ON A CONJECTURE OF BELTRAMETTI-SOMMESE FOR POLARIZED 4-FOLDS

Yoshiaki Fukuma

Abstract

Let (X, L) be a polarized manifold of dimension 4. In this paper, we prove that $h^0(K_X + 3L) > 0$ if $K_X + 3L$ is nef, which is a conjecture of Beltrametti-Sommese for polarized 4-folds.

1. Introduction

Let X be a projective variety of dimension n defined over the field of complex numbers, and let L be an ample line bundle on X. Then (X,L) is called a *polarized variety*. If X is smooth, then we say that (X,L) is a polarized *manifold*.

The adjoint bundle $K_X + (n-1)L$ of (X, L) plays an important role for investigating (X, L) (for example, see [1, Chapter 7, 9, and 11]), where K_X is the canonical line bundle.

In [1, Conjecture 7.2.7], Beltrametti and Sommese gave the following conjecture.

Conjecture 1 (Beltrametti-Sommese). Let (X,L) be an n-dimensional polarized manifold with $n \ge 3$. Assume that $K_X + (n-1)L$ is nef. Then $h^0(K_X + (n-1)L) > 0$.

For this conjecture, the following partial results have been obtained.

- (i) In [7, Theorem 2.4], the author proved that this conjecture is true if n = 3.
- (ii) In [13, 1.2 Theorem], Höring proved that this conjecture is true if $h^0(L) > 0$.

²⁰¹⁰ Mathematics Subject Classification. Primary 14C20; Secondary 14J35.

Key words and phrases. Polarized manifold, adjoint bundles, Beltrametti-Sommese conjecture, the sectional geometric genus.

This research was supported by JSPS KAKENHI Grant Number 24540043. Received July 29, 2014; revised October 9, 2014.

In this paper, we investigate the conjecture above, and the main purpose of this paper is to prove that the above conjecture is true for n = 4.

We will use the customary notation in algebraic geometry.

Preliminaries

NOTATION 2.1. Let X be a projective variety of dimension n and let L be a line bundle on X. Then we put

$$\chi(tL) = \sum_{j=0}^{n} \chi_{j}(X, L) \binom{t+j-1}{j}.$$

DEFINITION 2.1 ([5, Definition 2.1]). Let X be a projective variety of dimension n and let L be a line bundle on X.

(i) For every integer i with $0 \le i \le n$, the i-th sectional geometric genus $g_i(X,L)$ of (X,L) is defined by the following.

$$g_i(X, L) = (-1)^i (\chi_{n-i}(X, L) - \chi(\mathcal{O}_X)) + \sum_{i=0}^{n-i} (-1)^{n-i-j} h^{n-j}(\mathcal{O}_X).$$

(ii) For every integer i with $0 \le i \le n$, the i-th sectional H-arithmetic genus $\chi_i^H(X,L)$ of (X,L) is defined by the following

$$\chi_i^H(X,L) = \chi_{n-i}(X,L).$$

Remark 2.1. (i) Since $\chi_{n-i}(X,L) \in \mathbb{Z}$, we see that $\chi_i^H(X,L)$ and $g_i(X,L)$ are integer by definition.

- (ii) If $i = \dim X = n$, then $g_n(X, L) = h^n(\mathcal{O}_X)$ and $\chi_n^H(X, L) = \chi(\mathcal{O}_X)$. (iii) If i = 0, then $g_0(X, L) = L^n$ and $\chi_0^H(X, L) = L^n$.
- (iv) If i = 1, then $g_1(X, L) = g(X, L)$, where g(X, L) is the sectional genus If X is smooth, then the sectional genus g(X, L) can be written as

$$g(X, L) = 1 + \frac{1}{2}(K_X + (n-1)L)L^{n-1}.$$

(v) If i = 2, then we have¹

$$g_2(X, L) = \frac{1}{12} (K_X + (n-1)L)(K_X + (n-2)L)L^{n-2} + \frac{1}{12} c_2(X)L^{n-2} + \frac{n-3}{24} (2K_X + (n-2)L)L^{n-1} - 1 + h^1(\mathcal{O}_X).$$

¹ See [6, (2.2.A)].

