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ON A CONJECTURE OF BELTRAMETTI-SOMMESE
FOR POLARIZED 4-FOLDS

YOsHIAKI FUKUMA

Abstract

Let (X, L) be a polarized manifold of dimension 4. In this paper, we prove that
h(Ky 4+ 3L) > 0 if Ky + 3L is nef, which is a conjecture of Beltrametti-Sommese for
polarized 4-folds.

1. Introduction

Let X be a projective variety of dimension n defined over the field of
complex numbers, and let L be an ample line bundle on X. Then (X,L) is
called a polarized variety. 1If X is smooth, then we say that (X, L) is a polarized
manifold.

The adjoint bundle Ky + (n — 1)L of (X,L) plays an important role for
investigating (X, L) (for example, see [1, Chapter 7, 9, and 11]), where Ky is the
canonical line bundle.

In [1, Conjecture 7.2.7], Beltrametti and Sommese gave the following
conjecture.

CoNJECTURE 1 (Beltrametti-Sommese). Let (X,L) be an n-dimensional
polarized manifold with n>3. Assume that Ky + (n—1)L is nef. Then
h°(Ky +(n—1)L) > 0.

For this conjecture, the following partial results have been obtained.
(i) In [7, Theorem 2.4], the author proved that this conjecture is true if

n=73.
(i) In [13, 1.2 Theorem], Horing proved that this conjecture is true if
h°(L) > 0.
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In this paper, we investigate the conjecture above, and the main purpose of
this paper is to prove that the above conjecture is true for n =4.
We will use the customary notation in algebraic geometry.

2. Preliminaries

NotaTioN 2.1. Let X be a projective variety of dimension #n and let L be a
line bundle on X. Then we put

i =3 e,

=0 J

DEerFINITION 2.1 ([5, Definition 2.1]). Let X be a projective variety of
dimension n and let L be a line bundle on X.

(i) For every integer i with 0 <i <n, the i-th sectional geometric genus
gi(X,L) of (X,L) is defined by the following.

gi(X, L) = (=) (z-i(X, L) Z )" ().

(i) For every integer i with 0 <i < n, the i-th sectional H-arithmetic genus
7H(X,L) of (X,L) is defined by the followmg

Xi (X, L) :Xn—i(X’ L)'

Remark 2.1. (i) Since x,_;(X,L) € Z, we see that y/(X,L) and g;(X,L)
are integer by definition.

(i) If i=dim X =n, then g,(X,L) =h"(Ox) and yH(X,L) = y(Oy).

(iii) If i =0, then go(X,L) = L" and xl'(X,L) = L".

(iv) If i=1, then ¢;(X,L) =g(X,L), where g(X,L) is the sectional genus
of (X,L). If X is smooth, then the sectional genus g(X,L) can be
written as

—

90X, L) =143 (Ky + (n— DL)L".

(v) If i =2, then we have'

1 1
92(X, L) = 15 (Kx + (n = DL)(Kx + (n — 2)L)L"? + Ecz(X)L”‘2
-3
+2 g Kx+(n— 2)L)L" ' — 1+ Kl (0y).

1See [6, (2.2.A)).
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(vi) If i =3, then we have”

_m=2(n=3)? , (1=3)CBn-8)
n—73 2 n—2 1 n-3
+—24 (KX+62(X))L -‘rﬁK)(CQ(X)L

+1— hl(@x) + hz(@x)
(vii) In general for every integer i with 1 <i<n we get
X L) =1 =h'(Ox) + -+ (=) Th 7 (Ox) + (=1)gi(X, L).

THEOREM 2.1. Let (X,L) be a polarized manifold with dim X = n, and let i
be an integer with 0 <i<n—1. Then

n—i—1 o n—i )
g(X.L)= Y (_1)-/<”j l)hO(KX +(n—i =)L)+ Y (=1 (o).
j=0 k=0
Proof. See [5, Theorem 2.3]. O

DerNITION 2.2, (i) Let X (resp. Y) be an n-dimensional projective mani-
fold, and let L (resp. H) be an ample line bundle on X (resp. Y). Then (X, L)
is called a simple blowing up of (Y,H) if there exists a birational morphism
n:X — Y such that = is a blowing up at a point of ¥ and L=7n"(H) — E,
where E is the m-exceptional reduced divisor.

