
 

 

Since January 2020 Elsevier has created a COVID-19 resource centre with 

free information in English and Mandarin on the novel coronavirus COVID-

19. The COVID-19 resource centre is hosted on Elsevier Connect, the 

company's public news and information website. 

 

Elsevier hereby grants permission to make all its COVID-19-related 

research that is available on the COVID-19 resource centre - including this 

research content - immediately available in PubMed Central and other 

publicly funded repositories, such as the WHO COVID database with rights 

for unrestricted research re-use and analyses in any form or by any means 

with acknowledgement of the original source. These permissions are 

granted for free by Elsevier for as long as the COVID-19 resource centre 

remains active. 

 



Chaos, Solitons and Fractals 135 (2020) 109867 

Contents lists available at ScienceDirect 

Chaos, Solitons and Fractals 

Nonlinear Science, and Nonequilibrium and Complex Phenomena 

journal homepage: www.elsevier.com/locate/chaos 

On a comprehensive model of the novel coronavirus (COVID-19) under 

Mittag-Leffler derivative 

Mohammed S. Abdo 

a , b , ∗, Kamal Shah 

c , Hanan A. Wahash 

a , Satish K. Panchal a 

a Department of Mathematics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, (M.S), 431001, India 
b Department of Mathematics, Hodeidah University, Al-Hodeidah, Yemen 
c Department of Mathematics, University of Malakand Chakdara, Dir(L), Pakhtunkhwa, Pakistan 

a r t i c l e i n f o 

Article history: 

Received 21 April 2020 

Revised 27 April 2020 

Accepted 4 May 2020 

Available online 8 May 2020 

MSC: 

26A33 

34A08 

35R11 

Keywords: 

COVID-19 

Attangana-Baleanu derivative 

Existence and stability theory 

Adams Bashforth method 

Fixed point theorem 

a b s t r a c t 

The major purpose of the presented study is to analyze and find the solution for the model of nonlin- 

ear fractional differential equations (FDEs) describing the deadly and most parlous virus so-called coron- 

avirus (COVID-19). The mathematical model depending of fourteen nonlinear FDEs is presented and the 

corresponding numerical results are studied by applying the fractional Adams Bashforth (AB) method. 

Moreover, a recently introduced fractional nonlocal operator known as Atangana-Baleanu (AB) is applied 

in order to realize more effectively. For the current results, the fixed point theorems of Krasnoselskii and 

Banach are hired to present the existence, uniqueness as well as stability of the model. For numerical 

simulations, the behavior of the approximate solution is presented in terms of graphs through various 

fractional orders. Finally, a brief discussion on conclusion about the simulation is given to describe how 

the transmission dynamics of infection take place in society. 
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. Introduction 

One of the greatest missions given to humankind is to con-

rol the environment within which they live. However, the growth

f the human population speedily is increasing in relation to dif-

erent cultures and ways of life. Although Humanity has evolved

any species of devices and equipment to obtain a beautiful

ife. But this excessive development sometimes leads to disas-

ers in the environment. Especially, the use of nutrients, carriages,

obiles, cosmetics, electrified and petroleum equipment, etc,

aking the environment highly contaminated and infused with

iruses. 

Newly, the whole world hardship a new coronavirus com-

rehensive and it was named (COVID-19) which was claimed to

owed first in Wuhan city, China. It has been considered that the

rigin of COVID-19 is the transportation from animal to human as

umerous infected status claimed that they had been to a local
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sh and wild animal market in Wuhan on 28 November [1] . Soon,

ome investigators assured that transportation also occurs person

o other [2] . This virus dates back to 1965 when Tyrrell and Bynoe

ere identified when they passage a virus so-called B814 [3] . This

irus is found in the cultures of the organs of the human embry-

nic trachea acquired by the respiratory system of an adult [4] . 

Because infectious diseases are a major threat to humans as

ell as the country’s economy. A proper understanding of the dy-

amics of the disease plays a significant role in reducing infection

n society. 

Application of an appropriate strategy against the disease trans-

ortation is another challenge. The mathematical modeling tactic

s one of the main tools in order to handle these challenges. Many

isease models have been evolved in the existing literature which

uthorizes us to explore and dominance the prevalence of infec-

ious diseases in a better style. Most of these models rely on clas-

ical differential equations. However, in the past few years, it is

aying attention that fractional differential equations can be ap-

lied to model global phenomena with a greater grade of precision

nd its applications can be found in various fields for instance dy-

amic, biology, engineering, control theory, economics, finance and

n epidemiology. 

https://doi.org/10.1016/j.chaos.2020.109867
http://www.ScienceDirect.com
http://www.elsevier.com/locate/chaos
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chaos.2020.109867&domain=pdf
mailto:msabdo1977@gmail.com
https://doi.org/10.1016/j.chaos.2020.109867
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The Fractional calculus transacts with differentiation and inte-

gration involving fractional order, which is further outstanding and

beneficial than the ordinary integer order in the explanation of

the real-world problems, also in the modeling of real phenomena

due to a characterization of the memory and hereditary proper-

ties [5,6] , the integer-order derivative doesn’t familiarize the dy-

namics among two various points. Various types of fractional or-

der or nonlocal derivatives were proposed in the present litera-

ture to transact the reduction of a traditional derivative. For in-

stance, based on power-law, Riemann-Liouville introduced the idea

of fractional derivative. After that Caputo-Fabrizio in [7] have pro-

posed a new fractional derivative utilizing the exponential kernel.

This derivative has a few troubles related to the locality of the

kernel. Newly, to overcome Caputo-Fabrizio’s problem, Atangana

and Baleanu (AB) in [8] have proposed a new modified version

of a fractional derivative with the aid of popularized Mittag-Leffler

function (MLF) as nonsingular kernel and nonlocal. Since the gen-

eralized MLF is used as the kernel and it’s guaranteed no singu-

larity, the AB fractional derivative supply a stellar description of

memory [9–11] . 

Because of mathematical models, we can know the rate of

change in the COVID-19 how the disease can affect people at risk

and quarantined. The area dedicated to the study of the biologi-

cal model of infectious diseases is a warm area for recent research.

Numerous studies on mathematical models were presented to the

study of stability theory and the results of existence and improve-

ment of biological models, see [12–24] . For example, Chen, et al.,

in [12] presented a big mathematical model for simulating the

phase-based transmissibility of a novel coronavirus. Hussain et al.,

in [13] showed the existence and uniqueness of results for the frac-

tional model involving fractional derivative in Atangana-Baleanu

sense using Schaefer’s and Banach’s fixed point theorems. More-

over, they applied the Shehu transform and Picard method to ex-

plore the iterative solutions and its stability for the proposed frac-

tional model. A conceptual model for the COVID-19 disease, which

effectively catches the time line of this virus outbreak was pro-

posed by Lin et. al. in [14] . In [16] A mathematical modeling and

dynamics of a novel (2019-nCoV) are formulated under a fractional

model with considering the available infection cases within 7 days.

A mathematical model considered by Shaikh et al. [15] to study es-

timate of the effectiveness of prophylactic measures, prophesying

future outbreaks and possibility control strategies of COVID-19. 