(vi) If i = 3, then we have²

$$g_3(X,L) = \frac{(n-2)(n-3)^2}{48}L^n + \frac{(n-3)(3n-8)}{48}K_XL^{n-1} + \frac{n-3}{24}(K_X^2 + c_2(X))L^{n-2} + \frac{1}{24}K_Xc_2(X)L^{n-3} + 1 - h^1(\mathcal{O}_X) + h^2(\mathcal{O}_X).$$

(vii) In general for every integer i with $1 \le i \le n$ we get

$$\chi_i^H(X,L) = 1 - h^1(\mathcal{O}_X) + \dots + (-1)^{i-1}h^{i-1}(\mathcal{O}_X) + (-1)^i g_i(X,L).$$

Theorem 2.1. Let (X,L) be a polarized manifold with dim X=n, and let i be an integer with $0 \le i \le n-1$. Then

$$g_i(X,L) = \sum_{i=0}^{n-i-1} (-1)^j \binom{n-i}{j} h^0(K_X + (n-i-j)L) + \sum_{k=0}^{n-i} (-1)^{n-i-k} h^{n-k}(\mathcal{O}_X).$$

Proof. See
$$[5, \text{ Theorem } 2.3]$$
.

DEFINITION 2.2. (i) Let X (resp. Y) be an n-dimensional projective manifold, and let L (resp. H) be an ample line bundle on X (resp. Y). Then (X,L) is called a *simple blowing up of* (Y,H) if there exists a birational morphism $\pi: X \to Y$ such that π is a blowing up at a point of Y and $L = \pi^*(H) - E$, where E is the π -exceptional reduced divisor.

(ii) Let X (resp. M) be an n-dimensional projective manifold, and let L (resp. A) be an ample line bundle on X (resp. M). Then we say that (M,A) is a reduction of (X,L) if (X,L) is obtained by a composite of simple blowing ups of (M,A), and (M,A) is not obtained by a simple blowing up of any polarized manifold. The morphism $\phi_1: X \to M$ is called the reduction map.

Remark 2.2. Let (X, L) be a polarized manifold of dimension n and (M, A) a reduction of (X, L).

- (i) If (X, L) is not obtained by a simple blowing up of another polarized manifold, then we regard (X, L) as a reduction of itself.
- (ii) For any polarized manifold (X, L), there exists a reduction of (X, L). Moreover if $n \ge 3$, then a reduction of (X, L) is unique. (See [4, (11.11), Chapter II].)
- (iii) If $\kappa(K_X + (n-2)L) \ge 0$, then we infer that $K_M + (n-2)A$ is nef (see [1, Proposition 7.2.2 and Theorems 7.2.3, 7.2.4, 7.3.2, 7.3.4]).
- (iv) $h^0(K_X + tL) = h^0(K_M + tA)$ for every integer t with $1 \le t \le n 1$.

² See [6, (2.2.B)].

DEFINITION 2.3 ([9, Definition 3.1 and Definition 3.2]). Let (X, L) be a polarized manifold of dimension n.

(i) Let t be a positive integer. Then set

$$F_0(t) := h^0(K_X + tL),$$

 $F_i(t) := F_{i-1}(t+1) - F_{i-1}(t)$ for every integer i with $1 \le i \le n$.

- (ii) For every integer i with $0 \le i \le n$, the *ith Hilbert coefficient* $A_i(X, L)$ of (X, L) is defined by $A_i(X, L) = F_{n-i}(1)$.
 - Remark 2.3. (i) If $1 \le i \le n$, then $A_i(X, L)$ can be written as follows (see [9, Proposition 3.2]).