(i) Let X (resp. M) be an n-dimensional projective manifold, and let L
(resp. A) be an ample line bundle on X (resp. M). Then we say that (M, A4) is a
reduction of (X, L) if (X,L) is obtained by a composite of simple blowing ups
of (M,A), and (M, A) is not obtained by a simple blowing up of any polarized
manifold. The morphism ¢, : X — M is called the reduction map.

Remark 2.2. Let (X, L) be a polarized manifold of dimension n and (M, 4)
a reduction of (X,L).

(i) If (X,L) is not obtained by a simple blowing up of another polarized
manifold, then we regard (X,L) as a reduction of itself.

(i) For any polarized manifold (X, L), there exists a reduction of (X,L).
Moreover if n > 3, then a reduction of (X, L) is unique. (See [4, (11.11),
Chapter IIJ.)

(iii) If x(Ky + (n —2)L) = 0, then we infer that Ky, + (n — 2)A4 is nef (see
[1, Proposition 7.2.2 and Theorems 7.2.3, 7.2.4, 7.3.2, 7.3.4]).

(iv) h%(Ky + tL) = h°(Ky +tA) for every integer ¢ with 1 <t <n— 1.

2See [6, (2.2.B)].
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DerFNITION 2.3 ([9, Definition 3.1 and Definition 3.2]). Let (X,L) be a
polarized manifold of dimension n.

(i) Let ¢ be a positive integer. Then set
Fo(t) := h(Ky + L),
Fi(t):=F_1(t+ 1) — F,_1(¢) for every integer i with 1 <i <n.
(ii) For every integer i with 0 <i < n, the ith Hilbert coefficient A;(X,L) of
(X,L) is defined by A;(X,L) = F,_;(1).

Remark 2.3. (i) If 1 <i<mn, then 4;(X,L) can be written as follows (see
[9, Proposition 3.2]).

A(X, L) = (=)' (X, L) + (-1) 1 (X, L)
= gi(X, L)+ gi(X,L) — h" ' (0y).

(i) By Definition 2.3 and [9, Proposition 3.1 (2)], we have the following:
(ii.1) A4;(X,L) e Z for every integer i with 0 <i < n.
(i1.2) Ao(X,L)=L"
(ii.3) A,(X,L) = h°(Ky + L).

(iii) By Remark 2.1 (v) and (vi), and by Remark 2.3 (i), we see that A,(X, L)
and A3;(X,L) are the following.

Bn—-2)(n+1) n o1, _2
Ay( X, L) =—"2 2"+ _KyL" — (K X))L"
2(X, L) 2 + KL+ 35 (K + (X)L,

(n—2)(n*—1) n(3n —5) on—=1_, .,
Az (X, L) = L" KyL" K;L"
3(X, L) a8 += ¥ + 5 Kx

+ %CZ(X)(KX +(n—1)L)L".

THEOREM 2.2. Let (X, L) be a polarized manifold of dimension n and let t be
a positive integer. Then for every integer i with 0 <i <n we have

R T

NI
Proof-  See [9, Theorem 3.1]. O

COROLLARY 2.1 ([9, Corollary 3.1]). Let (X,L) be a polarized manifold of
dimension n, and let t be a positive integer. Then we have

-1
hO(KX +1tL) = Z(n _])AJ(X,L)

Jj=0
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Remark 2.4. Let (X, L) be a polarized manifold of dimension n. Then by
using A;(X, L), the left hand side of equations (6) and (7) in [13, 4.1 Lemma] can
be written as follows.

n

(1) A0+ 5Ky (= DL =D )AL,

(2)  L"?(2(K: 4 c2(X)) + 6nKyL + (n+ 1)(3n — 2)L?) = 244,(X, L).

