On a conjecture of spectral extremal problems*

Jing Wang, Liying Kang \dagger Yisai Xue
Department of Mathematics, Shanghai University, Shanghai 200444, P.R. China

Abstract

For a simple graph F, let $\operatorname{Ex}(n, F)$ and $\operatorname{Ex}_{\mathrm{sp}}(n, F)$ denote the set of graphs with the maximum number of edges and the set of graphs with the maximum spectral radius in an n-vertex graph without any copy of the graph F, respectively. The Turán graph $T_{n, r}$ is the complete r-partite graph on n vertices where its part sizes are as equal as possible. Cioabă, Desai and Tait [The spectral radius of graphs with no odd wheels, European J. Combin., 99 (2022) 103420] posed the following conjecture: Let F be any graph such that the graphs in $\operatorname{Ex}(n, F)$ are Turán graphs plus $O(1)$ edges. Then $\operatorname{Ex}_{\text {sp }}(n, F) \subset \operatorname{Ex}(n, F)$ for sufficiently large n. In this paper we consider the graph F such that the graphs in $\operatorname{Ex}(n, F)$ are obtained from $T_{n, r}$ by adding $O(1)$ edges, and prove that if G has the maximum spectral radius among all n-vertex graphs not containing F, then G is a member of $\operatorname{Ex}(n, F)$ for n large enough. Then Cioabă, Desai and Tait's conjecture is completely solved.

Key words: Spectral radius; Spectral extremal graph; Turán graph.

1 Introduction

Let F be a simple graph. A graph G is F-free if there is no subgraph of G isomorphic to F. The Turán type extremal problem is to determine the maximum number of edges in a graph on n vertices that is F-free, and the maximum number of edges is called the Turán number, denoted by ex (n, F). Such a graph with ex (n, F) edges is called an extremal graph for F and we denote by $\operatorname{Ex}(n, F)$ the set of all extremal graphs on n vertices for F. The Turán graph is the complete r-partite graph on n vertices where each partite set has either $\left\lfloor\frac{n}{r}\right\rfloor$ or $\left\lceil\frac{n}{r}\right\rceil$ vertices and the edge set consists of all pairs joining distinct parts, denoted by $T_{n, r}$. The well-known Turán Theorem [26] states that the extremal graph corresponding to Turán number ex $\left(n, K_{r+1}\right)$ is $T_{n, r}$, i.e. $\operatorname{ex}\left(n, K_{r+1}\right)=e\left(T_{n, r}\right)$. Erdős, Stone and Simonovits [12, 11] presented the following result

$$
\begin{equation*}
\operatorname{ex}(n, F)=\left(1-\frac{1}{\chi(F)-1}\right) \frac{n^{2}}{2}+o\left(n^{2}\right) \tag{1}
\end{equation*}
$$

where $\chi(F)$ is the vertex-chromatic number of F. There are lots of researches on Turán type extremal problems (such as [2, 13, 3, 17, 24, 16]).

In this paper we focus on spectral analogues of the Turán type problem for graphs, which was proposed by Nikiforov [20]. The spectral Turán type problem is to determine the maximum spectral radius instead of the number of edges among all n-vertex F-free graphs. The graph which attains the maximum spectral radius is called a spectral extremal graph. We denote by $\operatorname{Ex}_{\mathrm{sp}}(n, F)$ the set of all spectral extremal graphs for F. Researches of the spectral Turán type problem have drawn increasing extensive intersect (see [18, 11, 15, 22, 28]). Nikiforov [19] showed that if G is a K_{r+1}-free graph on n vertices, then $\lambda(G) \leq \lambda\left(T_{n, r}\right)$, with equality if and only if $G=T_{n, r}$. This implies that if G attains the maximum spectral radius over all

[^0]n-vertex K_{r+1}-free graphs for sufficiently large n, then $G \in \operatorname{Ex}\left(n, K_{r+1}\right)$. Cioabă, Feng, Tait and Zhang [4] proved that the spectral extremal graph for F_{k} belongs to $\operatorname{Ex}\left(n, F_{k}\right)$, where F_{k} is the graph consisting of k triangles which intersect in exactly one common vertex. In addition, Chen, Gould, Pfender and Wei [3] proved that ex $\left(n, F_{k, r+1}\right)=e\left(T_{n, r}\right)+O(1)$, where $F_{k, r+1}$ is the graph consisting of k copies of K_{r+1} which intersect in a single vertex. Naturally, Cioabă, Desai and Tait [5] raised the following conjecture.

Conjecture 1.1 (Cioabă et al. [5]). Let F be any graph such that the graphs in $\operatorname{Ex}(n, F)$ are Turán graphs plus $O(1)$ edges. Then $\operatorname{Ex}_{\mathrm{sp}}(n, F) \subset \operatorname{Ex}(n, F)$ for sufficiently large n.

The results of Nikiforov [19], Cioabă, Feng, Tait and Zhang [4], Li and Peng [27], and Desai, Kang, Li, Ni , Tait and Wang [8] tell us that Conjecture 1.1] holds for $K_{r+1}, F_{k}, H_{s, k}$ and $F_{k, r}$, where $H_{s, k}$ is the graph defined by intersecting s triangles and k odd cycles of length at least 5 in exactly one common vertex. In this paper, we shall prove the following theorem which confirms Conjecture 1.1 .

Theorem 1.2. Let $r \geq 2$ be an integer, and F be any graph such that the graphs in $\operatorname{Ex}(n, F)$ are obtained from $T_{n, r}$ by adding $O(1)$ edges. For sufficiently large n, if G has the maximal spectral radius over all n-vertex F-free graphs, then

$$
G \in \operatorname{Ex}(n, F) .
$$

2 Notation and Preliminaries

In this section we introduce some notation and give the preparatory lemmas.
Let $G=(V(G), E(G))$ be a simple graph with vertex set $V(G)$ and edge set $E(G)$. If $u, v \in V(G)$, and $u v \in E(G)$, then u and v are said to be adjacent. For a vertex $v \in V(G)$, the neighborhood $N_{G}(v)$ (or simply $N(v)$) of v is $\{u \mid u v \in E(G)\}$, and the degree $d_{G}(v)$ (or simply $d(v)$) of v is $\left|N_{G}(v)\right|$. The minimum and maximum degrees are denoted by $\delta(G)$ and $\Delta(G)$, respectively. For $S \subseteq V(G)$ and $v \in V(G)$, let $d_{S}(v)=\left|N_{S}(v)\right|=\left|N_{G}(v) \cap S\right|$. For $V_{1}, V_{2} \subseteq V(G), e\left(V_{1}, V_{2}\right)$ denotes the number of edges of G between V_{1} and V_{2}. For $S \subseteq V(G)$, denote by $G \backslash S$ the graph obtained from G by deleting all vertices of S and the incident edges. Denote by $G[S]$ the graph induced by S whose vertex set is S and whose edge set consists of all edges of G which have both ends in S.

Let G be a simple graph with n vertices. The adjacent matrix of G is $A(G)=\left(a_{i j}\right)_{n \times n}$ with $a_{i j}=1$ if $i j \in E(G)$, and $a_{i j}=0$ otherwise. The spectral radius of G is the largest eigenvalue of $A(G)$, denoted by $\lambda(G)$. Let G_{1}, \ldots, G_{s} be the components of G, then $\lambda(G)=\max \left\{\lambda\left(G_{i}\right) \mid i \in[s]\right\}$. For a connected graph G, let $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)^{\mathrm{T}}$ be an eigenvector of $A(G)$ corresponding to $\lambda(G)$. Then \mathbf{x} is a positive real vector, and

$$
\begin{equation*}
\lambda(G) x_{i}=\sum_{i j \in E(G)} x_{j}, \text { for any } i \in[n] . \tag{2}
\end{equation*}
$$

The following Rayleigh quotient equation is very useful:

$$
\begin{equation*}
\lambda(G)=\max _{\mathbf{x} \in \mathbb{R}_{+}^{n}} \frac{\mathbf{x}^{\mathrm{T}} A(G) \mathbf{x}}{\mathbf{x}^{\mathrm{T}} \mathbf{x}}=\max _{\mathbf{x} \in \mathbb{R}_{+}^{n}} \frac{2 \sum_{i j \in E(G)} x_{i} x_{j}}{\mathbf{x}^{\mathrm{T}} \mathbf{x}} \tag{3}
\end{equation*}
$$

We have the following two lemmas from Zhan [29].
Lemma 2.1 (Zhan [29]). Let A and B be two nonnegative square matrices. If $B<A$ and A is irreducible, then $\lambda(B)<\lambda(A)$.

