ON A CONJECTURE OF KAPLANSKY

SHÔICHIRO SAKAI

(Received August. 14,1959)

Prof. Kaplansky stated a conjecture that any derivation of a C^* -algebra would be automatically continuous [1]. In this note, we shall show that this conjecture is in fact true.

THEOREM. Any derivation of a C*-algebra is automatically continuous.

PROOF. Let A be a C^* -algebra, 'a derivation of A. It is enough to show that the derivation is continuous on the self-adjoint portion A_s of A. Therefore if it is not continuous, by the closed graph theorem there is a sequence $\{x_n\}$ $(x_n \neq 0)$ in A_s such that $x_n \rightarrow 0$ and $x'_n \rightarrow a + ib(\neq 0)$, where a and b are self-adjoint. First, suppose that $a \neq 0$ and there exists a positive number $\lambda(>0)$ in the spectrum of a (otherwise consider $\{-x_n\}$). It is enough to assume that $\lambda = 1$.

Then there is a positive element h(||h|| = 1) of A such that $hah \ge \frac{1}{2}h^2$. Put $y_n = x_n + 3 \cdot ||x_n|| \cdot I$, then $y_n \to 0$, $y'_n = x'_n$ and $(hy_nh)' = h'y_nh + hy'_n h + hy_nh'$; hence $(hy_nh)' \to h(a + ib)h$.

Therefore

$$||(hy_{n_0}h)' - h(a + ib)h|| < \frac{1}{8}$$
 for some n_0 (1).

On the other hand

$$hy_n h \leq 4 \|x_n\| h^2$$
 and $\frac{1}{2} \cdot \frac{hy_n h}{4 \|x_n\|} \leq hah$ (2)

Since $||x_n|| \cdot I + x_n \ge 0$, $\frac{hy_n h}{4||x_n||} \ge \frac{1}{2}h^2$.

Hence

Let C be a C^{*}-subalgebra of A generated by $hy_{n_0}h$ and I, then by the (3) there is a character φ of C such that $\varphi\left(\frac{hy_{n_0}h}{4||x_{n_0}||}\right) \ge \frac{1}{2}$. Let $\overline{\varphi}$ be an extended state of φ on A, and $\mathfrak{m} = \{x \mid \overline{\varphi}(x^*x) = 0, x \in A\}$, then $C \cap \mathfrak{m}$ is a maximal ideal of C; it can be written $hy_{n_0}h - \varphi(hy_{n_0}h) \cdot I$ $= u^2 - v^2$ with $u, v \in C \cap \mathfrak{m}(u, v \geq 0)$; hence $(hy_{n_0}h)' = u'u + uu' - v'v - vv'$, so that by the Schwartz's inequality

Then by the (1) and (4)

$$|\overline{\varphi}(h(a+ib)h)| < \frac{1}{8}$$
(5)

On the other hand by the (2)

$$ert \overline{arphi}(h(a+ib)h) ert \ge \overline{arphi}(hah)$$

= $rac{1}{2} \overline{arphi} \left(rac{hy_{n_0}h}{4 \Vert x_{n_0} \Vert}
ight) \ge rac{1}{2} \cdot rac{1}{2} = rac{1}{4}$

; hence $|\overline{\varphi}(h(a+ib)h)| \ge \frac{1}{4}$.

This contradicts the above inequality (5), so that a = 0.

Next suppose that $b \neq 0$ and there exists a positive number $\mu(>0)$ in the spectrum of b (otherwise consider $\{-x_n\}$). It is enough to assume that $\mu = 1$. Then there is a positive element k (||k|| = 1) of A such that $kbk \ge \frac{1}{2}k^2$; moreover $||(ky_{n_1}k)' - k(a + ib)k|| < \frac{1}{8}$ for some n_1 .

Let C_1 be a C^* -subalgebra of A generated by $ky_{n_1}k$ and I, then there is a character φ_1 of C_1 such that $\varphi_1\left(\frac{ky_{n_1}k}{4||x_{n_1}||}\right) \ge \frac{1}{2}$. Let $\overline{\varphi}_1$ be an extended state of φ_1 on A, then $\overline{\varphi}_1((ky_{n_1}k)') = 0$; hence $|\overline{\varphi}_1(k(a+ib)k)| < \frac{1}{8}$.

On the other hand

$$egin{aligned} &|\, ar{arphi}_1(k(a+ib)k)| \geqq ar{arphi}_1(kbk) \geqq ar{arphi}_1igg(rac{1}{2}\,k^2igg) \ & \geqq rac{1}{2}\,ar{arphi}_1igg(rac{ky_n,k}{4\|x_{
u_1}\|}igg) \geqq rac{1}{4} \end{aligned}$$

; hence $|\overline{\varphi}_1(k(a+ib)k)| \geq \frac{1}{4}$.

This contradicts the above inequality; hence b = 0, so that a + ib = 0. Now we obtain a contradiction and this completes the proof.

REFERENCES

- I. KAPLANSKY, Some aspects of analysis and probability, New York, 1958.
 S. SAKAI, On some problems of C*-algebras, Tôhoku Math. J. 11, (1959) 453-455.

MATHEMATICAL INSTITUTE, TÔHOKU UNIVERSITY.