Due to the success of this operator in modeling infectious dis-

eases, and motivated by the above useful applications of some

fractional operators in epidemic mathematical models, in this pa-

per we are studying the dynamics of the novel coronavirus model

suggested by Chen et.al., [12] in the form of the system of the

nonlinear differential equations involving the AB Caputo fractional

derivative: ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

ABC D 

∝ 
0 + S B (t) = �B − m B S B − βB S B I B , 

ABC D 

∝ 
0 + E B (t) = βB S B I B − w B E B − m B E B , 

ABC D 

∝ 
0 + I B (t) = m B E B − ( γB + m B ) I B , 

ABC D 

∝ 
0 + R B (t) = γB I B − m B R B , 

ABC D 

∝ 
0 + S H (t) = �H − m H S H − βBH S H I B − βH S H I H , 

ABC D 

∝ 
0 + E H (t) = βBH S H I B + βH S H I H − w H E H − m H E H , 

ABC D 

∝ 
0 + I H (t) = w H E H − ( γH + m H ) I H , 

ABC D 

∝ 
0 + R H (t) = γH I H − m H R H , 

ABC D 

∝ 
0 + S ρ = �ρ − m ρS ρ − βρS ρ (I ρ + k A ρ ) − βw 

S ρW, 
ABC D 

∝ 
0 + E ρ = βρS ρ (I ρ + k A ρ ) + βw 

S ρW 

−
(
1 − δρ

)
w ρE ρ − δρw 

′ 
ρE ρ − m ρE ρ, 

ABC D 

∝ 
0 + I ρ = 

(
1 − δρ

)
w ρE ρ −

(
γρ + m ρ

)
I ρ, 

ABC D 

∝ 
0 + A ρ = δρw 

′ 
ρE ρ −

(
γ

′ 
ρ + m ρ

)
A ρ, 

ABC D 

∝ 
0 + R ρ = γρI ρ + γ

′ 
ρA ρ − m ρR ρ, 

ABC D 

∝ 
0 + W = a W 

I H 
N + μρI ρ + μ

′ 
ρA ρ − εW 

(1)
H F
ith the initial conditions 

 

 

 

 

 

 

 

 

 

 

 

S B (0) = S B 0 ≥ 0 , E B (0) = E B 0 ≥ 0 , I B (0) = I B 0 ≥ 0 , 

R B (0) = R B 0 ≥ 0 , 

S H (0) = S H 0 ≥ 0 , E H (0) = E H 0 ≥ 0 , I H (0) = I H 0 ≥ 0 , 

R H (0) = R H 0 ≥ 0 , 

S ρ (0) = S ρ0 
≥ 0 , E ρ (0) = E ρ0 

≥ 0 , I ρ (0) = I ρ0 
≥ 0 , 

A ρ(0) = A ρ0 
≥ 0 , R ρ (0) = R ρ0 

≥ 0 , W(0) = W 

0 
≥ 0 , 

(2)

here ABC D 

∝ 
0 + denotes the Atangana-Baleanu-Caputo fractional

erivative of order ∝ . The model is based on the following facts: 

1. The bats were split into four closets: S B is a susceptible class

of bats, E B is an exposed class of bats, I B is an infected class of

bats, and R B is a removed class of bats. 

2. The hosts were split into four classes: S H is a susceptible class

of hosts, E H is an exposed class of hosts, I H is an infected class

of hosts, and R H is a removed class of hosts. 

3. The people were split into six classes: S ρ is a susceptible class

of people, E ρ is an exposed class of people, I ρ is an infected

class of people, A ρ is asymptomatic infected people, R ρ is a

population of removed people due to death, and W is the pop-

ulation of the virus in reservoir various. 

S B 0 , E B 0 , I B 0 , R B 0 
, S H 0 , E H 0 , I H 0 , R H 0 

, S ρ0 
, E ρ0 

, I ρ0 
, A ρ0 

, R ρ0 
,

nd W 

0 
are the initial values corresponding to the three categories.

The parameters of the model (1) are described as follows: 

�B denote the birth rate of bats, m B is the death rate of bats,

nd βB is the transmission rate from I B to S B . The parameters
1 

w B 
, 1 

γB 
, 1 

w 

′ 
ρ

, and 

1 

γ
′ 
ρ

are the incubation period of bats, the infec-

ious period of bats, the latent period of people, and the infectious

eriod of asymptomatic infection of people, respectively. �H is Re-

ruitment from total number of hosts and m H The death rate of

osts. The symbols βH and βBH represent the transmission rate

rom I H to S H and from I B to S H , respectively. �ρ and m ρ are

he birth and death rate parameter of people, respectively. In the

roposed model βρ and κ are define the transmission rate from I p 
o S p and multiple of the transmissibility of A p to I p , respectively.

ω and βρ means the transmission rate from W to S p and from I p 
o S p , respectively. δρ is the proportion of asymptomatic infection

ate of people, γ ρ is the infectious period of symptomatic infec-

ion of people and a is the retail purchases rate of the hosts in the

arket. The shedding coefficients from I ρ to W and the shedding

oefficients from A ρ to W are denoted by μρ and μ
′ 
ρ, respectively.

inally, 1 
ε is the lifetime of the virus in W and N H is the total num-

er of hosts. 

The major aim of the paper is to demonstrate the existence,

niqueness and Ulam stability of solution for the model (1) - (2) by

sing some fixed point techniques. Moreover, the numerical simu-

ations via the fractional version of Adams Bashfully technique to

pproximate the ABC fractional operator are performed, which it is

hown that the model displays rich dynamical behaviors through

raphical representation of numerical solutions. 

This paper is coordinated as follows: Section 1 transacts

ith the introduction which contains a survey of the litera-

ure. Section 2 consists of some foundation preliminaries re-

ated the fractional calculus and nonlinear analysis. The existence

nd Ulam stability results on a proposed model are obtained in

ections 3 and 4 . The numerical solution and numerical simula-

ions of the model at hand are presented in Section 5 . For the

umerical simulation, we use a powerful two step numerical tool

alled fractional AB method. The concerned numerical method is

ore powerful than usual Euler method as well Taylor method.

ecause the mentioned method is faster convergent and stable as

ompared to Taylor and Euler method which are slowly convergent.

or detail about this method, see [32–36] . 
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m  

m⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
w⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
W{
w⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩
. Preliminaries 

For short, we will use the following notations 

 B = (S B , E B , I B , R B ) , O H = (S H , I H , R H ) , 

 ρ = (S ρ, E ρ, I ρ, A ρ, R ρ, W) . 

= (O B , O H , O ρ ) = 

(
S B , E B , I B , R , S H , E H , I H , R H , S ρ, E ρ, I ρ, 

A ρ, R ρ, W 

)
or the next analysis, we define Banach space for onward analysis.

et 0 ≤ t ≤ T < ∞ , we define the Banach space by using J = [0 , T ]

s � = C(J, R 14 ) under the supremum norm given by 

 


‖ 

= sup 

t∈ J 

{ 

| 
(t) | : 
 ∈ � 

} 

here 

 

O B (t) | = | S B (t) | + | E B (t) | + | I B (t) | + | R B (t) | , 

 

O H (t) | = | S H (t) | + | E H (t) | + | I H (t) | + | R H (t) | , 

 

O ρ (t) | = | S ρ (t) | + | E ρ (t) | + | I ρ (t) | + | A ρ (t) | + | R ρ (t) | + | W(t) | , 
nd S θ , E θ , I θ , A θ , R θ , M ∈ C [ 0 , T ] , θ ∈ { B, H, ρ}. 

efinition 2.1. [8] Let ∝ ∈ (0, 1] and σ ∈ H 

1 (0, T ). Then the left-

ided ABC fractional derivative with the lower limit zero of order

 for a function σ is defined by 

BC 
D 

∝ 
0 + σ (t) = 

N (∝ ) 

1 − ∝ 

∫ t 

0 

E ∝ 
( − ∝ 

∝ −1 

(t − θ ) ∝ 
)
σ ′ (θ ) dθ, t > 0 , 

here N (∝ ) is the normalization function which is defined as

 (∝ ) = 

∝ 
2 −∝ , 0 < ∝≤ 1 and satisfies the result N (0) = N (1) = 1 .

urther E ∝ is called the Mittag-Leffler function defined by the se-

ies 

 ∝ ( z ) = 

∞ ∑ 

k =0 

z k 


( ∝ k + 1 ) 
, (3) 

ere Re ( ∝ ) > 0 and 
(.) is a gamma function. 

efinition 2.2. [8] Let ∝ ∈ (0, 1] and σ ∈ L 1 (0, T ). Then the left-

ided ABC fractional integral with the lower limit zero of order ∝
or a function σ is defined by 

BC 
I 
∝ 
0 + σ (t) = 

1 − ∝ 

N (∝ ) 
σ (t) + 

∝ 

N (∝ ) 

1 


(∝ ) 

∫ t 

0 

(t −θ ) ∝ −1 σ (θ ) dθ, t > 0 .

efinition 2.3. [8] The Laplace transform of ABC fractional derivative

f a function σ ( t ) is given by 

 

[
ABC 

D 

∝ 
0 + σ (t) 

]
= 

N (∝ ) 

s ∝ ( 1 − ∝ ) + ∝ 

[
s ∝ L [ σ (t) ] − s ∝−1 σ (0) 

]
. 

emma 2.3.1. [8] The solution of the proposed problem for ∝ ∈ (0,

] 

BC 
D 

∝ 
0 + σ (t) = ω(t) , 

σ (0) = σ0 (4) 

s given by 

(t) = σ0 + 

1 − ∝ 

N (∝ ) 
ω(t) + 

∝ 

N (∝ ) 

1 


(∝ ) 

∫ t 

0 

(t − θ ) ∝−1 ω(θ ) dθ . 

efinition 2.4. [25] Let � be a Banach space. The operator �:

 → � is a Lipschitzian if there exists a constant κ > 0 such that 

 

�
1 − �
2 ‖ 

≤ κ‖ 


1 − 
2 ‖ 

, for all 
1 , 
2 ∈ � , 
ere κ is the Lipschitz constant for �. If κ < 1 we say that � is a

ontraction. 

heorem 2.5. [25] Let � be a Banach space If � : � −→ � is a con-

raction mapping. Then there exists a unique fixed point of �. 

heorem 2.6. [25] (Let M be a closed, convex, non-empty subset of

 Banach space � . Suppose that E and F map M into � and that 

i) E u + F v ∈ M for all 
1 , 
2 ∈ M ; 

ii) E is compact and continuous; 

ii) F is a contraction mapping. Then, there exists 
 ∈ M such that

E 
 + F 
 = 
 . 