Lemma 2.2 (Zhan [29]). Let A be a nonnegative square matrix. If B is a principal submatrix of A, then $\lambda(B) \leq \lambda(A)$. If A is irreducible and B is a proper principal submatrix of A, then $\lambda(B)<\lambda(A)$.

Let $A(G)$ be the adjacent matrix of graph G. Then G is connected if and only if $A(G)$ is irreducible. Combining with Lemmas 2.1 and 2.2, we have the following result.

Lemma 2.3. Let G be a connected graph. If G^{\prime} is a proper subgraph of G, then $\lambda\left(G^{\prime}\right)<\lambda(G)$.
Recall the classical stability theorem proved by Erdős [9, 10] and Simonovits [23]:
Lemma 2.4 (Erdős [9, 10], Simonovits [23]). For every $r \geq 2, \varepsilon>0$, and $(r+1)$-chromatic graph F, there exists $\delta>0$ such that if a graph G of order n satisfies $e(G)>\left(1-\frac{1}{r}-\delta\right) \frac{n^{2}}{2}$, then either G contains F, or G differs form $T_{n, r}$ in at most εn^{2} edges.

Write $K_{r}\left(n_{1}, \ldots, n_{r}\right)$ for the complete r-partite graph with classes of sizes n_{1}, \ldots, n_{r}. Nikiforov [21] proved the spectral version of Stability Lemma.

Lemma 2.5 (Nikiforov [21]). Let $r \geq 2,1 / \ln n<c<r^{-8(r+21)(r+1)}, 0<\varepsilon<2^{-36} r^{-24}$ and G be a graph on n vertices. If $\lambda(G)>\left(1-\frac{1}{r}-\varepsilon\right) n$, then one of the following statements holds:
(a) G contains a $K_{r+1}\left(\lfloor c \ln n\rfloor, \ldots,\lfloor c \ln n\rfloor,\left\lceil n^{1-\sqrt{c}}\right\rceil\right)$;
(b) G differs from $T_{n, r}$ in fewer than $\left(\varepsilon^{1 / 4}+c^{1 /(8 r+8)}\right) n^{2}$ edges.

From the above theorem, one can easily get the following result.
Corollary 2.6. Let F be a graph with chromatic number $\chi(F)=r+1$. For every $\varepsilon>0$, there exist $\delta>0$ and n_{0} such that if G is an F-free graph on $n \geq n_{0}$ vertices with $\lambda(G) \geq\left(1-\frac{1}{r}-\delta\right) n$, then G can be obtained from $T_{n, r}$ by adding and deleting at most εn^{2} edges.

For $K_{r}\left(n_{1}, n_{2}, \ldots, n_{r}\right)$, let $n=\sum_{i=1}^{r} n_{i}$. For convenience, we assume that $n_{1} \geq n_{2} \geq \ldots \geq n_{r}>0$. It is well-known [6, p. 74] or [7] that the characteristic polynomial of $K_{r}\left(n_{1}, n_{2}, \ldots, n_{r}\right)$ is given as

$$
\phi\left(K_{r}\left(n_{1}, n_{2}, \ldots, n_{r}\right), x\right)=x^{n-r}\left(1-\sum_{i=1}^{r} \frac{n_{i}}{x+n_{i}}\right) \prod_{j=1}^{r}\left(x+n_{j}\right) .
$$

So the spectral radius $\lambda\left(K_{r}\left(n_{1}, n_{2}, \ldots, n_{r}\right)\right)$ satisfies the following equation:

$$
\begin{equation*}
\sum_{i=1}^{r} \frac{n_{i}}{\lambda\left(K_{r}\left(n_{1}, n_{2}, \ldots, n_{r}\right)\right)+n_{i}}=1 \tag{4}
\end{equation*}
$$

Feng, Li and Zhang [14, Theorem 2.1] proved the following lemma, which can also be seen in Stevanović, Gutnam and Rehman [25].

Lemma 2.7 (Feng et al. [14], Stevanović et al. [25]). If $n_{i}-n_{j} \geq 2$, then

$$
\lambda\left(K_{r}\left(n_{1}, \ldots, n_{i}-1, \ldots, n_{j}+1, \ldots, n_{r}\right)\right)>\lambda\left(K_{r}\left(n_{1}, \ldots, n_{i}, \ldots, n_{j}, \ldots, n_{r}\right)\right) .
$$

The following lemma was given in [4].
Lemma 2.8 (Cioabă et al. [4]). Let A_{1}, \ldots, A_{p} be finite sets. Then

$$
\left|A_{1} \cap \ldots \cap A_{p}\right| \geq \sum_{i=1}^{p}\left|A_{i}\right|-(p-1)\left|\bigcup_{i=1}^{p} A_{i}\right| .
$$

3 Proof of Theorem 1.2

Let F be any graph such that the graphs in $\operatorname{Ex}(n, F)$ are Turán graphs plus $O(1)$ edges. We may assume that the graphs in $\operatorname{Ex}(n, F)$ are obtained from $T_{n, r}$ by adding a edges. Then $\operatorname{ex}(n, F)=e\left(T_{n, r}\right)+a$, which implies that $\chi(F)=r+1$ by (1) and the fact $\left(1-\frac{1}{r}\right) \frac{n^{2}}{2}-\frac{r}{8} \leq e\left(T_{n, r}\right) \leq\left(1-\frac{1}{r}\right) \frac{n^{2}}{2}$. In the sequel, we always assume that G is a graph on n vertices containing no F as a subgraph and attaining the maximum spectral radius. The aim of this section is to prove that G is obtained from $T_{n, r}$ by adding a edges for n large enough.

The sketch of our proof is as follows: Firstly, we give a lower bound on $\lambda(G)$, and determine a partition $V(G)=V_{1} \cup \cdots \cup V_{r}$ such that $\sum_{1 \leq i<j \leq r} e\left(V_{i}, V_{j}\right)$ attains the maximum by using the spectral version of Stability Lemma. Then we show that any vertex except at most $2 a$ vertices in V_{i} is adjacent to all vertices in V_{j} for any $i, j \in[r]$ and $j \neq i$. Next, we prove that all vertices have eigenvector entry very close to the maximum entry and show that the partition is balanced. Finally, we prove $e(G)=\operatorname{ex}(n, F)$ by contradiction.

Lemma 3.1. G is connected.

Proof. Suppose to the contrary that G is not connected. Assume G_{1}, \ldots, G_{s} are the components of G and $\lambda\left(G_{1}\right)=\max \left\{\lambda\left(G_{i}\right) \mid i \in[s]\right\}$, then $\lambda(G)=\lambda\left(G_{1}\right)$ and $\left|V\left(G_{1}\right)\right| \leq n-1$. For any vertex $u \in V\left(G_{1}\right)$, let G^{\prime} be the graph obtained from G_{1} by adding a pendent edge $u v$ at u and $n-1-\left|V\left(G_{1}\right)\right|$ isolated vertices. Then $\lambda\left(G^{\prime}\right)>\lambda\left(G_{1}\right)=\lambda(G)$ by Lemma 2.3. This implies that G^{\prime} contains a copy of F as a subgraph, denote it as F_{1}, then $u v$ is an edge of F_{1}. Next, we claim that $d_{G_{1}}(u)<|V(F)|$. Otherwise, $d_{G_{1}}(u) \geq|V(F)|$. Then there exists a vertex $w \in N_{G_{1}}(u)$ and $w \notin V\left(F_{1}\right)$. Then $F_{1}-u v+u w$ is a copy of F in G_{1}, this is a contraction. Due to the arbitrary of vertex $u, \Delta\left(G_{1}\right)<|V(F)|$. Thus $\lambda(G)=\lambda\left(G_{1}\right) \leq \Delta\left(G_{1}\right)<|V(F)|<\lambda\left(T_{n, r}\right)$ and this contradicts the fact that G has the maximum spectral radius among all n-vertex F-free graphs as $T_{n, r}$ is F-free. Therefore, G is connected.