THEOREM 2.3. Let X be a projective manifold. Then there exist smooth
projective varieties X' and Y, a birational morphism u: X' — X and a fiber space
¢: X' — Y such that Y is not uniruled and if dim X' > dim Y, then the general
fiber of ¢ is rationally connected.

Proof. See [2], [14] and [I1]. OJ

DeriNITION 2.4, The fiber space ¢: X’ — Y in Theorem 2.3 is called the
MRC-fibration of X, and Y is called the base of the MRC-fibration.

3. Main result

In this section we are going to prove Conjecture 1 for the case of dimension 4.

THEOREM 3.1. Let (X, L) be a polarized manifold of dimension 4. Assume
that Ky + 3L is nef. Then h°(Ky +3L) > 0 holds.

Proof. (1) First we consider the case where ¢(X) > 0 (see also the proof
of [8, Theorem 3.3]). Let o:X — Alb(X) be the Albanese map. Then
1 <dima(X) <4. Then by [12, Corollary 10.7, Chapter III, Section 10], a
general fiber F, of « is the following type:

where F; is a smooth subvariety for every integer j with 1 < j<r, dim F; =
dim F; and F,NF;, =0 for any k #[. Here we note that if x(Ky +mlL) > 0,
then x(Kp, +mLr) >0 for every integer j with 1 < j<r. We also note that
0 <dim F; <3 for every j.

(I.1) If dim F, =0, then h°(Kp +3Lg) >0 for every integer j with 1 <
J<r.

(L2) Assume that dim F, =3 (resp. 1 <dim F, <2). Since Kp, + 3L is
nef by assumption, we see from [13, 1.5 Theorem] (resp. [8, Theorem 2.8]) that
h°(Kp, +3Lg) > 0. Hence h°(Kp, +3Lg,) > 0. So by [3, Lemma 4.1], we have
h°(Ky +3L) >0 and we get the assertion.
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(IT) Next we consider the case where ¢(X) = 0.

(IL1) If x(Ky +2L) = —o0, then h°(Ky +tL) =0 for t=1,2. So we get
the assertion by [13, 1.2 Theorem)].

(I.2) Assume that x(Ky +2L) > 0. By taking the reduction of (X, L), if
necessary, we may assume that Ky + 2L is nef by Remark 2.2 (iii) and (iv).

(I1.2.1) Assume that Qyx (L) is generically nef. Since Ky + 4L is ample by
assumption, we see from [13, 2.11 Corollary] that

3

3) o (X)(Ky +4L)L > — G Ky(4L) +3 (4L)2> (Ky +4L)L

= —3KZL* — 18Ky L® —24L*
Here we calculate A>(X, L)+ 2A43(X,L). By Remark 2.3 (iii) we have

4) Ay(X,L) +243(X,L)

= 11—2(1<X +3L)(Ky +8L)L* + % (2Ky +2L)L*

5 7 1 1
+ ZL“ - EKXL3 + ZK§L2 + 15 2(X)(Ky +4L)L

1 13 10 1
= §K§L2 + FKXL3 + ?L“ + 15 (X)(Ky +4L)L.

Hence by (3) and (4) we have

Ay(X, L) +245(X, L)

1 1 1 1
= gK}(Lz +€KXL3 + ?OL“ —l—ECz(X)(KX +4L)L

1 13 10 1
> §K§L2 - FKXE + ?L“ -5 (3KEL? + 18Ky L® +24L%)

Ll 8 3.4

=Kl R L
1

=15 (Kx + 2L)* L% + 3 (Kx + 3L)L3.

Since Ky + 2L is nef by assumption, we have A,(X,L)+2A43(X,L) > 0. Here

we note that A4(X,L) =h°(Ky + L) >0 by Remark 2.3 (ii.3). Therefore

h°(Ky +3L) = A4(X, L) + 245(X, L) + A2(X,L) > 0.