. Existence of solutions for the proposed model (1) - (2) 

Now, we debate the existence and uniqueness results of the

odel (1) - (2) by utilizing the fixed-point technique. Let us refor-

ulated model (1) in the subsequent appropriate form 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ABC D 

∝ 
0 + S B (t) = F 1 (t, O B , O H , O ρ ) , 

ABC D 

∝ 
0 + E B (t) = F 2 (t, O B , O H , O ρ ) , 

ABC D 

∝ 
0 + I B (t) = F 3 (t, O B , O H , O ρ ) , 

ABC D 

∝ 
0 + R B (t) = F 4 (t, O B , O H , O ρ ) , 

ABC D 

∝ 
0 + S H (t) = F 5 (t, O B , O H , O ρ ) , 

ABC D 

∝ 
0 + E H (t) = F 6 (t, O B , O H , O ρ ) , 

ABC D 

∝ 
0 + I H (t) = F 7 (t, O B , O H , O ρ ) , 

ABC D 

∝ 
0 + R H (t) = F 8 (t, O B , O H , O ρ ) , 

ABC D 

∝ 
0 + S ρ (t) = F 9 (t, O B , O H , O ρ ) , 

ABC D 

∝ 
0 + E ρ (t) = F 10 (t, O B , O H , O ρ ) , 

ABC D 

∝ 
0 + I ρ (t) = F 11 (t, O B , O H , O ρ ) , 

ABC D 

∝ 
0 + A ρ (t) = F 12 (t, O B , O H , O ρ ) , 

ABC D 

∝ 
0 + R ρ (t) = F 13 (t, O B , O H , O ρ ) , 

ABC D 

∝ 
0 + W(t) = F 14 (t, O B , O H , O ρ ) , 

here 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

F 1 (t, O B , O H , O ρ ) = �B − m B S B − βB S B I B , 
F 2 (t, O B , O H , O ρ ) = βB S B I B − w B E B − m B E B , 
F 3 (t, O B , O H , O ρ ) = m B E B − ( γB + m B ) I B , 
F 4 (t, O B , O H , O ρ ) = γB I B − m B R B , 

F 5 (t, O B , O H , O ρ ) = �H − m H S H − βBH S H I B − βH S H I H , 
F 6 (t, O B , O H , O ρ ) = βBH S H I B + βH S H I H − w H E H − m H E H , 
F 7 (t, O B , O H , O ρ ) = w H E H − ( γH + m H ) I H , 
F 8 (t, O B , O H , O ρ ) = γH I H − m H R H , 

F 9 (t, O B , O H , O ρ ) = �ρ − m ρS ρ − βρS ρ (I ρ + k A ρ ) 
−βw 

S ρW, 

F 10 (t, O B , O H , O ρ ) = βρS ρ (I ρ + k A ρ ) + βw 

S ρW 

−
(
1 − δρ

)
w ρE ρ − δρw 

′ 
ρE ρ − m ρE ρ, 

F 11 (t, O B , O H , O ρ ) = 

(
1 − δρ

)
w ρE ρ −

(
γρ + m ρ

)
I ρ, 

F 12 (t, O B , O H , O ρ ) = δρw 

′ 
ρE ρ −

(
γ

′ 
ρ + m ρ

)
A ρ, 

F 13 (t, O B , O H , O ρ ) = γρI ρ + γ
′ 
ρA ρ − m ρR ρ, 

F 14 (t, O B , O H , O ρ ) = a W 

I H 
N H + μρI ρ + μ

′ 
ρA ρ − εW 

(5) 

e take our system as by using (1) 

ABC D 

∝ 
0 + 
(t) = H(t , 
(t )) , 


(0) = 
0 ≥ 0 , 
(6) 

here 

 

 

 

 

 

 

 

 

 

 

 

 

 


(t) := 

(
O B , O H , O ρ

)T = ( S B , E B , I B , R B , S H , E H , I H , 
R H , S ρ, E ρ, I ρ, A ρ, R ρ, W 

)T 
, 


0 := 

(
O B 0 , O H 0 , O ρ0 

)T = 

(
S B 0 , E B 0 , I B 0 , R B 0 , S H 0 , E H 0 , 

I H 0 , R H 0 , S ρ0 
, E ρ0 

, I ρ0 
, A ρ0 

, R ρ0 
, W 0 

)T 
, 

H(t, 
(t) = 

(
F � (t, O B , O H , O ρ ) 

)T 
, � = 1 , 2 , 3 , . . . , 14 , 

(7) 
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�  
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�

 

L

‖

D  
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solution. �
Here the symbol A 

T denotes the transpose operation. Utilizing

Lemma 2.3.1 , the model (6) can be turned to the fractional inte-

gral equation in the sense of AB fractional integral as follows 


(t) = 
0 + 

1 − ∝ 

N (∝ ) 
H(t , 
(t )) 

+ 

∝ 

N (∝ ) 

1 


(∝ ) 

∫ t 

0 

(t − ζ ) ∝−1 H(ζ , 
(ζ )) dζ . (8)

Expressing some growth condition and Lipschitzian assumption for

existence uniqueness as: 

(Hypothesis 1) There exists two constants μH 

, ηH 

such that 

| H(t, 
(t)) | ≤ μH 

| 
| + ηH 

, t ∈ [0 , T ] . 

(Hypothesis 2) There exists constants L H 

> 0 such that 

| H(t, 
1 ) − H(t, 
2 ) | ≤ L H 

| 
1 − 
2 | ;
for each 
 ∈ � and t ∈ [0 , T ] . 

Theorem 3.1. Let the hypotheses 1,2 hold. The Integral equation

(8) which equivalent of the considered model (1) - (2) has at least one

solution if 1 −∝ 
N (∝ ) L H 

, �1 < 1 where 

�1 := 

[ 
1 − ∝ 

N (∝ ) 
+ 

T ∝ 

N (∝ )
(∝ ) 

] 
μH 

< 1 . (9)

Theorem 3.2. 

Proof. Consider B λ = { 
 ∈ � : ‖ 
‖ ≤ λ} is closed convex set with

λ ≥ �2 
1 −�1 

, where 

�2 := | 
0 | + 

[ 
1 − ∝ 

N (∝ ) 
+ 

T ∝ 

N (∝ )
(∝ ) 

] 
ηH 

. (10)

We define the operators �1 and �2 as 

�1 
(t) = 
0 + 

1 − ∝ 

N (∝ ) 
H(t , 
(t )) , 

�2 
(t) = 

∝ 

N (∝ ) 

1 


(∝ ) 

∫ t 

0 

(t − ζ ) ∝−1 H(ζ , 
(ζ )) dζ , 

where � = �1 + �2 . Now, we offer the proof in several steps as: 

Step1: �1 
1 + �2 
2 ∈ B λ, for 
1 , 
2 ∈ B λ. 