In the following, let $\lambda(G)$ be the spectral radius of $G \mathbf{x}$ be a positive eigenvector corresponding to $\lambda(G)$ with $\max \left\{x_{i} \mid i \in V(G)\right\}=1$. Without loss of generality, we assume that $x_{z}=1$. If there are multiple such vertices, we choose and fix z arbitrarily among them.
Lemma 3.2.

$$
\lambda(G) \geq\left(1-\frac{1}{r}\right) n-\frac{r}{4 n}+\frac{2 a}{n} .
$$

Proof. Let H be an F-free graph on n vertices with maximum number of edges. Since G attains the maximum spectral radius over all n-vertex F-free graphs, and ex $(n, F)=e\left(T_{n, r}\right)+a$, by the Rayleigh quotient equation, we have
$\lambda(G) \geq \lambda(H) \geq \frac{\mathbf{1}^{T} A(H) \mathbf{1}}{\mathbf{1}^{T} \mathbf{1}}=\frac{2\left(e\left(T_{n, r}\right)+a\right)}{n} \geq \frac{2}{n}\left(\left(1-\frac{1}{r}\right) \frac{n^{2}}{2}-\frac{r}{8}+a\right) \geq\left(1-\frac{1}{r}\right) n-\frac{r}{4 n}+\frac{2 a}{n}$.

Let ℓ be an integer satisfying $\ell \gg \max \{a,|V(F)|\}$.
Lemma 3.3. For every $\epsilon>0$, there exists an integer n_{0} such that if $n \geq n_{0}$, then

$$
e(G) \geq e\left(T_{n, r}\right)-\epsilon n^{2} .
$$

Furthermore, G has a partition $V(G)=V_{1} \cup \ldots \cup V_{r}$ such that $\sum_{1 \leq i<j \leq r} e\left(V_{i}, V_{j}\right)$ attains the maximum, and

$$
\sum_{i=1}^{r} e\left(V_{i}\right) \leq \epsilon n^{2},
$$

and for each $i \in[r]$,

$$
\left(\frac{1}{r}-3 \sqrt{\epsilon}\right) n<\left|V_{i}\right|<\left(\frac{1}{r}+3 \sqrt{\epsilon}\right) n .
$$

Proof. From Lemma 3.2 and Corollary 2.6, it follows that G is obtained from $T_{n, r}$ by adding or deleting at most ϵn^{2} edges for large enough n. Then there is a partition of $V(G)=U_{1} \cup \ldots \cup U_{r}$ with $\sum_{i=1}^{r} e\left(U_{i}\right) \leq$ $\epsilon n^{2}, \sum_{1 \leq i<j \leq r} e\left(U_{i}, U_{j}\right) \geq e\left(T_{n, r}\right)-\epsilon n^{2}$ and $\left\lfloor\frac{n}{r}\right\rfloor \leq\left|U_{i}\right| \leq\left\lceil\frac{n}{r}\right\rceil$ for each $i \in[r]$. So $e(G) \geq e\left(T_{n, r}\right)-\epsilon n^{2}$. Furthermore, G has a partition $V=V_{1} \cup \ldots \cup V_{r}$ such that $\sum_{1 \leq i<j \leq r} e\left(V_{i}, V_{j}\right)$ attains the maximum. In this case, $\sum_{i=1}^{r} e\left(V_{i}\right) \leq \sum_{i=1}^{r} e\left(U_{i}\right) \leq \epsilon n^{2}$ and $\sum_{1 \leq i<j \leq r} e\left(V_{i}, V_{j}\right) \geq \sum_{1 \leq i<j \leq r} e\left(U_{i}, U_{j}\right) \geq e\left(T_{n, r}\right)-\epsilon n^{2}$. Let $s=\max \left\{| | V_{j}\left|-\frac{n}{r}\right|, j \in[r]\right\}$. Without loss of generality, we assume $\left|\left|V_{1}\right|-\frac{n}{r}\right|=s$. Then

$$
\begin{aligned}
e(G) & \leq \sum_{1 \leq i<j \leq r}\left|V_{i}\right|\left|V_{j}\right|+\sum_{i=1}^{r} e\left(V_{i}\right) \\
& \leq\left|V_{1}\right|\left(n-\left|V_{1}\right|\right)+\sum_{2 \leq i<j \leq r}\left|V_{i}\right|\left|V_{j}\right|+\epsilon n^{2} \\
& =\left|V_{1}\right|\left(n-\left|V_{1}\right|\right)+\frac{1}{2}\left(\left(\sum_{j=2}^{r}\left|V_{j}\right|\right)^{2}-\sum_{j=2}^{r}\left|V_{j}\right|^{2}\right)+\epsilon n^{2} \\
& \leq\left|V_{1}\right|\left(n-\left|V_{1}\right|\right)+\frac{1}{2}\left(n-\left|V_{1}\right|\right)^{2}-\frac{1}{2(r-1)}\left(n-\left|V_{1}\right|\right)^{2}+\epsilon n^{2} \\
& <-\frac{r}{2(r-1)} s^{2}+\frac{r-1}{2 r} n^{2}+\epsilon n^{2}
\end{aligned}
$$

where the last second inequality holds by Hölder's inequality, and the last inequality holds since $\left|\left|V_{1}\right|-\frac{n}{r}\right|=$ s. On the other hand,

$$
e(G) \geq e\left(T_{n, r}\right)-\epsilon n^{2} \geq\left(1-\frac{1}{r}\right) \frac{n^{2}}{2}-\frac{r}{8}-\epsilon n^{2}>\frac{r-1}{2 r} n^{2}-2 \epsilon n^{2}
$$

as n is large enough. Therefore, $\frac{r}{2(r-1)} s^{2}<3 \epsilon n^{2}$, which implies that $s<\sqrt{\frac{6(r-1) \epsilon}{r} n^{2}}<\sqrt{6 \epsilon} n<3 \sqrt{\epsilon} n$. The proof is completed.

Lemma 3.4. Let $\theta>0$ and $\epsilon>0$ be sufficiently small constants with $\theta<\frac{1}{100 r^{5} \ell}$ and $2 \epsilon<\theta^{3}$. We denote

$$
\begin{equation*}
W:=\cup_{i=1}^{r}\left\{v \in V_{i} \mid d_{V_{i}}(v) \geq 2 \theta n\right\} \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
L:=\left\{v \in V(G) \left\lvert\, d(v) \leq\left(1-\frac{1}{r}-3 r \epsilon^{\frac{1}{3}}\right) n\right.\right\} \tag{6}
\end{equation*}
$$

Then $|L| \leq \epsilon^{\frac{1}{3}} n$ and $W \subseteq L$.
Proof. We first prove the following claims.
Claim 1. $|W|<\theta n$
Proof. It follows from Lemma 3.3 that $\sum_{i=1}^{r} e\left(V_{i}\right) \leq \epsilon n^{2}$. On the other hand, let $W_{i}:=W \cap V_{i}$ for all $i \in[r]$. Then

$$
2 e\left(V_{i}\right)=\sum_{u \in V_{i}} d_{V_{i}}(u) \geq \sum_{u \in W_{i}} d_{V_{i}}(u) \geq 2\left|W_{i}\right| \theta n
$$

Thus

$$
\sum_{i=1}^{r} e\left(V_{i}\right) \geq \sum_{i=1}^{r}\left|W_{i}\right| \theta n=|W| \theta n
$$

Therefore, we have that $|W| \theta n \leq \epsilon n^{2}$. This proves that $|W| \leq \frac{\epsilon n}{\theta}<\theta n$.
Claim 2. $|L| \leq \epsilon^{\frac{1}{3}} n$.
Proof. Suppose to the contrary that $|L|>\epsilon^{\frac{1}{3}} n$. Then there exists a subset $L^{\prime} \subseteq L$ with $\left|L^{\prime}\right|=\left\lfloor\epsilon^{\frac{1}{3}} n\right\rfloor$. Therefore,

$$
\begin{aligned}
e\left(G\left[V \backslash L^{\prime}\right]\right) \geq e(G)-\sum_{v \in L^{\prime}} d(v) & \geq e\left(T_{n, r}\right)-\epsilon n^{2}-\epsilon^{\frac{1}{3}} n^{2}\left(1-\frac{1}{r}-3 r \epsilon^{\frac{1}{3}}\right) \\
& >\frac{\left(n-\left\lfloor\epsilon^{\frac{1}{3}} n\right\rfloor\right)^{2}}{2}\left(1-\frac{1}{r}\right)+a \\
& \geq e\left(T_{n^{\prime}, r}\right)+a=\operatorname{ex}\left(n^{\prime}, F\right),
\end{aligned}
$$

where $n^{\prime}=n-\left\lfloor\epsilon^{\frac{1}{3}} n\right\rfloor$ and n is large enough. However, $e\left(G\left[V \backslash L^{\prime}\right]\right)>\operatorname{ex}\left(n^{\prime}, F\right)$ implies that $G\left[V \backslash L^{\prime}\right]$ contains an F, which contradicts that G is F-free.

