r e m 2. Assume to the contrary that ak(Cn) 6= n.
Since ak(Cn) ≥ ak−1(Cn) ≥ . . . ≥ a1(Cn) = n, we have ak(Cn) = n+1+t for
some t ≥ 0. Let B ∈ Bk(Cn) with |B| = n+1+t. Since a1(Cn) = n, we must
have B ∈ Bm(Cn)−Bm−1(Cn) for some 2 ≤ m ≤ k. Let B =

∏ri

j=1Bij
, 1 ≤

i ≤ m, be the m strongly inequivalent irreducible factorizations of B, where
Bij , 1 ≤ i ≤ m, 1 ≤ j ≤ ri, are irreducible blocks.

Suppose B = (b1, . . . , bs). Put Eij = IBij
for i = 1, . . . ,m and j =

1, . . . , ri. For j = 1, . . . , r2, we define Dj to be the set {t : E1t ∪ E2j 6=
∅, 1 ≤ t ≤ r1}. Similarly to the proof of Proposition 4 one can show that
D1, . . . , Dr2 has a system of distinct representatives. Therefore one can find
an r1-subset of {1, . . . , s} which meets all E1j and all E2j . Hence, one can
find an (r1 + r3 + . . . + rk)-subset I of {1, . . . , s} such that I ∩ Eij 6= ∅ for
i = 1, . . . ,m and j = 1, . . . , ri. Put J = {1, . . . , s} − I and let T be the
subsequence of B with IT = J . Clearly, T contains no nonempty zero-sum
subsequence. Put l = n− |T |. Notice that

l = n− |T | = n− |J | = n− (n+ 1 + t− |I|) ≤ |I| − 1
= r1 + r3 + . . .+ rm − 1 ≤ (m− 1)r1 − 1
≤ (m− 1)(m− 1 + log2 n)− 1 (by Lemma 15)
≤ (k − 1)(k − 1 + log2 n) ≤ n/4 (by the hypothesis of the theorem),

so by using Lemma 8 we see that, T contains an (n − 2l + 1)-subsequence
which is similar to the sequence (1, . . . , 1︸ ︷︷ ︸

n−2l+1

). Therefore, B contains an

(n− 2l+1)-subsequence which is similar to the sequence (1, . . . , 1︸ ︷︷ ︸
n−2l+1

); without

loss of generality, we may assume that

B = (1, . . . , 1︸ ︷︷ ︸
n−2l+1

, x1, . . . , xt+2l).

If |xi|n ≥ 2l, since (1, . . . , 1︸ ︷︷ ︸
n−|xi|n

, xi) is an irreducible block and

(
n− 2l + 1
n− |xi|n

)
≥ n− 2l + 1 ≥ n/2 + 1 > k

(from the hypothesis of the theorem), we must have B 6∈ Bk(Cn), a contra-
diction. Hence,
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1 ≤ |xi|n ≤ 2l − 1

for i = 1, . . . , t + 2l, and so 2 ≤ |x1|n + |x2|n ≤ 4l − 2 ≤ n − 2, hence,
2 ≤ |x1 + x2|n = |x1|n + |x2|n ≤ n− 2.

If |x1 + x2|n ≥ 2l, since (1, . . . , 1︸ ︷︷ ︸
n−|x1+x2|n

, x1, x2) is an irreducible block and

(
n− 2l + 1

n− |x1 + x2|n

)
≥ n− 2l + 1 > k,

we have B 6∈ Bk(G), a contradiction. Hence, |x1|n + |x2|n = |x1 + x2|n ≤
2l − 1. Continuing the same process we finally get

2l+t∑
i=1

|xi|n =
∣∣∣ 2l+t∑

i=1

xi

∣∣∣
n
≤ 2l − 1;

but
2l+t∑
i=1

|xi|n ≥ 2l + t ≥ 2l,

a contradiction. This completes the proof.
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