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Abstract. For n ̂  3, the equation Au + \u\4/(n 2}u = 0 on R" has infinitely many
distinct solutions with finite energy and which change sign.

In [4], Gidas-Ni-Nirenberg proved that any positive solution of the elliptic
equation

Au + \u\4l(n~2}u = 0, ueC2(Rn), n^3 , (1)

which has finite energy, namely

j |Pw|2ώc<oo, (2)
Rn

is necessarily of the form

where α>0, ξ e Rn. Thereafter, some people tried to show without success that all
the solutions of the problem (l)-(2), which are positive somewhere, are given by (3).
Their efforts have to be in vain, as we will see shortly that the problem actually has
a lot of solutions other than those given by (3). Our main result in this note can be
stated as follows.

Theorem. There exists a sequence of solutions uk of (l)-(2), such that
f \Fuk\

2dx-+co as fc-»oo.
Rn

We remark that Eq. (1) is invariant under the conformal transformations oϊRn.
Thus, if u(x) is a solution, then for any λ > 0 and ξ e Rn, λ(n ~ 2)/2 w[(x — ζ)/λ] is also a
solution. Moreover, all solutions obtained in this way have the same energy, and
we will say that these solutions are equivalent. In particular, the solutions (3) are
equivalent. Our theorem implies the existence of infinitely many inequivalent
solutions to the problem (l)-(2).
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The proof of Theorem consists of two steps. In Sect. 1 we reduce the problem to
an equivalent problem on Sn, the Euclidean π-sphere. Then, in Sect. 2, we show
how the latter problem can be solved by some standard variational techniques. In
this process, the abundant symmetries of Sπ play an important role.

Section 1

We first recall some general facts concerning certain elliptic equations on
Riemannian manifolds. Let (M, g) and (N, h) be two Riemannian manifolds of
dimension n ̂  3. Suppose that there is a conformal diffeomorphism / from M onto
JV, i.e. f*h = φ4/(n ~ 2}g for some positive function φ e C°°(M). The scalar curvatures
of (M, g) and (N, h) are Rg and Rh respectively. Consider an equation on M as
follows:

Δβu-βRβ(x)u + F(x9u) = Q, weC2(M), (4)

where Δg is the Laplacian on (M, g), β = (n — 2)/4(n — 1), and F MxR^R is
smooth. Corresponding to (4) is the equation on N:

(5)

where q = 2n/(n — 2) and φ = φ°f~1.

Lemma 1. Suppose that v is a solution of (5). Then u = ( v ° f ) φ is a solution of (4)
such that l\u\qdV=l\υ\qdVh.

M N

Proof. Notice that / is an isometry between (M,f*K) and (N,K). So we may
assume, without loss of generality, that (M, f*h) = (N, h), i.e. N = M and /= id. In
such case we have h = φq~2g and φ — φ, while the relation between Rg and Rh is
given by

*-*=Q. (6)

Set u = vφ. In a local coordinate system on M we compute,

= φ~q(φΔgu-uλgφ). (7)

Here, |̂ | = det(^y) and |Λ| = det(Λf</). Combining (5), (6), and (7), we see that u
satisfies Eq. (4). Finally, since dVh = φqdVg and u = vφ, we have f \u\qdVg

= \\υ\qdVh. Q.e.d.
M

Lemma 2. Every solution v of the equation

Δv-$n(n-2)υ + \v\q-2υ = Q, veC2(Sn), (8)

where A is the Laplacian with respect to the standard metric on S", corresponds to a
solution u of Eq. (1) satisfying

J \7u\2dx=i\v\*dV. (9)
Rn Sn



Conformally Invariant Elliptic Equation 333

Proof. Let π:Sn — {p}-+Rn be the stereographic projection, where p is the north
pole of Sn. Then /^π"1 is a conformal diffeomorphism from jR" onto Sn-{p}.
Note that the scalar curvatures on Rn and Sn are constant 0 and n(n — 1)
respectively. Thus, applying Lemma 1, we see that every solution v of (8)
corresponds to a solution u of (1) satisfying

J \u\qdx=f MW<oo. (10)
Rn Sn

It can be shown that (10) implies that

J |Fw|2ώc-J \u\*dx. (11)
Rn Rn

(Cf. the proof of Theorem 4.4 in [3].) Clearly, (9) follows from (10) and (11). Q.e.d.