$$A_i(X,L) = (-1)^i \chi_i^H(X,L) + (-1)^{i-1} \chi_{i-1}^H(X,L)$$

= $g_i(X,L) + g_{i-1}(X,L) - h^{i-1}(\mathcal{O}_X).$

- (ii) By Definition 2.3 and [9, Proposition 3.1 (2)], we have the following:
 (ii.1) A_i(X, L) ∈ **Z** for every integer i with 0 ≤ i ≤ n.
 (ii.2) A₀(X, L) = Lⁿ.
 (ii.3) A_n(X, L) = h⁰(K_X + L).
- (iii) By Remark 2.1 (v) and (vi), and by Remark 2.3 (i), we see that $A_2(X, L)$ and $A_3(X, L)$ are the following.

$$\begin{split} A_2(X,L) &= \frac{(3n-2)(n+1)}{24}L^n + \frac{n}{4}K_XL^{n-1} + \frac{1}{12}(K_X^2 + c_2(X))L^{n-2}, \\ A_3(X,L) &= \frac{(n-2)(n^2-1)}{48}L^n + \frac{n(3n-5)}{48}K_XL^{n-1} + \frac{n-1}{24}K_X^2L^{n-2} \\ &+ \frac{1}{24}c_2(X)(K_X + (n-1)L)L^{n-3}. \end{split}$$

Theorem 2.2. Let (X, L) be a polarized manifold of dimension n and let t be a positive integer. Then for every integer i with $0 \le i \le n$ we have

$$F_{n-i}(t) = \sum_{j=0}^{i} {t-1 \choose i-j} A_j(X, L).$$

Proof. See [9, Theorem 3.1].

COROLLARY 2.1 ([9, Corollary 3.1]). Let (X, L) be a polarized manifold of dimension n, and let t be a positive integer. Then we have

$$h^0(K_X + tL) = \sum_{j=0}^n {t-1 \choose n-j} A_j(X, L).$$

Remark 2.4. Let (X, L) be a polarized manifold of dimension n. Then by using $A_i(X, L)$, the left hand side of equations (6) and (7) in [13, 4.1 Lemma] can be written as follows.

(1)
$$\chi(\mathcal{O}_X) + \frac{1}{2}(K_X + (n-1)L)L^{n-1} = \sum_{i=2}^n (-1)^i A_i(X, L),$$

(2)
$$L^{n-2}(2(K_X^2+c_2(X))+6nK_XL+(n+1)(3n-2)L^2)=24A_2(X,L).$$

Theorem 2.3. Let X be a projective manifold. Then there exist smooth projective varieties X' and Y, a birational morphism $\mu: X' \to X$ and a fiber space $\phi: X' \to Y$ such that Y is not uniruled and if dim $X' > \dim Y$, then the general fiber of ϕ is rationally connected.

DEFINITION 2.4. The fiber space $\phi: X' \to Y$ in Theorem 2.3 is called the *MRC-fibration of X*, and *Y* is called the *base of the MRC-fibration*.

3. Main result

In this section we are going to prove Conjecture 1 for the case of dimension 4.

THEOREM 3.1. Let (X,L) be a polarized manifold of dimension 4. Assume that $K_X + 3L$ is nef. Then $h^0(K_X + 3L) > 0$ holds.

Proof. (I) First we consider the case where q(X) > 0 (see also the proof of [8, Theorem 3.3]). Let $\alpha: X \to \mathrm{Alb}(X)$ be the Albanese map. Then $1 \leq \dim \alpha(X) \leq 4$. Then by [12, Corollary 10.7, Chapter III, Section 10], a general fiber F_{α} of α is the following type:

$$F_{\alpha} = \bigcup_{i=1}^{r} F_{i},$$

where F_j is a smooth subvariety for every integer j with $1 \le j \le r$, $\dim F_k = \dim F_l$ and $F_k \cap F_l = \emptyset$ for any $k \ne l$. Here we note that if $\kappa(K_X + mL) \ge 0$, then $\kappa(K_{F_j} + mL_{F_j}) \ge 0$ for every integer j with $1 \le j \le r$. We also note that $0 \le \dim F_i \le 3$ for every j.