Next, we prove that $W \subseteq L$. Otherwise, there exists a vertex $u_{0} \in W$ and $u_{0} \notin L$. Without loss of generality, let $u_{0} \in V_{1}$. Since $V(G)=V_{1} \cup \ldots \cup V_{r}$ is the partition such that $\sum_{1 \leq i<j \leq r} e\left(V_{i}, V_{j}\right)$ attains the maximum, $d_{V_{1}}\left(u_{0}\right) \leq d_{V_{i}}\left(u_{0}\right)$ for each $i \in[2, r]$. Thus $d\left(u_{0}\right) \geq r d_{V_{1}}\left(u_{0}\right)$, that is $d_{V_{1}}\left(u_{0}\right) \leq \frac{1}{r} d\left(u_{0}\right)$. On the other hand, since $u_{0} \notin L$, we get $d\left(u_{0}\right)>\left(1-\frac{1}{r}-3 r \epsilon^{\frac{1}{3}}\right) n$. Thus

$$
\begin{align*}
d_{V_{2}}\left(u_{0}\right) & \geq d\left(u_{0}\right)-d_{V_{1}}\left(u_{0}\right)-(r-2)\left(\frac{1}{r}+3 \sqrt{\epsilon}\right) n \\
& \geq\left(1-\frac{1}{r}\right) d\left(u_{0}\right)-(r-2)\left(\frac{1}{r}+3 \sqrt{\epsilon}\right) n \\
& >\frac{n}{r^{2}}-3(r-1) \epsilon^{\frac{1}{3}} n-3(r-2) \sqrt{\epsilon} n \tag{7}\\
& >\frac{n}{r^{2}}-6 r \epsilon^{\frac{1}{3}} n .
\end{align*}
$$

Recall from Claim 1 and Claim 2 that $|W|<\theta n$ and $|L| \leq \epsilon^{\frac{1}{3}} n$, hence, for any $i \in[r]$ and sufficiently large n, we have

$$
\left|V_{i} \backslash(W \cup L)\right| \geq\left(\frac{1}{r}-3 \sqrt{\epsilon}\right) n-\theta n-\epsilon^{\frac{1}{3}} n \geq \ell
$$

We claim that u_{0} is adjacent to at most a vertices in $V_{1} \backslash(W \cup L)$. Otherwise, let $u_{1,1}, u_{1,2}, \ldots, u_{1, a+1}$ be the neighbors of u_{0} in $V_{1} \backslash(W \cup L)$. Let $u_{1, a+2}, \ldots, u_{1, \ell}$ be another $\ell-a-1$ vertices in $V_{1} \backslash(W \cup L)$. For any $j \in[\ell]$, since $u_{1, j} \notin L$ and $u_{1, j} \notin W$, we have $d\left(u_{1, j}\right)>\left(1-\frac{1}{r}-3 r \epsilon^{\frac{1}{3}}\right) n$, and $d_{V_{1}}\left(u_{1, j}\right)<2 \theta n$. Thus,

$$
\begin{align*}
d_{V_{2}}\left(u_{1, j}\right) & \geq d\left(u_{1, j}\right)-d_{V_{1}}\left(u_{1, j}\right)-(r-2)\left(\frac{1}{r}+3 \sqrt{\epsilon}\right) n \\
& >\frac{n}{r}-3 r \epsilon^{\frac{1}{3}} n-2 \theta n-3(r-2) \sqrt{\epsilon} n \tag{8}\\
& >\frac{n}{r}-6 r \epsilon^{\frac{1}{3}} n-2 \theta n
\end{align*}
$$

By Lemma 2.8, we consider the common neighbors of $u_{0}, u_{1,1}, \ldots, u_{1, \ell}$ in V_{2},

$$
\begin{aligned}
& \left|N_{V_{2}}\left(u_{0}\right) \cap N_{V_{2}}\left(u_{1,1}\right) \cap \cdots \cap N_{V_{2}}\left(u_{1, \ell}\right) \backslash(W \cup L)\right| \\
\geq & d_{V_{2}}\left(u_{0}\right)+\sum_{j=1}^{\ell} d_{V_{2}}\left(u_{1, j}\right)-\ell\left|V_{2}\right|-|W|-|L| \\
> & \frac{n}{r^{2}}-6 r \epsilon^{\frac{1}{3}} n+\ell\left(\frac{n}{r}-6 r \epsilon^{\frac{1}{3}} n-2 \theta n\right)-\ell\left(\frac{n}{r}+3 \sqrt{\epsilon} n\right)-\theta n-\epsilon^{\frac{1}{3}} n \\
> & \frac{n}{r^{2}}-16 r \ell \epsilon^{\frac{1}{3}} n-(2 \ell+1) \theta n>\ell
\end{aligned}
$$

for sufficiently large n. This implies that there exist ℓ vertices $u_{2,1}, u_{2,2}, \ldots, u_{2, \ell}$ in $V_{2} \backslash(W \cup L)$ such that $\left\{u_{0}, u_{1,1}, \ldots, u_{1, \ell}\right\}$ and $\left\{u_{2,1}, \ldots, u_{2, \ell}\right\}$ induce a complete bipartite graph. For an integer s with $2 \leq s \leq r-1$, suppose that for any $1 \leq i \leq s$, there exist $u_{i, 1}, u_{i, 2}, \ldots, u_{i, \ell} \in V_{i} \backslash(W \cup L)$ such that $\left\{u_{0}, u_{1,1}, \ldots, u_{1, \ell}\right\},\left\{u_{2,1}, \ldots, u_{2, \ell}\right\}, \ldots,\left\{u_{s, 1}, \ldots, u_{s, \ell}\right\}$ induce a complete s-partite graph. We next consider the common neighbors of these vertices in V_{s+1}. Similarly, by (7) and (8), we get that for each $i \in[s]$ and $j \in[\ell]$,

$$
d_{V_{s+1}}\left(u_{0}\right)>\frac{n}{r^{2}}-6 r \epsilon^{\frac{1}{3}} n
$$

and

$$
d_{V_{s+1}}\left(u_{i, j}\right)>\frac{n}{r}-6 r \epsilon^{\frac{1}{3}} n-2 \theta n .
$$

By Lemma 2.8 again, we can obtain

$$
\begin{aligned}
& \left|N_{V_{s+1}}\left(u_{0}\right) \cap\left(\cap_{i \in[s], j \in[\ell]} N_{V_{s+1}}\left(u_{i, j}\right)\right) \backslash(W \cup L)\right| \\
\geq & d_{V_{s+1}}\left(u_{0}\right)+\sum_{i \in[s], j \in[\ell]} d_{V_{s+1}}\left(u_{i, j}\right)-s \ell\left|V_{s+1}\right|-|W|-|L| \\
> & \frac{n}{r^{2}}-6 r \epsilon^{\frac{1}{3}} n+s \ell\left(\frac{n}{r}-6 r \epsilon^{\frac{1}{3}} n-2 \theta n\right)-s \ell\left(\frac{n}{r}+3 \sqrt{\epsilon} n\right)-\theta n-\epsilon^{\frac{1}{3}} n \\
> & \frac{n}{r^{2}}-16 s r \ell \epsilon^{\frac{1}{3}} n-(2 s \ell+1) \theta n>\ell,
\end{aligned}
$$