Indeed, From (Hypothesis 1) and equations (9) , (10) , we obtain 

‖ 

�1 
1 + �2 
2 ‖ 

≤ max 
t∈ [0 ,T ] 

{ 

| 
0 | + 

1 − ∝ 

N (∝ ) 
| H(t, 
(t)) | 

+ 

∝ 

N (∝ ) 

1 


(∝ ) 

∫ t 

0 

(t −ζ ) ∝ −1 | H(ζ , 
(ζ )) | dζ

}

≤
{ 

| 
0 | + 

1 − ∝ 

N (∝ ) 
[ μH 

‖ 


‖ 

+ ηH 

] 

+ 

∝ 

N (∝ ) 

1 


(∝ ) 

∫ t 

0 

(t −ζ ) ∝ −1 [ μH 

‖ 


‖ 

+ ηH 

] dζ

}

= | 
0 | + 

[ 
1 − ∝ 

N (∝ ) 
+ 

T ∝ 

N (∝ )
(∝ ) 

] 
ηH 

+ 

[ 
1 − ∝ 

N (∝ ) 
+ 

T ∝ 

N (∝ )
(∝ ) 

] 
μH 

λ

= �2 + �1 λ ≤ λ. 

This confirms that �1 
1 + �2 
2 ∈ B λ. 

Step1: we show that �1 is contraction. 

Let 
, 
∗ ∈ B λ. By (Hypothesis 2), we have 

‖ 

�1 
 − �1 

∗‖ 

= max 
t∈ [0 ,T ] 

1 − ∝ 

N (∝ ) 
| H(t, 
(t)) − H(t, 
∗(t)) | 

≤ 1 − ∝ 

N (∝ ) 
L H 

max 
t∈ [0 ,T ] 

| 
(t) − 
∗(t) | 
≤ 1 − ∝ 

N (∝ ) 
L H 

‖ 


 − 
∗‖ 

. 

s 1 −∝ 
N (∝ ) L H 

< 1 , �1 is contraction mapping. 

Step 3: We show that �2 is relatively compact. 

To prove that, we show that �2 is continuous, uniform bounded,

nd equicontinuous. 

Since 
( t ) is continuous, then �2 
( t ) is continuous. Next, let 
 ∈
 λ, we have 

 

�2 
‖ 

≤ max 
t∈ [0 ,T ] 

∝ 

N (∝ ) 

1 


(∝ ) 

∫ t 

0 

(t − ζ ) ∝−1 | H(ζ , 
(ζ )) | dζ

≤ ∝ 

N (∝ )
(∝ ) 

∫ t 

0 

(t − ζ ) ∝−1 

[
μH 

max 
t∈ [0 ,T ] 

| 
| + ηH 

]
dζ

≤ ∝ 

N (∝ )
(∝ ) 

∫ t 

0 

(t − ζ ) ∝−1 [ μH 

‖ 


‖ 

+ ηH 

] dζ

≤ T ∝ 

N (∝ )
(∝ ) 
[ μH 

λ + ηH 

] . 

ence �2 is uniformly bounded on B λ. Finally, we show that �2 

quicontinuous. Let 
 ∈ B λ and t 1 , t 2 ∈ [0 , T ] such that t 1 < t 2 .

hen 

 

�2 
(t 2 ) − �2 
(t 1 ) ‖ 

≤ ∝ 

N (∝ ) 

1 


(∝ ) 

∫ t 2 

t 1 

(t 2 − ζ ) ∝−1 | H(ζ , 
(ζ )) | dζ

+ 

∝ 

N (∝ ) 

1 


(∝ ) 

∫ t 1 

0 

(t 1 − ζ ) ∝−1 − (t 2 − ζ ) ∝−1 | H(ζ , 
(ζ )) | dζ

≤ [ μH 

λ + ηH 

] 

N (∝ )
(∝ ) 
[ (t 2 − t 1 ) 

∝ + (t 1 
∝ − t 2 

∝ ) + (t 2 − t 1 ) 
∝ ] 

= 

2 [ μH 

λ + ηH 

] 

N (∝ )
(∝ ) 
[ (t 2 − t 1 ) 

∝ ] . 

s t 1 → t 2 the right-hand side of the above inequality tends to zero.

onsequently, by Arzelá–Ascoli theorem, �2 is relatively compact and

o completely continuous. Thus by Theorem 2.6 , the integral equation

8) has at least one solution and consequently the model under con-

ideration has at least one solution. �

heorem 3.3. Under Hypothesis 2, the integral equation (8) has

nique solution which yields that the model (1) - (2) has unique result

f 

3 := 

(
1 − ∝ 

N (∝ ) 
+ 

T ∝ 

N (∝ )
(∝ ) 

)
L H 

< 1 . (11)

roof. Let the operator �: � → � defined by 


(t) = 
0 + 

1 − ∝ 

N (∝ ) 
H(t , 
(t )) 

+ 

∝ 

N (∝ ) 

1 


(∝ ) 

∫ t 

0 

(t − ζ ) ∝−1 H(ζ , 
(ζ )) dζ . (12)

et 
 and 
∗ in � and t ∈ [0 , T ] . Then 

 

�
(t) − �
∗(t) ‖ 

≤ max 
t∈ [0 ,T ] 

1 − ∝ 

N (∝ ) 
| H(t, 
(t)) − H(t, 
∗(t)) | 

+ max 
t∈ [0 ,T ] 

∝ 

N (∝ ) 

1 


(∝ ) 

∫ t 

0 

(t − ζ ) ∝−1 | H(ζ , 
(ζ )) 

−H(ζ , 
∗(ζ )) | dζ

≤
(

1 − ∝ 

N (∝ ) 
+ 

T ∝ 

N (∝ )
(∝ ) 

)
L H 

‖ 


 − 
∗‖ 

. 

ue to (11) , � is contraction. Therefore the integral equation

8) has unique solution. Hence our model (1) - (2) has unique
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. Ulam-Hyers stability 

The notion of Ulam stability was initiated by Ulam [26,27] .

hen aforesaid stability has been scrutinized for classical fractional

erivatives in many of the research articles, we refer to some of

hem like [28–31] . Additionally, since stability is a prerequisite in

espect of approximate solution, so we endeavor on Ulam type sta-

ility for the model (1) via using nonlinear functional analysis. 

efinition 4.1. System (1) - (2) is U-H stable if there exists λ > 0

ith the following property: For some ε > 0, and each 

˜ 
 ∈ � , if ∣∣ABC D 

∝ 
0 + ̃

 
(t) − H(t , ̃  
(t )) 
∣∣ ≤ ε, (13) 

hen there exists 
 ∈ � satisfying the model (1) with the following

nitial condition 

(0) = 

˜ 
(0) , (14) 

uch that ˜ 
 − 

∥∥ ≤ λε. 

here 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


(t) := 

(˜ O B , ̃  O H , ̃  O ρ

)T = 

(˜ S B , ̃  E B , ̃  I B , ̃  R B , ̃  S H , ̃  E H , ̃  I H , ̃  R H , ˜ S ρ, ̃  E ρ, ̃  I ρ, ̃  A ρ, ̃  R ρ, ˜ W 

)T 
, 


0 := 

(˜ O B 0 , ̃
 O H 0 , ̃

 O ρ0 

)T = 

(˜ S B 0 , ̃  E B 0 , ̃  I B 0 , ̃  R B 0 , ̃
 S H 0 , ̃  E H 0 , ̃  I H 0 , ˜ R H 0 , ̃

 S ρ0 
, ̃  E ρ0 

, ̃  I ρ0 
, ̃  A ρ0 

, ̃  R ρ0 
, ̃  W 0 

)T 
, 

H(t, ̃  
(t) = 

(
F � (t, ̃  O B , ̃  O H , ̃  O ρ ) 

)T 
, � = 1 , 2 , 3 , . . . , 14 , 

ε = max (ε1 , ε2 , ε3 , . . . ., ε14 ) 
T , λ = max (λ1 , λ2 , λ3 , . . . ., λ14 ) 

T , 

emark 1. Consider a small perturbation g ∈ C [0, T ] such that

(0) = 0 comply with the following properties. 

1. | g ( t )| ≤ ε, for t ∈ [0 , T ] and ε1 > 0. 