- (I.1) If dim $F_{\alpha} = 0$, then $h^0(K_{F_j} + 3L_{F_j}) > 0$ for every integer j with $1 \le j \le r$.
- (I.2) Assume that dim $F_{\alpha}=3$ (resp. $1 \le \dim F_{\alpha} \le 2$). Since $K_{F_j}+3L_{F_j}$ is nef by assumption, we see from [13, 1.5 Theorem] (resp. [8, Theorem 2.8]) that $h^0(K_{F_j}+3L_{F_j})>0$. Hence $h^0(K_{F_{\alpha}}+3L_{F_{\alpha}})>0$. So by [3, Lemma 4.1], we have $h^0(K_X+3L)>0$ and we get the assertion.

- (II) Next we consider the case where q(X) = 0.
- (II.1) If $\kappa(K_X + 2L) = -\infty$, then $h^0(K_X + tL) = 0$ for t = 1, 2. So we get the assertion by [13, 1.2 Theorem].
- (II.2) Assume that $\kappa(K_X + 2L) \ge 0$. By taking the reduction of (X, L), if necessary, we may assume that $K_X + 2L$ is nef by Remark 2.2 (iii) and (iv).
- (II.2.1) Assume that $\Omega_X \langle L \rangle$ is generically nef. Since $K_X + 4L$ is ample by assumption, we see from [13, 2.11 Corollary] that

(3)
$$c_2(X)(K_X + 4L)L \ge -\left(\frac{3}{4}K_X(4L) + \frac{3}{8}(4L)^2\right)(K_X + 4L)L$$
$$= -3K_X^2L^2 - 18K_XL^3 - 24L^4.$$

Here we calculate $A_2(X,L) + 2A_3(X,L)$. By Remark 2.3 (iii) we have

(4)
$$A_{2}(X,L) + 2A_{3}(X,L)$$

$$= \frac{1}{12}(K_{X} + 3L)(K_{X} + 8L)L^{2} + \frac{1}{24}(2K_{X} + 2L)L^{3}$$

$$+ \frac{5}{4}L^{4} + \frac{7}{6}K_{X}L^{3} + \frac{1}{4}K_{X}^{2}L^{2} + \frac{1}{12}c_{2}(X)(K_{X} + 4L)L$$

$$= \frac{1}{3}K_{X}^{2}L^{2} + \frac{13}{6}K_{X}L^{3} + \frac{10}{3}L^{4} + \frac{1}{12}c_{2}(X)(K_{X} + 4L)L.$$

Hence by (3) and (4) we have

$$A_{2}(X,L) + 2A_{3}(X,L)$$

$$= \frac{1}{3}K_{X}^{2}L^{2} + \frac{13}{6}K_{X}L^{3} + \frac{10}{3}L^{4} + \frac{1}{12}c_{2}(X)(K_{X} + 4L)L$$

$$\geq \frac{1}{3}K_{X}^{2}L^{2} + \frac{13}{6}K_{X}L^{3} + \frac{10}{3}L^{4} - \frac{1}{12}(3K_{X}^{2}L^{2} + 18K_{X}L^{3} + 24L^{4})$$

$$= \frac{1}{12}K_{X}^{2}L^{2} + \frac{8}{12}K_{X}L^{3} + \frac{4}{3}L^{4}$$

$$= \frac{1}{12}(K_{X} + 2L)^{2}L^{2} + \frac{1}{3}(K_{X} + 3L)L^{3}.$$

Since $K_X + 2L$ is nef by assumption, we have $A_2(X, L) + 2A_3(X, L) > 0$. Here we note that $A_4(X, L) = h^0(K_X + L) \ge 0$ by Remark 2.3 (ii.3). Therefore

$$h^0(K_X + 3L) = A_4(X, L) + 2A_3(X, L) + A_2(X, L) > 0.$$

(II.2.2) Assume that $\Omega_X \langle L \rangle$ is not generically nef. Then by [13, 3.1 Theorem] there exist smooth projective varieties X' and Y, a birational morphism $\mu: X' \to X$ and a fiber space $\lambda: X' \to Y$ such that $m:=\dim Y < 4$ and a general fiber F_λ of λ is rationally connected and $h^0(D) = 0$ for any Cartier divisor D on F_λ with $D \sim_{\mathbf{Q}} K_{F_\lambda} + j(\mu^*(L))_{F_\lambda}$ with $j \in [0, 4-m] \cap \mathbf{Q}$.