where n is sufficiently large. Hence there exist ℓ vertices $u_{s+1,1}, u_{s+1,2}, \ldots, u_{s+1, \ell} \in V_{s+1} \backslash(W \cup L)$ such that $\left\{u_{0}, u_{1,1}, \ldots, u_{1, \ell}\right\}, \ldots,\left\{u_{s+1,1}, \ldots, u_{s+1, \ell}\right\}$ induce a complete $(s+1)$-partite graph. Thus, for each $i \in[2, r]$, there exist $u_{i, 1}, u_{i, 2}, \ldots, u_{i, \ell}$ in $V_{i} \backslash(W \cup L)$ such that $\left\{u_{0}, u_{1,1}, \ldots, u_{1, \ell}\right\},\left\{u_{2,1}, \ldots, u_{2, \ell}\right\}, \ldots$, $\left\{u_{r, 1}, \ldots, u_{r, \ell}\right\}$ induce a complete r-partite graph. Let G^{\prime} be the graph induced by $\left\{u_{0}, u_{1,1}, \ldots, u_{1, \ell}\right\}, \ldots$, $\left\{u_{r, 1}, \ldots, u_{r, \ell}\right\}$. Since u_{0} is adjacent to $u_{1,1}, \ldots, u_{1, a+1}$, then $e\left(G^{\prime}\right)>e\left(T_{r \ell+1, r}\right)+a$, by the definition of Turán number, G^{\prime} contains an F, this is a contradiction. Therefore u_{0} is adjacent to at most a vertices in $V_{1} \backslash(W \cup L)$. Hence

$$
\begin{aligned}
d_{V_{1}}\left(u_{0}\right) & \leq|W|+|L|+a \\
& <\theta n+\epsilon^{\frac{1}{3}} n+a \\
& <2 \theta n,
\end{aligned}
$$

for sufficiently large n. This is a contradiction to the fact that $u_{0} \in W$. Hence $W \subseteq L$.

Lemma 3.5. For each $i \in[r]$,

$$
e\left(G\left[V_{i} \backslash L\right]\right) \leq a
$$

Furthermore, for each $i \in[r]$, there exists an independent set $I_{i} \subseteq V_{i} \backslash L$ such that

$$
\left|I_{i}\right| \geq\left|V_{i}\right|-\epsilon^{\frac{1}{3}} n-a
$$

Proof. Suppose to the contrary that there exists an $i_{0} \in[r]$ such that $e\left(G\left[V_{i_{0}} \backslash L\right]\right)>a$. Without loss of generality, we may assume that $e\left(G\left[V_{1} \backslash L\right]\right)>a$. By Lemmas3.3 and 3.4, we have $\left|V_{i} \backslash L\right| \geq\left(\frac{1}{r}-3 \sqrt{\epsilon}\right) n-$ $\epsilon^{\frac{1}{3}} n \geq \ell$ for any $i \in[r]$. Let $u_{1,1}, u_{1,2}, \ldots, u_{1, \ell}$ be ℓ vertices chosen from $V_{1} \backslash L$ such that the induced subgraph of $\left\{u_{1,1}, u_{1,2}, \ldots, u_{1, \ell}\right\}$ in G contains at least $a+1$ edges. For any $j \in[\ell], u_{1, j} \notin L$ implies that $u_{1, j} \notin W$ by Lemma 3.4, thus $d\left(u_{1, j}\right)>\left(1-\frac{1}{r}-3 r \epsilon^{\frac{1}{3}}\right) n$, and $d_{V_{1}}\left(u_{1, j}\right)<2 \theta n$. Then we have

$$
\begin{align*}
d_{V_{2}}\left(u_{1, j}\right) & \geq d\left(u_{1, j}\right)-d_{V_{1}}\left(u_{1, j}\right)-(r-2)\left(\frac{1}{r}+3 \sqrt{\epsilon}\right) n \\
& >\frac{n}{r}-3 r \epsilon^{\frac{1}{3}} n-2 \theta n-3(r-2) \sqrt{\epsilon} n \tag{9}\\
& >\frac{n}{r}-6 r \epsilon^{\frac{1}{3}} n-2 \theta n .
\end{align*}
$$

Applying Lemma 2.8, we get

$$
\begin{aligned}
& \left|N_{V_{2}}\left(u_{1,1}\right) \cap N_{V_{2}}\left(u_{1,2}\right) \cap \cdots \cap N_{V_{2}}\left(u_{1, \ell}\right) \backslash L\right| \\
\geq & \sum_{j=1}^{\ell} d_{V_{2}}\left(u_{1, j}\right)-(\ell-1)\left|V_{2}\right|-|L| \\
\geq & \ell\left(\frac{n}{r}-6 r \epsilon^{\frac{1}{3}} n-2 \theta n\right)-(\ell-1)\left(\frac{1}{r}+3 \sqrt{\epsilon}\right) n-\epsilon^{\frac{1}{3}} n \\
> & \frac{n}{r}-10 r \ell \epsilon^{\frac{1}{3}} n-2 \ell \theta n>\ell,
\end{aligned}
$$

for sufficiently large n. So there exist ℓ vertices $u_{2,1}, u_{2,2}, \ldots, u_{2, \ell} \in V_{2}$ such that $\left\{u_{1,1}, \ldots, u_{1, \ell}\right\}$ and $\left\{u_{2,1}, \ldots, u_{2, \ell}\right\}$ induce a complete bipartite graph. For an integer s with $2 \leq s \leq r-1$, suppose that for any $1 \leq i \leq s$, there exist $u_{i, 1}, u_{i, 2}, \ldots, u_{i, \ell} \in V_{i} \backslash L$ such that $\left\{u_{1,1}, \ldots, u_{1, \ell}\right\},\left\{u_{2,1}, \ldots, u_{2, \ell}\right\}, \ldots$, $\left\{u_{s, 1}, \ldots, u_{s, \ell}\right\}$ induce a complete s-partite subgraph in G. We next consider the common neighbors of these vertices in V_{s+1}. Similarly, by (9), we get that for each $i \in[s]$ and $j \in[\ell]$,

$$
d_{V_{s+1}}\left(u_{i, j}\right) \geq \frac{n}{r}-6 r \epsilon^{\frac{1}{3}} n-2 \theta n .
$$

By Lemma 2.8 again, we can obtain

$$
\begin{aligned}
& \left|\left(\cap_{i \in[s], j \in[\ell]} N_{V_{s+1}}\left(u_{i, j}\right)\right) \backslash L\right| \\
\geq & \sum_{i \in[s], j \in[\ell]} d_{V_{s+1}}\left(u_{i, j}\right)-(s \ell-1)\left|V_{s+1}\right|-|L| \\
\geq & s \ell\left(\frac{n}{r}-6 r \epsilon^{\frac{1}{3}} n-2 \theta n\right)-(s \ell-1)\left(\frac{1}{r}+3 \sqrt{\epsilon}\right) n-\epsilon^{\frac{1}{3}} n \\
> & \frac{n}{r}-10 r s \ell \epsilon^{\frac{1}{3}} n-2 s \ell \theta n>\ell,
\end{aligned}
$$

for sufficiently large n. Thus there exist ℓ vertices $u_{s+1,1}, u_{s+1,2}, \ldots, u_{s+1, \ell} \in V_{s+1} \backslash L$ such that $\left\{u_{1,1}, \ldots, u_{1, \ell}\right\}$, $\left\{u_{2,1}, \ldots, u_{2, \ell}\right\}, \ldots,\left\{u_{s+1,1}, \ldots, u_{s+1, \ell}\right\}$ induce a complete $(s+1)$-partite subgraph in G. Therefore, for
each $i \in[2, r]$, there exist $u_{i, 1}, u_{i, 2}, \ldots, u_{i, \ell}$ in $V_{i} \backslash L$ such that $\left\{u_{1,1}, \ldots, u_{1, \ell}\right\},\left\{u_{2,1}, \ldots, u_{2, \ell}\right\}, \ldots$, $\left\{u_{r, 1}, \ldots, u_{r, \ell}\right\}$ induce a complete r-partite graph. Let G^{\prime} be the graph induced by $\left\{u_{1,1}, \ldots, u_{1, \ell}\right\}, \ldots$, $\left\{u_{r, 1}, \ldots, u_{r, \ell}\right\}$. Then $e\left(G^{\prime}\right)>e\left(T_{r \ell, r}\right)+a$, which implies that G^{\prime} contains a copy of F, this is a contradiction. Thus for each $i \in[r], e\left(G\left[V_{i} \backslash L\right]\right) \leq a$.