(I1.2.2) Assume that Qy{L) is not generically nef. Then by [13, 3.1
Theorem]| there exist smooth projective varieties X’ and Y, a birational morphism
1: X — X and a fiber space 4: X’ — Y such that m :=dim Y < 4 and a general
fiber F; of / is rationally connected and 4h°(D) = 0 for any Cartier divisor D on
F; with D ~q Kp, + j(1* (L)), with je[0,4 —m]NQ.
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(I1.2.2.1) The case where dim ¥ =0 or 1. Then h°(Ky + tL) = h°(Ky +
u*(tL)) =0 for r=1,2,3. But this is impossible by [13, 1.2 Theorem].

(I1.2.2.2) The case where dim ¥ =2. Then we have h°(Kg, + p*(2L) 5 ) = 0.
On the other hand, since x(Ky +2L) > 0, we have «(Kr, +u*(2L)p ) > 0. " Here
we note that dim F; =2. Hence h°(Kp, +u*(2L)r,) > 0 by [10, Proposition 1]
(see also [8, Theorem 2.8]). But this is a contradiction.

(I1.2.2.3) The case where dim ¥ = 3. In this case F; = P!, Since 1°(D) = 0
for any Cartier divisor D on F; with D ~q Kf, + 1*(L)p,, we have deg u* (L), = 1.
In this case 1°(Ky + L) =0 and h*(Oy) =0 hold. Hence by Theorem 2.1 we
obtain

(5) g4(X7L) :07
(6) g3(X,L) = h*(0y),
(7) g2 (X, L) = h*(Ky + 2L) + h*(Ox) — B3 (Cy).

Hence by (6), (7) and Remark 2.3 (i) we have A3(X,L)=h"(Ky +2L). By
assumption we have

(8) h'(Oy) = 0.

Since h°(Ky + L) = 0, we see from [13, 1.2 Theorem]| that we get h°(Ky + 2L)
>0 or h%(Ky +3L) >0. If h% Ky + 3L) > 0, then we get the assertion. So we
may assume that

9) WKy +2L) >0 and #h°(Ky+3L) =0.

We note that by Definition 2.3 (i) we get Fy(t) = h°(Ky +tL), Fi(t) =
Fo(t+1) — Fo(t) = h°(Ky + (t + 1)L) — h°(Ky + tL). Hence

Fi(2) = Fo(3) — Fo(2)
=h"(Ky 4+ 3L) — h°(Ky + 2L)
< 0.
On the other hand, by Theorem 2.2 we get

Fyit) = i:(t_ I >Aj(X, L).

=
Therefore
(10) 0> Fi(2)=A4(X,L)+ A3(X,L).
Furthermore

Fi(1) =h"(Ky +2L) = h°(Ky + L) >0
and by Theorem 2.2 we have
Fi(1) = A3(X,L).



350 YOSHIAKI FUKUMA

So we get

(11) As(X,L) > 0.
By (10) and (11) we have

(12) A>,(X,L) <O0.

Here we prove the following claim.

Cramm 3.1. The dimension of the base of the MRC-fibration® of X is at
least 3.

Proof.  Assume that the dimension of the base of the MRC-fibration is less
than or equal to two. Then we have

(13) h/(Oyx) =0 for every integer j > 3.

First we note that since g4(X,L) =0 and g3(X,L) = 7*(Ox) by (5) and (6), we
see from Remark 2.3 (i) that

(14) A4(X, L) = ga(X, L) + g3(X, L) — h*(Ox) = 0.

So by (11), (12) and (14) we have

4

> (-1)'4;(X, L) <0.

i=2

On the other hand by Remark 2.4 (1) we have

4
(=1)'4;(X, L) = 2(Ox) + % (Ky +3L)L>.
=2

14

Since (Ky +3L)L? >0 in this case, we have y(Cyx) < 0. So we see from (13)
that 4'(0y) > 0 and this contradicts the assumption (8). So we get the assertion
of Claim 3.1. O

By Claim 3.1 and the argument of [13, Step 2 in Page 741], we see from
Remark 2.4 (2) that*

1
Ay(X,L) = ﬁL2(2(K)2( + (X)) + 24Ky L + 50L) > 0

which contradicts (12). Therefore the assumption (9) is impossible.
Therefore we get the assertion of Theorem 3.1. O

3See Definition 2.4.
“Here we note that n =4 in this case.
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