(II.2.2.1) The case where dim Y = 0 or 1. Then $h^0(K_X + tL) = h^0(K_{X'} + \mu^*(tL)) = 0$ for t = 1, 2, 3. But this is impossible by [13, 1.2 Theorem].

(II.2.2.2) The case where dim Y=2. Then we have $h^0(K_{F_{\lambda}}+\mu^*(2L)_{F_{\lambda}})=0$. On the other hand, since $\kappa(K_X+2L)\geq 0$, we have $\kappa(K_{F_{\lambda}}+\mu^*(2L)_{F_{\lambda}})\geq 0$. Here we note that dim $F_{\lambda}=2$. Hence $h^0(K_{F_{\lambda}}+\mu^*(2L)_{F_{\lambda}})>0$ by [10, Proposition 1] (see also [8, Theorem 2.8]). But this is a contradiction.

(II.2.2.3) The case where dim Y=3. In this case $F_{\lambda} \cong \mathbf{P}^1$. Since $h^0(D)=0$ for any Cartier divisor D on F_{λ} with $D \sim_{\mathbf{Q}} K_{F_{\lambda}} + \mu^*(L)_{F_{\lambda}}$, we have deg $\mu^*(L)_{F_{\lambda}} = 1$. In this case $h^0(K_X + L) = 0$ and $h^4(\mathcal{O}_X) = 0$ hold. Hence by Theorem 2.1 we obtain

$$(5) g_4(X,L) = 0,$$

(6)
$$g_3(X,L) = h^3(\mathcal{O}_X),$$

(7)
$$g_2(X,L) = h^0(K_X + 2L) + h^2(\mathcal{O}_X) - h^3(\mathcal{O}_X).$$

Hence by (6), (7) and Remark 2.3 (i) we have $A_3(X, L) = h^0(K_X + 2L)$. By assumption we have

$$h^1(\mathcal{O}_X) = 0.$$

Since $h^0(K_X + L) = 0$, we see from [13, 1.2 Theorem] that we get $h^0(K_X + 2L) > 0$ or $h^0(K_X + 3L) > 0$. If $h^0(K_X + 3L) > 0$, then we get the assertion. So we may assume that

(9)
$$h^0(K_X + 2L) > 0$$
 and $h^0(K_X + 3L) = 0$.

We note that by Definition 2.3 (i) we get $F_0(t) = h^0(K_X + tL)$, $F_1(t) = F_0(t+1) - F_0(t) = h^0(K_X + (t+1)L) - h^0(K_X + tL)$. Hence

$$F_1(2) = F_0(3) - F_0(2)$$

$$= h^0(K_X + 3L) - h^0(K_X + 2L)$$

$$< 0.$$

On the other hand, by Theorem 2.2 we get

$$F_{4-i}(t) = \sum_{i=0}^{i} {t-1 \choose i-j} A_j(X, L).$$

Therefore

(10)
$$0 > F_1(2) = A_2(X, L) + A_3(X, L).$$

Furthermore

$$F_1(1) = h^0(K_X + 2L) - h^0(K_X + L) > 0$$

and by Theorem 2.2 we have

$$F_1(1) = A_3(X, L).$$

So we get

(11)
$$A_3(X,L) > 0.$$

By (10) and (11) we have

(12)
$$A_2(X,L) < 0.$$

Here we prove the following claim.

CLAIM 3.1. The dimension of the base of the MRC-fibration³ of X is at least 3.

Proof. Assume that the dimension of the base of the MRC-fibration is less than or equal to two. Then we have

(13)
$$h^{j}(\mathcal{O}_{X}) = 0$$
 for every integer $j \geq 3$.