Therefore, the subgraph obtained from $G\left[V_{i} \backslash L\right]$ by deleting one vertex of each edge in $G\left[V_{i} \backslash L\right]$ contains no edges, which is an independent set of $G\left[V_{i} \backslash L\right]$. Therefore, for each $i \in[r]$, there exists an independent set $I_{i} \subseteq V_{i}$ such that

$$
\left|I_{i}\right| \geq\left|V_{i} \backslash L\right|-a \geq\left|V_{i}\right|-\epsilon^{\frac{1}{3}} n-a .
$$

Lemma 3.6. L is empty and $e\left(G\left[V_{i}\right]\right) \leq$ a for each $i \in[r]$.
Proof. We first prove that $L=\varnothing$. Otherwise, let v be a vertex in L. Then $d(v) \leq\left(1-\frac{1}{r}-3 r \epsilon^{\frac{1}{3}}\right) n$. Recall that $x_{z}=\max \left\{x_{i} \mid i \in[n]\right\}$, then $\lambda(G)=\lambda(G) x_{z}=\sum_{w z \in E(G)} x_{w} \leq d(z)$. Hence

$$
d(z) \geq \lambda(G) \geq\left(1-\frac{1}{r}-\frac{r}{4 n^{2}}+\frac{2 a}{n^{2}}\right) n>\left(1-\frac{1}{r}-3 r \epsilon^{\frac{1}{3}}\right) n,
$$

as n is large enough. Hence $z \notin L$. Without loss of generality, we may assume that $z \in V_{1}$. Let G^{\prime} be the graph with $V\left(G^{\prime}\right)=V(G)$ and edge set $E\left(G^{\prime}\right)=E(G \backslash\{v\}) \cup\left\{v w \mid w \in N(z) \cap\left(\cup_{i=2}^{r} I_{i}\right)\right\}$. We claim that G^{\prime} is F-free. Otherwise, G^{\prime} contains a copy of F, denoted as F^{\prime}, as a subgraph, then $v \in V\left(F^{\prime}\right)$. Let $N_{G^{\prime}}(v) \cap V\left(F^{\prime}\right)=\left\{w_{1}, \ldots, w_{s}\right\}$. Obviously, $w_{i} \notin V_{1}$ and $w_{i} \notin L$ for any $i \in[s]$. If $z \notin V\left(F^{\prime}\right)$, then $\left(F^{\prime} \backslash\{v\}\right) \cup\{z\}$ is a copy of F in G, which is a contradiction. Thus $z \in V\left(F^{\prime}\right)$. For any $i \in[s]$,

$$
\begin{aligned}
d_{V_{1}}\left(w_{i}\right) & =d\left(w_{i}\right)-d_{V \backslash V_{1}}\left(w_{i}\right) \\
& \geq\left(1-\frac{1}{r}-3 r \epsilon^{\frac{1}{3}}\right) n-a-\epsilon^{\frac{1}{3}} n-(r-2)\left(\frac{n}{r}+3 \sqrt{\epsilon} n\right) \\
& >\frac{n}{r}-6 r \epsilon^{\frac{1}{3}} n-a,
\end{aligned}
$$

where the last second inequality holds as $w_{i} \notin L$ and $e\left(G\left[V_{j} \backslash L\right]\right) \leq a$ for $w_{i} \in V_{j}$. Using Lemma 2.8, we get

$$
\begin{aligned}
& \left|\bigcap_{i=1}^{s} N_{V_{1}}\left(w_{i}\right) \backslash L\right| \\
\geq & \sum_{i=1}^{s} d_{V_{1}}\left(w_{i}\right)-(s-1)\left|V_{1}\right|-|L| \\
> & s\left(\frac{n}{r}-6 r \epsilon^{\frac{1}{3}} n-a\right)-(s-1)\left(\frac{n}{r}+3 \sqrt{\epsilon} n\right)-\epsilon^{\frac{1}{3}} n \\
> & \frac{n}{r}-10 s r \epsilon^{\frac{1}{3}} n-s a>1 .
\end{aligned}
$$

Thus there exists $v^{\prime} \in V_{1} \backslash L$ such that v^{\prime} is adjacent to w_{1}, \ldots, w_{s}. Then $\left(F^{\prime} \backslash\{v\}\right) \cup\left\{v^{\prime}\right\}$ is a copy of F in G, which is a contradiction. Thus G^{\prime} is F-free.

By Lemma 3.5, we have $e\left(G\left[V_{1} \backslash L\right]\right) \leq a$, then the maximum degree in the induced subgraph $G\left[V_{1} \backslash L\right]$ is at most a. Combining this with Lemma 3.4, we get

$$
d_{V_{1}}(z)=d_{V_{1} \cap L}(z)+d_{V_{1} \backslash L}(z) \leq \epsilon^{\frac{1}{3}} n+a .
$$

Therefore, by Lemma 3.5, we have

$$
\begin{aligned}
\lambda(G) & =\lambda(G) x_{z}=\sum_{v \sim z} x_{v}=\sum_{v \in V_{1}, v \sim z} x_{v}+\sum_{i=2}^{r}\left(\sum_{v \in V_{i}, v \sim z} x_{v}\right) \\
& =\sum_{v \in V_{1}, v \sim z} x_{v}+\sum_{i=2}^{r}\left(\sum_{v \in I_{i}, v \sim z} x_{v}+\sum_{v \in V_{i} \backslash I_{i}, v \sim z} x_{v}\right) \\
& \leq d_{V_{1}}(z)+\sum_{i=2}^{r}\left(\sum_{v \in I_{i}, v \sim z} x_{v}\right)+\sum_{i=2}^{r}\left|V_{i} \backslash I_{i}\right| \\
& \leq \epsilon^{\frac{1}{3}} n+a+\sum_{i=2}^{r}\left(\sum_{v \in I_{i}, v \sim z} x_{v}\right)+(r-1)\left(\epsilon^{\frac{1}{3}} n+a\right) .
\end{aligned}
$$

By Lemma 3.2, we have

$$
\begin{equation*}
\sum_{i=2}^{r}\left(\sum_{v \in I_{i}, v \sim z} x_{v}\right) \geq\left(1-\frac{1}{r}\right) n-\frac{r}{4 n}+\frac{2 a}{n}-r \epsilon^{\frac{1}{3}} n-r a . \tag{10}
\end{equation*}
$$

By the Rayleigh quotient equation,

$$
\begin{aligned}
\lambda\left(G^{\prime}\right)-\lambda(G) & \geq \frac{\mathbf{x}^{T}\left(A\left(G^{\prime}\right)-A(G)\right) \mathbf{x}}{\mathbf{x}^{T} \mathbf{x}}=\frac{2 x_{v}}{\mathbf{x}^{T} \mathbf{x}}\left(\sum_{i=2}^{r}\left(\sum_{w \in I_{i}, v \sim z} x_{w}\right)-\sum_{u v \in E(G)} x_{u}\right) \\
& \geq \frac{2 x_{v}}{\mathbf{x}^{T} \mathbf{x}}\left(\left(1-\frac{1}{r}\right) n-\frac{r}{4 n}+\frac{2 a}{n}-r \epsilon^{\frac{1}{3}} n-r a-\left(1-\frac{1}{r}-3 r \epsilon^{\frac{1}{3}}\right) n\right)>0,
\end{aligned}
$$

where the last second inequality holds since (10) and $\sum_{u v \in E(G)} x_{u} \leq d(v)$, and the last inequality holds for n large enough. This contradicts the fact that G has the largest spectral radius over all F-free graphs, so L must be empty. Furthermore, by Lemma 3.5, we have $e\left(G\left[V_{i}\right]\right) \leq a$ for each $i \in[r]$.

Lemma 3.7. For any $i \in[r]$, let $B_{i}=\left\{u \in V_{i} \mid d_{V_{i}}(u) \geq 1\right\}$ and $C_{i}=V_{i} \backslash B_{i}$. Then
(1) $\left|B_{i}\right| \leq 2 a$;
(2) For every vertex $u \in C_{i}$, u is adjacent to all vertices of $V \backslash V_{i}$.