2. For t ∈ [0 , T ] we have the following model 

ABC 
D 

∝ 
0 + ̃

 
(t) = H(t , ̃  
(t )) + g(t) , 

where g(t) = ( g 1 (t) , g 2 (t) , g 3 (t ) , . . . ., g 14 (t ) ) 
T 
. 

emma 4.1.1. The solution of the perturbed problem 

ABC D 

∝ 
0 + ̃

 
(t) = H(t , ̃  
(t )) + g(t) , ˜ 
(0) = 

˜ 
0 

(15) 

atisfies the given relation ˜ 
g (t) − ˜ 
(t) 
∣∣ ≤ κε, 

here ˜ 
g (t) is a solution of (15) , ˜ 
(t) is satisfies ( 13 -a), and κ :=

(∝ )(1 −∝ )+ T ∝ 

N (∝ )
(∝ ) 

)
. 

roof. Thanks to Remark 1 (2), and Lemma 2.3.1 , the solution of

15) is given by 

˜ 

g (t) = 

⎧ ⎨ 

⎩ 

˜ 
0 + 

1 −∝ 
N (∝ ) H(t , ̃  
(t )) 

+ 

∝ 
N (∝ ) 

1 

(∝ ) 

∫ t 
0 (t − ζ ) ∝−1 H(ζ , ̃  
(ζ )) dζ

+ 

1 −∝ 
N (∝ ) g(t) + 

∝ 
N (∝ ) 

1 

(∝ ) 

∫ t 
0 (t − ζ ) ∝−1 g(ζ ) dζ . 

lso, we have 

˜ (t) = 

˜ 
0 + 

1 − ∝ 

N (∝ ) 
H(t , ̃  
(t )) 

+ 

∝ 

N (∝ ) 

1 


(∝ ) 

∫ t 

0 

(t − ζ ) ∝−1 H(ζ , ̃  
(ζ )) dζ . 

t follows from Remark 1 (1) that ˜ 
g (t) − ˜ 
(t) 
∣∣

≤ 1 − ∝ 

N (∝ ) 
| g(t) | + 

∝ 

N (∝ ) 

1 


(∝ ) 

∫ t 

(t − ζ ) ∝−1 | g(ζ ) | dζ

0 
≤
(


(∝ )(1 − ∝ ) + T ∝ 

N (∝ )
(∝ ) 

)
ε

= κε. 

�

heorem 4.2. Under the presumptions of Theorem 3.3 . Then the

odel (1) - (2) will be U-H stable in � . 

roof. Let ˜ 
 ∈ � be the solution of the inequality ( 13 -a) and the

unction 
 ∈ � is a unique solution of equation ( 1 -a) with the

ondition 

(0) = 

˜ 
(0) . (16) 

hat is 

(t) = 
0 + 

1 − ∝ 

N (∝ ) 
H(t , 
(t )) 

+ 

∝ 

N (∝ ) 

1 


(∝ ) 

∫ t 

0 

(t − ζ ) ∝−1 H(ζ , 
(ζ )) dζ (17) 

ue to (16) , 
0 = 

˜ 
0 , the equation (17) becomes 

(t) = 

˜ 
0 + 

1 − ∝ 

N (∝ ) 
H(t , 
(t )) 

+ 

∝ 

N (∝ ) 

1 


(∝ ) 

∫ t 

0 

(t − ζ ) ∝−1 H(ζ , 
(ζ )) dζ . 

Thus by Hypothesis 1 and Lemma 4.1.1 , we obtain ˜ 
(t) − 
(t) 
∣∣ ≤

∣∣˜ 
(t) − ˜ 
g (t) 
∣∣ + 

∣∣˜ 
g (t) − 
(t) 
∣∣

≤ κε + 

1 − ∝ 

N (∝ ) 

∣∣H(t, ̃  
(t)) − H(t, 
(t)) 
∣∣

+ 

∝ 

N (∝ ) 

1 


(∝ ) ∫ t 

0 

(t − ζ ) ∝−1 
∣∣H(t, ̃  
(t)) − H(t, 
(t)) 

∣∣dζ + κε

≤ 2 κε + 

(
1 − ∝ 

N (∝ ) 
+ 

T ∝ 

N (∝ )
(∝ ) 

)
L H 

∥∥˜ 
 − 

∥∥. 

hich implies 

˜ 
 − 

∥∥ ≤ 2 κε

1 − �3 

, 

ue to �3 < 1. For λ = 

2 κ
1 −�3 

, we get 
∥∥˜ 
 − 


∥∥ ≤ λε. 

Hence the model (1) - (2) is U-H stable. �

. Numerical approach 

In this part, we give approximation solutions of the ABC frac-

ional model (1) - (2) . Then the numerical simulations are acquired

ia the suggested scheme. To this aim, we employ the modified

ractional version for Adams Bashforth technique to approximate

he fractional integral in the sense AB. 

Using the initial conditions and fractional integral operator, we

onvert model (1) into the integral equations 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S B (t) − S B (0) = 

ABC I ∝ 0 + P 1 (t, S B (t)) , 
E B (t) − E B (0) = 

ABC I ∝ 0 + P 2 (t, E B (t)) , 
I B (t) − I B (0) = 

ABC I ∝ 0 + P 3 (t, I B (t)) , 
R B (t) − R B (0) = 

ABC I ∝ 0 + P 4 (t, R B (t)) , 
S H (t) − S H (0) = 

ABC I ∝ 0 + P 5 (t, S H (t)) , 
E H (t) − E H (0) = 

ABC I ∝ 0 + P 6 (t, E H (t)) , 
I H (t) − I H (0) = 

ABC I ∝ 0 + P 7 (t, I H (t)) , 
R H (t) − R H (0) = 

ABC I ∝ 0 + P 8 (t, R H (t)) , 
S ρ (t) − S ρ (0) = 

ABC I ∝ 0 + P 9 (t, S ρ (t)) , 
E ρ (t) − E ρ (0) = 

ABC I ∝ 0 + P 10 (t, E ρ (t)) , 
I ρ (t) − I ρ (0) = 

ABC I ∝ 0 + P 11 (t, I ρ (t)) , 
A ρ(t) − A ρ(0) = 

ABC I ∝ 0 + P 12 (t, A ρ (t)) , 
R ρ (t) − R ρ (0) = 

ABC I ∝ 0 + P 13 (t, R ρ (t)) , 
W(t) − W(0) = 

ABC I ∝ + P 14 (t, W(t)) , 

(18) 
0 
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⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

S B (t) − S B (0) = 

1 −∝ 
N (∝ ) P 1 (t, S B (t)) 

+ 

∝ 
N (∝ ) 

1 

(∝ ) 

∫ t 
0 (t − ζ ) ∝−1 P 1 (ζ , S B (ζ )) dζ , 

E B (t) − E B (0) = 

1 −∝ 
N (∝ ) P 2 (t, E B (t)) 

+ 

∝ 
N (∝ ) 

1 

(∝ ) 

∫ t 
0 (t − ζ ) ∝−1 P 2 (ζ , E B (ζ )) dζ , 

I B (t) − I B (0) = 

1 −∝ 
N (∝ ) P 3 (t, I B (t)) 

+ 

∝ 
N (∝ ) 

1 

(∝ ) 

∫ t 
0 (t − ζ ) ∝−1 P 3 (ζ , I B (ζ )) dζ , 

R B (t) − R B (0) = 

1 −∝ 
N (∝ ) P 4 (t, R B (t)) 

+ 

∝ 
N (∝ ) 

1 

(∝ ) 

∫ t 
0 (t − ζ ) ∝−1 P 4 (ζ , R B (ζ )) dζ , 

S H (t) − S H (0) = 

1 −∝ 
N (∝ ) P 5 (t, S H (t)) 

+ 

∝ 
N (∝ ) 

1 

(∝ ) 

∫ t 
0 (t − ζ ) ∝−1 P 5 (ζ , S H (ζ )) dζ , 

E H (t) − E H (0) = 

1 −∝ 
N (∝ ) P 6 (t, E H (t)) 

+ 

∝ 
N (∝ ) 

1 

(∝ ) 

∫ t 
0 (t − ζ ) ∝−1 P 6 (ζ , E H (ζ )) dζ , 

I H (t) − I H (0) = 

1 −∝ 
N (∝ ) P 7 (t, I H (t)) 

+ 

∝ 
N (∝ ) 

1 

(∝ ) 

∫ t 
0 (t − ζ ) ∝−1 P 7 (ζ , I H (ζ )) dζ , 

R H (t) − R H (0) = 

1 −∝ 
N (∝ ) P 8 (t, R H (t)) 

+ 

∝ 
N (∝ ) 

1 

(∝ ) 

