On a conjecture about repdigits in k-generalized Fibonacci sequences

Jhon J. Bravo ${ }^{1}$
University of Cauca, Colombia
Mathematical Institute, UnAM, Mexico City
Arctic Number Theory Workshop
Saariselkä Lapland Finland, 15-20 June, 2013

Abstract

For an integer $k \geq 2$, we consider the k-generalized Fibonacci sequence $\left(F_{n}^{(k)}\right)_{n}$ which starts with $0, \ldots, 0,1(k$ terms) and each term afterwards is the sum of the k preceding terms. F. Luca [2] in 2000 and recently D. Marques [3] proved that 55 and 44 are the largest numbers with only one distinct digit (so called repdigits) in the sequences $\left(F_{n}^{(2)}\right)_{n}$ and $\left(F_{n}^{(3)}\right)_{n}$, respectively. Further, Marques conjectured that there are no repdigits having at least 2 digits in a k-generalized Fibonacci sequence for any $k>3$. In this talk, we report about some arithmetic properties of $\left(F_{n}^{(k)}\right)_{n}$ and confirm the conjecture raised by Marques. This is a joint work with Florian Luca.

Key words and phrases: Fibonacci numbers, lower bounds for nonzero linear forms in logarithms of algebraic numbers, continued fractions, repdigits.

References

[1] J. J. Bravo and F. Luca, On a conjecture about repdigits in k-generalized Fibonacci sequences, to appear in Publ. Math. Debrecen.
[2] F. Luca, Fibonacci and Lucas numbers with only one distinct digit, Port. Math. 57 (2) (2000), 243-254.
[3] D. Marques, On k-generalized Fibonacci numbers with only one distinct digit, to appear in Util. Math.

[^0]
[^0]: ${ }^{1}$ jhonjaba@gmail.com