Proof. We prove the assertions by contradiction.
(1) If there exists a $j \in[r]$ such that $\left|B_{j}\right|>2 a$, then $\sum_{u \in B_{j}} d_{V_{j}}(u)>2 a$. On the other hand, $e\left(G\left[V_{j}\right]\right) \leq a$ by Lemma 3.6. Therefore,

$$
2 a<\sum_{u \in B_{j}} d_{V_{j}}(u)=\sum_{u \in V_{j}} d_{V_{j}}(u)=2 e\left(G\left[V_{j}\right]\right) \leq 2 a,
$$

which is a contradiction.
(2) If there exists a vertex $v \in C_{i_{0}}$ such that there is a vertex $w_{1} \notin V_{i_{0}}$ and $v w_{1} \notin E(G)$, where $i_{0} \in[r]$. Let G^{\prime} be the graph with $V\left(G^{\prime}\right)=V(G)$ and $E\left(G^{\prime}\right)=E(G) \cup\left\{v w_{1}\right\}$. We claim that G^{\prime} is F-free. Otherwise, G^{\prime} contains a copy of F, denoted as F^{\prime}, as a subgraph, then $v w_{1} \in E\left(F^{\prime}\right)$. Let
$N_{G^{\prime}}(v) \cap V\left(F^{\prime}\right)=\left\{w_{1}, \ldots, w_{s}\right\}$. Obviously, $w_{i} \notin V_{i_{0}}$ for any $i \in[s]$, then we have,

$$
\begin{align*}
d_{V_{i_{0}}}\left(w_{i}\right) & =d\left(w_{i}\right)-d_{V \backslash V_{i_{0}}}\left(w_{i}\right) \\
& \geq\left(1-\frac{1}{r}-3 r \epsilon^{\frac{1}{3}}\right) n-a-(r-2)\left(\frac{n}{r}+3 \sqrt{\epsilon} n\right) \tag{11}\\
& >\frac{n}{r}-6 r \epsilon^{\frac{1}{3}} n-a,
\end{align*}
$$

where the last second inequality holds as $L=\emptyset$, and $e\left(G\left[V_{j}\right]\right) \leq a$ for $w_{i} \in V_{j}$. Using Lemma 2.8, we consider the common neighbors of w_{1}, \ldots, w_{s} in $C_{i_{0}}$,

$$
\begin{aligned}
& \left|\bigcap_{i=1}^{s} N_{V_{i_{0}}}\left(w_{i}\right) \backslash B_{i_{0}}\right| \\
\geq & \sum_{i=1}^{s} d_{V_{i_{0}}}\left(w_{i}\right)-(s-1)\left|V_{i_{0}}\right|-\left|B_{i_{0}}\right| \\
> & s\left(\frac{n}{r}-6 r \epsilon^{\frac{1}{3}} n-a\right)-(s-1)\left(\frac{n}{r}+3 \sqrt{\epsilon} n\right)-2 a \\
> & \frac{n}{r}-9 r s \epsilon^{\frac{1}{3}} n-(s+2) a>1 .
\end{aligned}
$$

Then there exists $v^{\prime} \in C_{i_{0}}$ such that v^{\prime} is adjacent to w_{1}, \ldots, w_{s}. Then $\left(F^{\prime} \backslash\{v\}\right) \cup\left\{v^{\prime}\right\}$ is a copy of F in G, which is a contradiction. Thus G^{\prime} is F-free. From the construction of G^{\prime}, we see that $\lambda\left(G^{\prime}\right)>\lambda(G)$, which contradicts the assumption that G has the maximum spectral radius among all F-free graphs on n vertices.

Lemma 3.8. For any $u \in V(G), x_{u} \geq 1-\frac{20 a^{2} r^{2}}{n}$.
Proof. We will prove this lemma by contradiction. Suppose that there is a vertex $v \in V(G)$ with $x_{v}<$ $1-\frac{20 a^{2} r^{2}}{n}$. Recall that $x_{z}=\max \left\{x_{i} \mid i \in V(G)\right\}=1$. Without loss of generality, we may assume that $z \in V_{1}$. Let G^{\prime} be the graph with $V\left(G^{\prime}\right)=V(G)$ and $E\left(G^{\prime}\right)=E(G \backslash\{v\}) \cup\left\{v w \mid w \in N(z) \cap\left(\cup_{i=2}^{r} C_{i}\right)\right\}$. We claim that G^{\prime} is F-free. Otherwise, G^{\prime} contains a copy of F, denoted by F^{\prime}, as a subgraph, then $v \in V\left(F^{\prime}\right)$. Let $N_{G^{\prime}}(v) \cap V\left(F^{\prime}\right)=\left\{w_{1}, \ldots, w_{s}\right\}$. Obviously, $w_{i} \notin V_{1}$ for any $i \in[s]$. If $z \notin V\left(F^{\prime}\right)$, then $\left(F^{\prime} \backslash\{v\}\right) \cup\{z\}$ is a copy of F in G, which is a contradiction. Thus $z \in V\left(F^{\prime}\right)$. By using the similar method as in Lemma 3.7 we get

$$
d_{V_{1}}\left(w_{i}\right)>\frac{n}{r}-6 r \epsilon^{\frac{1}{3}} n-a,
$$

for any $i \in[s]$. Using Lemma 2.8 , we consider the common neighbors of w_{1}, \ldots, w_{s} in C_{1},

$$
\begin{aligned}
& \left|\bigcap_{i=1}^{s} N_{V_{1}}\left(w_{i}\right) \backslash B_{1}\right| \\
\geq & \sum_{i=1}^{s} d_{V_{1}}\left(w_{i}\right)-(s-1)\left|V_{1}\right|-\left|B_{1}\right| \\
> & s\left(\frac{n}{r}-6 r \epsilon^{\frac{1}{3}} n-a\right)-(s-1)\left(\frac{n}{r}+3 \sqrt{\epsilon} n\right)-2 a \\
> & \frac{n}{r}-9 r s \epsilon^{\frac{1}{3}} n-(s+2) a>1 .
\end{aligned}
$$

Then there exists $v^{\prime} \in C_{1}$ such that v^{\prime} is adjacent to w_{1}, \ldots, w_{s}. Then $\left(F^{\prime} \backslash\{v\}\right) \cup\left\{v^{\prime}\right\}$ is a copy of F in G, which is a contradiction. Thus G^{\prime} is F-free.

By Lemma 3.6, $e\left(G\left[V_{1}\right]\right) \leq a$, then $d_{V_{1}}(z) \leq a$. By (2), we have

$$
\begin{aligned}
\lambda(G) x_{z} & =\sum_{w \sim z} x_{w}=\sum_{w \sim z, w \in V_{1}} x_{w}+\sum_{i=2}^{r}\left(\sum_{w \sim z, w \in V_{i}} x_{w}\right) \\
& =\sum_{w \sim z, w \in V_{1}} x_{w}+\sum_{i=2}^{r}\left(\sum_{w \sim z, w \in B_{i}} x_{w}+\sum_{w \sim z, w \in C_{i}} x_{w}\right),
\end{aligned}
$$

which implies that

$$
\begin{align*}
\sum_{i=2}^{r}\left(\sum_{w \sim z, w \in C_{i}} x_{w}\right) & =\lambda(G)-\sum_{w \sim z, w \in V_{1}} x_{w}-\sum_{i=2}^{r}\left(\sum_{w \sim z, w \in B_{i}} x_{w}\right) \\
& \geq \lambda(G)-d_{V_{1}}(z)-\sum_{i=2}^{r}\left(\sum_{w \in B_{i}} 1\right) \\
& \geq \lambda(G)-a-(r-1) 2 a, \tag{12}\\
& =\lambda(G)-(2 r-3) a
\end{align*}
$$

where (12) holds as $e\left(G\left[V_{1}\right]\right) \leq a$, and $\left|B_{i}\right| \leq 2 a$ for any $i \in[r]$.
By Rayleigh quotient equation, we have

$$
\begin{aligned}
\lambda\left(G^{\prime}\right)-\lambda(G) & \geq \frac{\mathbf{x}^{T}\left(A\left(G^{\prime}\right)-A(G)\right) \mathbf{x}}{\mathbf{x}^{T} \mathbf{x}} \\
& =\frac{2 x_{v}}{\mathbf{x}^{T} \mathbf{x}}\left(\sum_{i=2}^{r}\left(\sum_{w \sim z, w \in C_{i}} x_{w}\right)-\sum_{u v \in E(G)} x_{u}\right) \\
& =\frac{2 x_{v}}{\mathbf{x}^{T} \mathbf{x}}\left(\sum_{i=2}^{r}\left(\sum_{w \sim z, w \in C_{i}} x_{w}\right)-\lambda(G) x_{v}\right) \\
& >\frac{2 x_{v}}{\mathbf{x}^{T} \mathbf{x}}\left(\lambda(G)-(2 r-3) a-\lambda(G)\left(1-\frac{20 a^{2} r^{2}}{n}\right)\right) \\
& \geq \frac{2 x_{v}}{\mathbf{x}^{T} \mathbf{x}}\left(\frac{r-1}{r} 20 a^{2} r^{2}-\frac{r}{4 n} \frac{20 a^{2} r^{2}}{n}+\frac{2 a}{n} \frac{20 a^{2} r^{2}}{n}-(2 r-3) a\right)>0
\end{aligned}
$$

where the last second inequality holds as (12), and the last inequality follows by $\lambda(G) \geq\left(1-\frac{1}{r}\right) n-\frac{r}{4 n}+\frac{2 a}{n}$. This contradicts the assumption that G has the maximum spectral radius among all F-free graphs on n vertices. Thus $x_{u} \geq 1-\frac{20 a^{2} r^{2}}{n}$ for any $u \in V(G)$.