∫ t 
0 (t − ζ ) ∝−1 P 8 (ζ , R H (ζ )) dζ , 

S ρ (t) − S ρ (0) = 

1 −∝ 
N (∝ ) P 9 (t, S ρ (t)) 

+ 

∝ 
N (∝ ) 

1 

(∝ ) 

∫ t 
0 (t − ζ ) ∝−1 P 9 (ζ , S ρ (ζ )) dζ , 

E ρ (t) − E ρ (0) = 

1 −∝ 
N (∝ ) P 10 (t, E ρ (t)) 

+ 

∝ 
N (∝ ) 

1 

(∝ ) 

∫ t 
0 (t − ζ ) ∝−1 P 10 (ζ , E ρ (ζ )) dζ , 

I ρ (t) − I ρ (0) = 

1 −∝ 
N (∝ ) P 11 (t, I ρ (t)) 

+ 

∝ 
N (∝ ) 

1 

(∝ ) 

∫ t 
0 (t − ζ ) ∝−1 P 11 (ζ , I ρ (ζ )) dζ , 

A ρ(t) − A ρ(0) = 

1 −∝ 
N (∝ ) P 12 (t, A ρ (t)) 

+ 

∝ 
N (∝ ) 

1 

(∝ ) 

∫ t 
0 (t − ζ ) ∝−1 P 12 (ζ , A ρ (ζ )) dζ , 

R ρ (t) − R ρ (0) = 

1 −∝ 
N (∝ ) P 13 (t, R ρ (t)) 

+ 

∝ 
N (∝ ) 

1 

(∝ ) 

∫ t 
0 (t − ζ ) ∝−1 P 13 (ζ , R ρ (ζ )) dζ , 

W(t) − W(0) = 

1 −∝ 
N (∝ ) P 14 (t, W(t)) 

+ 

∝ 
N (∝ ) 

1 

(∝ ) 

∫ t 
0 (t − ζ ) ∝−1 P 14 (ζ , W(ζ )) dζ . 

(19)

To procure an iterative scheme, we go ahead with the first equa-

tion of the model (19) as follows: 

S B (t) − S B (0) = 

1 − ∝ 

N (∝ ) 
P 1 (t , S B (t )) 

+ 

∝ 

N (∝ ) 

1 


(∝ ) 

∫ t 

0 

(t − ζ ) ∝−1 P 1 (ζ , S B (ζ )) dζ , 

Set t = t r+1 , for r = 0 , 1 , 2 , . . . , it follows that 

S B (t r+1 ) − S B (0) = 

1 − ∝ 

N (∝ ) 
P 1 (t r , S B (t r )) 

+ 

∝ 

N (∝ ) 

1 


(∝ ) 

∫ t r+1 

0 

(t r+1 −ζ ) ∝−1 P 1 (ζ , S B (ζ )) dζ

= 

1 − ∝ 

N (∝ ) 
P 1 (t r , S B (t r )) 

+ 

∝ 

N (∝ ) 

1 


(∝ ) 
r ∑ 

� =0 

∫ t � +1 

t � 

(t r+1 − ζ ) ∝−1 P 1 (ζ , S B (ζ )) dζ . (20

Now, we approximate the function P 1 (ζ , S B ) on the interval

[ t � , t � +1 ] through the interpolation polynomial as follows 

P 1 (ζ , S B (ζ )) ∼= 

P 1 (t � , S B (t � )) 

h 

(t −t � −1 ) + 

P 1 (t � −1 , S B (t � −1 )) 

h 

(t − t � ) 

which implies 

S B (t r+1 ) = S B (0) + 

1 − ∝ 

N (∝ ) 
P 1 (t r , S B (t r )) 

+ 

∝ 

N (∝ ) 

1 


(∝ ) 
r ∑ 

� =0 

(
P 1 (t � , S B (t � )) 

h 

∫ t � +1 

t � 

(t − t � −1 )(t r+1 − t) ∝−1 dt 

−P 1 (t � −1 , S B (t � −1 )) 

h 

∫ t � +1 

t � 

(t − t � )(t r+1 − t ) ∝−1 dt 

)

= S ρ (0) + 

1 − ∝ 

N (∝ ) 
P 1 (t r , S B (t r )) 

+ 

∝ 

N (∝ ) 

1 


(∝ ) 
r ∑ 

� =0 

(
P 1 (t � , S B (t � )) 

h 

I � −1 , ∝ −P 1 (t � −1 , S B (t � −1 )) 

h 

I �, ∝ 

)
, (21)

ow, we compute the following integrals I � −1 , ∝ and I � , ∝ as follws 

 � −1 , ∝ = 

∫ t � +1 

t � 

( t − t � −1 ) ( t r+1 − t ) 
∝−1 dt 

= − 1 

∝ 

[ ( t � +1 − t � −1 ) ( t r+1 − t � +1 ) 
∝ − ( t � − t � −1 ) ( t r+1 − t � ) 

∝ 
] 

− 1 

∝ ( ∝ +1 ) 

[
( t r+1 − t � +1 ) 

∝ +1 − ( t r+1 − t � ) 
∝ +1 

]
, 

nd 

 �, ∝ = 

∫ t � +1 

t � 

( t − t � ) ( t r+1 − t ) 
∝−1 dt 

= − 1 

∝ 

[ ( t � +1 − t � ) ( t r+1 − t � +1 ) 
∝ 

] 

− 1 

∝ ( ∝ +1 ) 

[
( t r+1 − t � +1 ) 

∝ +1 − ( t r+1 − t � ) 
∝ +1 

]
ut t � = �h, we get 

 � −1 , ∝ = −h 

∝ +1 

∝ 

[ ( � + 1 − ( � − 1 ) ) ( r + 1 − ( � + 1 ) ) 
∝ 

−( � − ( � − 1 ) ) ( r + 1 − � ) 
∝ 

] 

− h 

∝ +1 

∝ ( ∝ +1 ) 

[
( r + 1 − ( � + 1 ) ) 

∝ +1 − ( r + 1 − � ) 
∝ +1 

]
= 

h 

∝ +1 

∝ ( ∝ +1 ) 
[ −2 ( ∝ +1 ) ( r − � ) 

∝ + ( ∝ +1 ) ( r + 1 − � ) 
∝ 

−( r − � ) 
∝ +1 + ( r + 1 − � ) 

∝ +1 
]

= 

h 

∝ +1 

∝ ( ∝ +1 ) 
[ ( r − � ) 

∝ 
( −2 ( ∝ +1 ) − ( r − � ) ) 

+ ( r + 1 − � ) 
∝ 
( ∝ +1 + r + 1 − � ) ] 

= 

h 

∝ +1 

∝ ( ∝ +1 ) 
[ ( r + 1 − � ) 

∝ 
( r − � + 2+ ∝ ) 

−( r − � ) 
∝ 
( r − � + 2 + 2 ∝ ) ] . (22)

nd 

 �, ∝ = −h 

∝ +1 

∝ 

[ ( � + 1 − � ) ( r + 1 − ( � + 1 ) ) 
∝ 

] 

− h 

∝ +1 

∝ ( ∝ +1 ) 

[
( r + 1 − ( � + 1 ) ) 

∝ +1 − ( r + 1 − � ) 
∝ +1 

]
= 

h 

∝ +1 

∝ ( ∝ +1 ) 

[
−( ∝ +1 ) ( r − � ) 

∝ − ( r − � ) 
∝ +1 + ( r + 1 − � ) 

∝ +1 
]

= 

h 

∝ +1 

∝ ( ∝ +1 ) 

[
( r − � ) 

∝ 
( −( ∝ +1 ) − ( r − � ) ) + ( r + 1 − � ) 

∝ +1 
]

= 

h 

∝ +1 

∝ ( ∝ +1 ) 

[
( r + 1 − � ) 

∝ +1 − ( r − � ) 
∝ 
( r − � + 1+ ∝ ) 

]
. (23)

ubstituting (22) and (23) into (21) , we get 

 B (t r+1 ) = S B (t 0 ) + 

1 − ∝ 

N (∝ ) 
P 1 (t r , S B (t r )) + 

∝ 

N (∝ ) 

r ∑ 

� =0 
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S

E

I

R

S

E

I

R

S

E

I

(
P 1 (t � , S B (t � )) 


(∝ +2) 
h 

∝ [ (r + 1 − � ) ∝ (r − � + 2+ ∝ ) 