First we note that since $g_4(X,L) = 0$ and $g_3(X,L) = h^3(\mathcal{O}_X)$ by (5) and (6), we see from Remark 2.3 (i) that

(14)
$$A_4(X,L) = g_4(X,L) + g_3(X,L) - h^3(\mathcal{O}_X) = 0.$$

So by (11), (12) and (14) we have

$$\sum_{i=2}^{4} (-1)^i A_i(X, L) < 0.$$

On the other hand by Remark 2.4 (1) we have

$$\sum_{i=2}^{4} (-1)^{i} A_{i}(X, L) = \chi(\mathcal{O}_{X}) + \frac{1}{2} (K_{X} + 3L) L^{3}.$$

Since $(K_X + 3L)L^3 > 0$ in this case, we have $\chi(\mathcal{O}_X) < 0$. So we see from (13) that $h^1(\mathcal{O}_X) > 0$ and this contradicts the assumption (8). So we get the assertion of Claim 3.1.

By Claim 3.1 and the argument of [13, Step 2 in Page 741], we see from Remark 2.4 (2) that⁴

$$A_2(X,L) = \frac{1}{24}L^2(2(K_X^2 + c_2(X)) + 24K_XL + 50L^2) > 0$$

which contradicts (12). Therefore the assumption (9) is impossible.

Therefore we get the assertion of Theorem 3.1.

³ See Definition 2.4.

⁴Here we note that n = 4 in this case.

Acknowledgment. The author would like to thank the referee for giving valuable suggestions.

REFERENCES

- [1] M. C. Beltrametti and A. J. Sommese, The adjunction theory of complex projective varieties, de Gruyter expositions in math. 16, Walter de Gruyter, Berlin, New York, 1995.
- [2] F. CAMPANA, Connexite rationnelle des varietes de Fano, Ann. Sci. Ecole Norm. Sup. (4) 25 (1992), 539–545.
- [3] J. A. CHEN AND C. D. HACON, Linear series of irregular varieties, Algebraic geometry in East Asia, Kyoto 2001, World Sci. Publishing, River Edge, NJ, 2002, 143–153.
- [4] T. Fujita, Classification theories of polarized varieties, London Math. Soc. lecture note series 155, Cambridge University Press, Cambridge, 1990.
- [5] Y. FUKUMA, On the sectional geometric genus of quasi-polarized varieties, I, Comm. Alg. 32 (2004), 1069-1100.
- [6] Y. FUKUMA, A formula for the sectional geometric genus of quasi-polarized manifolds by using intersection numbers, J. Pure Appl. Algebra 194 (2004), 113–126.
- [7] Y. FUKUMA, On a conjecture of Beltrametti-Sommese for polarized 3-folds, Internat. J. Math. 17 (2006), 761–789.
- [8] Y. FUKUMA, On the dimension of global sections of adjoint bundles for polarized 3-folds and 4-folds, J. Pure Appl. Algebra **211** (2007), 609–621.
- [9] Y. FUKUMA, A study on the dimension of global sections of adjoint bundles for polarized manifolds, J. Algebra 320 (2008), 3543-3558.
- [10] Y. FUKUMA, A lower bound for the second sectional geometric genus of quasi-polarized manifolds and its applications, Rend. Semin. Mat. Univ. Politec. Torino 69 (2011), 73–90.
- [11] T. GRABER, J. HARRIS AND J. STARR, Families of rationally connected varieties, J. Amer. Math. Soc. 16 (2003), 57-67.
- [12] R. HARTSHORNE, Algebraic geometry, Graduate texts in math. 52, Springer-Verlag, New York, 1977.
- [13] A. HÖRING, On a conjecture of Beltrametti and Sommese, J. Algebraic Geom. 21 (2012), 721–751.
- [14] J. KOLLÁR, Y. MIYAOKA AND S. MORI, Rational connectedness and boundedness of Fano manifolds, J. Differential Geom. 36 (1992), 765–779.

Yoshiaki Fukuma
Department of Mathematics
Faculty of Science
Kochi University
Akebono-cho, Kochi 780-8520
Japan
E-mail: fukuma@kochi-u.ac.jp