Section 2

From Lemma 2 we see that the proof of Theory can be reduced to the proof of
the following

Lemma 3. There exists a sequence {vk} of solutions of Eq. (8), such that
j \vk\

qdV-*ao as fc-»oo.
sn

Note first that solutions of Eq. (8) are in one to one correspondence with the
critical points of the functional

in Hl(Sn\ where c=^n(n — 2). Recall that q = 2n/(n — 2) is just the critical exponent
for the embedding #1(Sn)CZ/(SΠ), l^p^q. Therefore, the functional J is well
defined and differentiable in Hί(Sn), but it fails to satisfy the Palais-Smale
compactness condition in Hl(Sn). However, from the analysis in Ambrosetti and
Rabinowitz [1] we see that the following result holds.

Lemma 4. Let X be a closed subspace of H1(Sn). Suppose that the embedding
X C Lq(Sn) is compact. Then the restriction of J on X, J\X, satisfies the Palais-Smale
condition. Furthermore, if X is infinite-dimensional, then J\X has a sequence of
critical points υk in X, such that J \vk\

qdV-*oo as fc-»oo.
Sn

For a proof of Lemma 4, the reader is referred to the proofs of Theorems 3.13
and 3.14 in [1].

In order to find critical points of J(v), we observe that Sn enjoys a lot of
symmetries, namely, the compact Lie group 0(n +1) acts isometrically on Sn. Also,
the functional J is invariant under isometries of Sn. Suppose that G is a compact
subgroup of 0(n +1). We set

XG = { v e H l ( S n ) : v ( g x ) = v(x)9 V ^ e G a n d a . e . xeSn}.

Then, by the symmetric criticality principle [5], any critical point of the restriction
J\XG is a critical point of J too. Therefore, we may apply Lemma 4 to prove
Lemma 3, provided an infinite-dimensional subspace XG can be found so that the
embedding XG c Lq(Sn) is compact. It turns out that such XG exists.
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Let Rn + i=RkxRm = {(x9y):xeRk

9 yeRm}, where
Then

Let G - 0(k) x 0(m) C 0(n + 1). For g = (gi9 g2) e G, where 0! e 0(fc) and #2 6 0(ra),
the action of G on Sn is defined by g(x, y) = (g^x, 023θ With this choice of G, we see
that XG is an infinite-dimensional closed subspace of Hί(Sn). Furthermore, we
have

Lemma 5. For r = 2k/ (k — 2) > 2n/(n — 2), 1 ̂  p ̂  r, we toe ίfte continuous embedd-
ing XGCLp(Sn). The embedding is compact if 1 ̂

Proof. Notice first that if ueXG, then M = M(|X|, \y\)9 i.e. u depends only on |x|, or
equivalently, u depends only on \y\, since |x|2 + \y\2 = 1 . Now, for any z = (x, y) e Sn,
assume first that j ΦO. Then ^4=0 for some 1 <Ξz'<Ξm. Set

Then there exists a neighborhood U of z in S" and (5 > 0 such that /ι maps U
diffeomorphically onto the open set Bk

δ(x) x B1^~ί(y) in Rn, where

Note that in the chart ([/, /z), if M e XG then M depends only on |x|5 where x e Bk

δ(x).
Next, if y = 0, then xt φ 0 for some 1 ̂  i ̂  fc. We can likewise take a chart in which
ueXG depends only on \y\, where yεB™(y).

We may assume that Sn is covered by a finite number of such charts, say
(I7α, ftα), 1 ̂ α^N, and that the metric matrices in these charts satisfies

where c> 1 is a constant and / is the nxn identity matrix. Since the functions in XG

behave locally like functions of k or m independent variables in these charts, we
have for s = k or m,

for M e XG. Hence, there exists a constant c(α) such that

l l " l l L p (

Similarly, we can prove that

for some d(α) > 0 and all M e XG. Combining (12), (1 3) and the Sobolev inequality on
Bs

a yields that
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for some fe(α)>0 and all ueXG. The global inequality now follows easily:

for all u e XG. This proves XG C Lp(Sn) continuously, for 1 ̂  p ̂  r. The compactness
of the embedding for 1 ̂  p < r can be derived in a standard way, cf. e.g. [2]. Q.e.d.

By Lemma 5, the embedding XGCLq(Sn) is compact. Therefore, as remarked
before, we may apply Lemma 4 to complete the proof of Lemma 3.
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