− (r − � ) ∝ (r − � + 2 + 2 ∝ ) ] 

− P 1 (t � −1 , S B (t � −1 )) 


(∝ +2) 
h 

∝ [(r + 1 − � ) ∝ +1 

− (r − � ) ∝ (r − � + 1+ ∝ ) ] 

)
. (24) 

imilarly 

 B (t r+1 ) = E B (t 0 ) + 

1 − ∝ 

N (∝ ) 
P 2 (t r , E B (t r )) + 

∝ 

N (∝ ) 

r ∑ 

� =0 (
P 2 (t � , E B (t � )) 


(∝ +2) 
h 

∝ [ (r + 1 − � ) ∝ (r − � + 2+ ∝ ) 

−(r − � ) ∝ (r − � + 2 + 2 ∝ ) ] 

− P 2 (t � −1 , E B (t � −1 )) 


(∝ +2) 
h 

∝ [(r + 1 − � ) ∝ +1 

−(r − � ) ∝ (r − � + 1+ ∝ ) ] 

)
, (25) 

 B (t r+1 ) = I B (t 0 ) + 

1 − ∝ 

N (∝ ) 
P 3 (t r , I B (t r )) + 

∝ 

N (∝ ) 

r ∑ 

� =0 (
P 3 (t � , I B (t � )) 


(∝ +2) 
h 

∝ [ (r + 1 − � ) ∝ (r − � + 2+ ∝ ) 

−(r − � ) ∝ (r − � + 2 + 2 ∝ ) ] 

− P 3 (t � −1 , I B (t � −1 )) 


(∝ +2) 
h 

∝ [(r + 1 − � ) ∝ +1 

−(r − � ) ∝ (r − � + 1+ ∝ ) ] 

)
, (26) 

 B (t r+1 ) = R B (t 0 ) + 

1 − ∝ 

N (∝ ) 
P 4 (t r , R B (t r )) + 

∝ 

N (∝ ) 

r ∑ 

� =0 (
P 4 (t � , R B (t � )) 


(∝ +2) 
h 

∝ [ (r + 1 − � ) ∝ (r − � + 2+ ∝ ) 

−(r − � ) ∝ (r − � + 2 + 2 ∝ ) ] 

− P 4 (t � −1 , R B (t � −1 )) 


(∝ +2) 
h 

∝ [(r + 1 − � ) ∝ +1 

−(r − � ) ∝ (r − � + 1+ ∝ ) ] 

)
, (27) 

 H (t r+1 ) = S H (t 0 ) + 

1 − ∝ 

N (∝ ) 
P 1 (t r , S H (t r )) + 

∝ 

N (∝ ) 

r ∑ 

� =0 (
P 1 (t � , S H (t � )) 


(∝ +2) 
h 

∝ [ (r + 1 − � ) ∝ (r − � + 2+ ∝ ) 

−(r − � ) ∝ (r − � + 2 + 2 ∝ ) ] 

− P 1 (t � −1 , S H (t � −1 )) 


(∝ +2) 
h 

∝ [(r + 1 − � ) ∝ +1 

−(r − � ) ∝ (r − � + 1+ ∝ ) ] 

)
, (28) 

 H (t r+1 ) = E H (t 0 ) + 

1 − ∝ 

N (∝ ) 
P 2 (t r , E H (t r )) + 

∝ 

N (∝ ) 

r ∑ 

� =0 (
P 2 (t � , E H (t � )) 


(∝ +2) 
h 

∝ [ (r + 1 − � ) ∝ (r − � + 2+ ∝ ) 
−(r − � ) ∝ (r − � + 2 + 2 ∝ ) ] 

− P 2 (t � −1 , E H (t � −1 )) 


(∝ +2) 
h 

∝ [(r + 1 − � ) ∝ +1 

−(r − � ) ∝ (r − � + 1+ ∝ ) ] 

)
, (29) 

 H (t r+1 ) = I H (t 0 ) + 

1 − ∝ 

N (∝ ) 
P 3 (t r , I H (t r )) + 

∝ 

N (∝ ) 

r ∑ 

� =0 (
P 3 (t � , I H (t � )) 


(∝ +2) 
h 

∝ [ (r + 1 − � ) ∝ (r − � + 2+ ∝ ) 

−(r − � ) ∝ (r − � + 2 + 2 ∝ ) ] 

− P 3 (t � −1 , I H (t � −1 )) 


(∝ +2) 
h 

∝ [(r + 1 − � ) ∝ +1 

−(r − � ) ∝ (r − � + 1+ ∝ ) ] 

)
, (30) 

 H (t r+1 ) = R H (t 0 ) + 

1 − ∝ 

N (∝ ) 
P 4 (t r , R H (t r )) + 

∝ 

N (∝ ) 

r ∑ 

� =0 (
P 4 (t � , R H (t � )) 


(∝ +2) 
h 

∝ [ (r + 1 − � ) ∝ (r − � + 2+ ∝ ) 

−(r − � ) ∝ (r − � + 2 + 2 ∝ ) ] 

− P 4 (t � −1 , R H (t � −1 )) 


(∝ +2) 
h 

∝ [(r + 1 − � ) ∝ +1 

−(r − � ) ∝ (r − � + 1+ ∝ ) ] 

)
, (31) 

 ρ (t r+1 ) = S ρ (t 0 ) + 

1 − ∝ 

N (∝ ) 
P 1 (t r , S ρ (t r )) + 

∝ 

N (∝ ) 

r ∑ 

� =0 (
P 1 (t � , S ρ (t � )) 


(∝ +2) 
h 

∝ [ (r + 1 − � ) ∝ (r − � + 2+ ∝ ) 

−(r − � ) ∝ (r − � + 2 + 2 ∝ ) ] 

− P 1 (t � −1 , S ρ (t � −1 )) 


(∝ +2) 
h 

∝ [(r + 1 − � ) ∝ +1 

−(r − � ) ∝ (r − � + 1+ ∝ ) ] 

)
, (32) 

 ρ (t r+1 ) = E ρ (t 0 ) + 

1 − ∝ 

N (∝ ) 
P 2 (t r , E ρ (t r )) + 

∝ 

N (∝ ) 

r ∑ 

� =0 (
P 2 (t � , E ρ (t � )) 


(∝ +2) 
h 

∝ [ (r + 1 − � ) ∝ (r − � + 2+ ∝ ) 

−(r − � ) ∝ (r − � + 2 + 2 ∝ ) ] 

− P 2 (t � −1 , E ρ (t � −1 )) 


(∝ +2) 
h 

∝ [(r + 1 − � ) ∝ +1 

−(r − � ) ∝ (r − � + 1+ ∝ ) ] 

)
, (33) 

 ρ (t r+1 ) = I ρ (t 0 ) + 

1 − ∝ 

N (∝ ) 
P 3 (t r , I ρ (t r )) + 

∝ 

N (∝ ) 

r ∑ 

� =0 (
P 3 (t � , I ρ (t � )) 


(∝ +2) 
h 

∝ [ (r + 1 − � ) ∝ (r − � + 2+ ∝ ) 

−(r − � ) ∝ (r − � + 2 + 2 ∝ ) ] 

− P 3 (t � −1 , I ρ (t � −1 )) 


(∝ +2) 
h 

∝ [(r + 1 − � ) ∝ +1 

−(r − � ) ∝ (r − � + 1+ ∝ ) ] 

)
, (34) 
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Table 1 

Numerical values and the physical interpretation of the parameters involve in the proposed model 

(1) . 

Parameters physical description Numerical value 

�B The birth rate parameter of bats 0.0300 

m B The death rate of bats 0.011 

βB The transmission rate from I B to S B 0.01166 
1 
ω B 

The incubation period of bats 0.00073 
1 
γB 

The infectious period of bats 0.0345 

�H Recruitment from total number of hosts 1 millions 

m H The death rate of hosts 0.011 

βH The transmission rate from I H to S H 0.0300 

βBH The transmission rate from I B to S H 0.0405 

�ρ The birth rate parameter of people 1.00 

m ρ The death rate of people 0.0091 

βρ The transmission rate from I p to S p 0.004 

κ The multiple of the transmissibility of A p to I p 0.003 

βω The transmission rate from W to S p 0.005 

βρ The transmission rate from I p to S p 0.001 

δρ The proportion of asymptomatic infection rate of people 0.002 
1 

ω 
′ 
ρ

The latent period of people 0.003 

γ ρ The infectious period of symptomatic infection of people 0.005 

a The retail purchases rate of the hosts in the market 0.0321 
1 

γ
′ 
ρ

The infectious period of asymptomatic infection of people 0.0121 

μ The shedding coefficients from I ρ to W 0.0121 

μ
′ 
ρ The shedding coefficients from A ρ to W 0.0761 

1 
ε The lifetime of the virus in W 0.0261 

N H The total number of hosts 10 millions 
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A ρ(t r+1 ) = A ρ(t 0 ) + 

1 − ∝ 

N (∝ ) 
P 4 (t r , A ρ (t r )) + 

∝ 

N (∝ ) 

r ∑ 

� =0 (
P 4 (t � , A ρ(t � )) 


(∝ +2) 
h 

∝ [ (r + 1 − � ) ∝ (r − � + 2+ ∝ ) 

−(r − � ) ∝ (r − � + 2 + 2 ∝ ) ] 

− P 4 (t � −1 , A ρ (t � −1 )) 


(∝ +2) 
h 

∝ [(r + 1 − � ) ∝ +1 

−(r − � ) ∝ (r − � + 1+ ∝ ) ] 

)
, (35)

R ρ (t r+1 ) = R ρ (t 0 ) + 

1 − ∝ 

N (∝ ) 
P 5 (t r , R ρ (t r )) + 

∝ 

N (∝ ) 

r ∑ 

� =0 (
P 5 (t � , R ρ (t � )) 


(∝ +2) 
h 

∝ [ (r + 1 − � ) ∝ (r − � + 2+ ∝ ) 

−(r − � ) ∝ (r − � + 2 + 2 ∝ ) ] 

− P 5 (t � −1 , R ρ (t � −1 )) 


(∝ +2) 
h 

∝ [(r + 1 − � ) ∝ +1 

−(r − � ) ∝ (r − � + 1+ ∝ ) ] 

)
. (36)

W(t r+1 ) = W(t 0 ) + 

1 − ∝ 

N (∝ ) 
P 6 (t r , W(t r )) + 

∝ 

N (∝ ) 

r ∑ 

� =0 (
P 6 (t � , W(t � )) 


(∝ +2) 
h 

∝ [ (r + 1 − � ) ∝ (r − � + 2+ ∝ ) 

−(r − � ) ∝ (r − � + 2 + 2 ∝ ) ] 

− P 6 (t � −1 , W(t � −1 )) 


(∝ +2) 
h 

∝ [(r + 1 − � ) ∝ +1 

−(r − � ) ∝ (r − � + 1+ ∝ ) ] 

)
. (37)
f  
.1. Numerical interpretation and discussion 

Now to present the numerical simulations of the ABC frac-

ional model (1) - (2) , we apply the iterative solution contained

n (24) - (37) . Taking the time in (Days) . The numerical amounts

f the parameters applied in the simulations are specified in

able 1 . The graphical representations of numerical solution for

pecies S B , E B , I B , R B , S H , E H , I H , R H , S ρ, E ρ, I ρ, A ρ, R ρ, W at vari-

us fractional-order ∝ = 0 . 4 , 0 . 6 , 0 . 8 , 1 . 0 of the considered model

1) are given in Figs. 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 respec-

ively. We simulate the results for first hundred days and hence our

nterval of study in numerical simulation is J = [0 , 100] . We take

nitial values in percentage of the total papulation as 

S B (0) = 0 . 6 , E B (0) = 0 . 2 , I B (0) = 0 . 1 , 

R B (0) = 0 , S H (0) = 0 . 03 , E H (0) = . 01 , 

I H (0) = 0 . 03 , R H (0) = 0 . 001 , S ρ (0) = 0 . 01 , 

E ρ (0) = 0 . 003 , I ρ (0) = 0 . 9 , 

 ρ(0) = 0 . 001 , R ρ (0) = 0 , W(0) = 0 . 

In Figs. 1–14 , we have given a global dynamics of each compart-

ent in the considered model (1) by using the numerical values

n Table 1 against different fractional order. The growth and de-

ay of various compartment is different that some compartments

re growing with different rate due to fractional order and sim-

lar behavior may be observed for decay of some compartments.

ower the order faster is the growing rate and vice versa and simi-

arly the decay also is different at different fractional order. There-

ore fractional calculus can help in understanding the transmission

ynamics of novel coronavirus-19 disease. Also the concerned nu-

erical scheme can be used as a powerful tools to perform numer-

cal simulation of such complicated model. In Fig. 1 as susceptible

apulation is decreasing as they are exposing so the density of ex-

ose class is going on growing as in Fig. 2 . On the other hand the

nfected bats density is increasing as presented in Fig. 3 , while the

umber of removed bats are also increasing in Fig. 4 until stable in

he market. On the other hand as the density of susceptible host is

ecreasing in Fig. 5 because they are exposing to infection. There-

ore the density of exposed host is growing as in Fig. 6 as a results
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Fig. 1. Graphical representation of numerical solution for susceptible class of bats at various fractional of the considered model (1) . 
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Fig. 2. Graphical representation of numerical solution for exposed bats at various fractional of the considered model (1) . 
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Fig. 3. Graphical representation of numerical solution for infected bats at various fractional of the considered model (1) . 
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Fig. 4. Graphical representation of numerical solution for removed class of bats at various fractional of the considered model (1) . 
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Fig. 5. Graphical representation of numerical solution for susceptible host at various fractional of the considered model (1) . 
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Fig. 6. Graphical representation of numerical solution for exposed hosts at various fractional of the considered model (1) . 
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Fig. 7. Graphical representation of numerical solution for infected host at various fractional of the considered model (1) . 
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Fig. 8. Graphical representation of numerical solution for removed host at various fractional of the considered model (1) . 
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Fig. 9. Graphical representation of numerical solution for susceptible people at various fractional of the considered model (1) . 
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Fig. 10. Graphical representation of numerical solution for exposed people at various fractional of the considered model (1) . 
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Fig. 11. Graphical representation of numerical solution for symptomatic infected people at various fractional of the considered model (1) . 

0 10 20 30 40 50 60 70 80 90 100

time t (Days)

0

5

10

15

20

25

1.0
0.8
0.6
0.4

Fig. 12. Graphical representation of numerical solution for asymptomatic infected people at various fractional of the considered model (1) . 
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Fig. 13. Graphical representation of numerical solution for population of removed people due to death or recovered various fractional of the considered model (1) . 
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Fig. 14. Graphical representation of numerical solution for population of virus in reservoir various fractional of the considered model (1) . 
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fl

he host catching more infecting and hence the density of host in-

ected is also increasing. This process may be observed from Fig. 7 .

s a results of infection the removed (either death or get ride from

nfection) will increasing as in Fig. 8 . In same way the density of

usceptible people is decreasing in Fig. 9 because they are expos-

ng to infection so the density of exposed people will decrease (see

ig. 10 ), because the people rapidly catching infection, hence the

ensity of symptomatic infected people will grow as in Fig. 11 . The

imilar behavior one can observed for density of asymptomatic and

emoved (either death or recovered from infection) in Figs. 12 and

3 respectively. Since as the density of infected bats is increasing,

lso the infection in host papulation is growing. As a result the

apulation of virus in reservoir will grow further as presented in

ig. 14 . 

. Conclusion 

This manuscript has been devoted to comprehensively investi-

ate a mathematical model for calculating the transmissibility of

ovel Coronavirus (COVID-19) disease by using nonsingular frac-
ional order derivative. The existence and uniqueness of the con-

idered model has been guaranteed by applying Krasnoselskii and

anach fixed point theorems. Also some stability results of Ulam

ype have been constructed. With the help of fractional Adams

ashforth method method we have simulated the results corre-

ponding to various fractional orders. The obtained results play im-

ortant role in developing the theory of fractional analytical dy-

amic for the current pandemic due to Coronavirus -19 which has

adly affected the whole world. From the simulation we noted that

he decrease in susceptibility is faster at lower fractional order of

he derivative and in same line the increase in infections is also

apid with smaller order. The presented results may be helpful in

nderstanding the present pandemic more comprehensively and

an help in taking precautionary measure to reduce the infection

o minimum. 
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