Let $G_{i n}=\cup_{i=1}^{r} G\left[V_{i}\right]$. For any $i \in[r]$, let $\left|V_{i}\right|=n_{i}, K=K_{r}\left(n_{1}, n_{2}, \ldots, n_{r}\right)$ be the complete r-partite graph on $V_{1}, V_{2}, \ldots, V_{r}$, and $G_{\text {out }}$ be the graph with $V\left(G_{\text {out }}\right)=V(G)$ and $E\left(G_{\text {out }}\right)=E(K) \backslash E(G)$.

Lemma 3.9. $e\left(G_{\text {in }}\right)-e\left(G_{\text {out }}\right) \leq a$.

Proof. Suppose to the contrary that $e\left(G_{i n}\right)-e\left(G_{\text {out }}\right)>a$. For each $i \in[r]$, let S_{i} be the vertex set satisfying $B_{i} \subseteq S_{i} \subseteq V_{i}$ and $\left|S_{i}\right|=\ell$. Let $S=\cup_{i=1}^{r} S_{i}, G^{\prime}=G[S]$. By Lemma 3.7 we have $e\left(G^{\prime}\right) \geq$ $e\left(T_{r \ell, r}\right)+e\left(G_{i n}\right)-e\left(G_{o u t}\right)>e\left(T_{r \ell, r}\right)+a$, which implies that G^{\prime} contains an F, this is a contradiction. So $e\left(G_{\text {in }}\right)-e\left(G_{\text {out }}\right) \leq a$.

Lemma 3.10. For any $1 \leq i<j \leq r,\left|n_{i}-n_{j}\right| \leq 1$.
Proof. We prove this lemma by contradiction. Without loss of generality, suppose that $n_{1} \geq n_{2} \geq \ldots \geq n_{r}$. Assume that there exist i_{0}, j_{0} with $1 \leq i_{0}<j_{0} \leq r$ such that $n_{i_{0}}-n_{j_{0}} \geq 2$.
Claim 1. There exists a constant $c_{1}>0$ such that $\lambda\left(T_{n, r}\right)-\lambda(K) \geq \frac{c_{1}}{n}$.
Proof. Let $K^{\prime}=K_{r}\left(n_{1}, \ldots, n_{i_{0}}-1, \ldots, n_{j_{0}}+1, \ldots, n_{r}\right)$. Assume $K^{\prime} \cong K_{r}\left(n_{1}^{\prime}, n_{2}^{\prime}, \ldots, n_{r}^{\prime}\right)$, where $n_{1}^{\prime} \geq n_{2}^{\prime} \geq \ldots \geq n_{r}^{\prime}$. By (4), we have

$$
\begin{equation*}
1=\sum_{i=1}^{r} \frac{n_{i}}{\lambda(K)+n_{i}}=\frac{n_{i_{0}}}{\lambda(K)+n_{i_{0}}}+\frac{n_{j_{0}}}{\lambda(K)+n_{j_{0}}}+\sum_{i \in\left[r \backslash \backslash\left\{i_{0}, j_{0}\right\}\right.} \frac{n_{i}}{\lambda(K)+n_{i}}, \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
1=\sum_{i=1}^{r} \frac{n_{i}^{\prime}}{\lambda\left(K^{\prime}\right)+n_{i}^{\prime}}=\frac{n_{i_{0}}-1}{\lambda\left(K^{\prime}\right)+n_{i_{0}}-1}+\frac{n_{j_{0}}+1}{\lambda\left(K^{\prime}\right)+n_{j_{0}}+1}+\sum_{i \in[r] \backslash\left\{i_{0}, j_{0}\right\}} \frac{n_{i}}{\lambda\left(K^{\prime}\right)+n_{i}} . \tag{14}
\end{equation*}
$$

Subtracting (14) from (13), we get

$$
\begin{aligned}
& \frac{2\left(n_{i_{0}}-n_{j_{0}}-1\right) \lambda^{2}(K)+\left(n_{i_{0}}+n_{j_{0}}\right)\left(n_{i_{0}}-n_{j_{0}}-1\right) \lambda(K)}{\left(\lambda(K)+n_{i_{0}}-1\right)\left(\lambda(K)+n_{i_{0}}\right)\left(\lambda(K)+n_{j_{0}}+1\right)\left(\lambda(K)+n_{j_{0}}\right)} \\
= & \sum_{i \in[r] \backslash\left\{i_{0}, j_{0}\right\}} \frac{n_{i}\left(\lambda\left(K^{\prime}\right)-\lambda(K)\right)}{\left(\lambda(K)+n_{i}\right)\left(\lambda\left(K^{\prime}\right)+n_{i}\right)}+\frac{\left(n_{i_{0}}-1\right)\left(\lambda\left(K^{\prime}\right)-\lambda(K)\right)}{\left(\lambda(K)+n_{i_{0}}-1\right)\left(\lambda\left(K^{\prime}\right)+n_{i_{0}}-1\right)} \\
& +\frac{\left(n_{j_{0}}+1\right)\left(\lambda\left(K^{\prime}\right)-\lambda(K)\right)}{\left(\lambda(K)+n_{j_{0}}+1\right)\left(\lambda\left(K^{\prime}\right)+n_{j_{0}}+1\right)} \\
\leq & \frac{\lambda\left(K^{\prime}\right)-\lambda(K)}{\lambda(K)+n_{r}^{\prime}}\left(\sum_{i \in\left[r \backslash \backslash i_{0}, j_{0}\right\}} \frac{n_{i}}{\lambda\left(K^{\prime}\right)+n_{i}}+\frac{n_{i_{0}}-1}{\lambda\left(K^{\prime}\right)+n_{i_{0}}-1}+\frac{n_{j_{0}}+1}{\lambda\left(K^{\prime}\right)+n_{j_{0}}+1}\right) \\
= & \frac{\lambda\left(K^{\prime}\right)-\lambda(K)}{\lambda(K)+n_{r}^{\prime}},
\end{aligned}
$$

where the inequality holds as $n_{r}^{\prime} \leq \min \left\{n_{1}, \ldots, n_{i_{0}}-1, \ldots, n_{j_{0}}+1, \ldots, n_{r}\right\}$, and the last equality holds by (14). Combining with the assumption $n_{i_{0}}-n_{j_{0}} \geq 2$, we obtain

$$
\begin{equation*}
\frac{2 \lambda^{2}(K)+\left(n_{i_{0}}+n_{j_{0}}\right) \lambda(K)}{\left(\lambda(K)+n_{i_{0}}-1\right)\left(\lambda(K)+n_{i_{0}}\right)\left(\lambda(K)+n_{j_{0}}+1\right)\left(\lambda(K)+n_{j_{0}}\right)} \leq \frac{\lambda\left(K^{\prime}\right)-\lambda(K)}{\lambda(K)+n_{r}^{\prime}} . \tag{15}
\end{equation*}
$$

In view of the construction of K, we see that

$$
n-\left(\frac{n}{r}+3 \sqrt{\epsilon} n\right) \leq \delta(K) \leq \lambda(K) \leq \Delta(K) \leq n-\left(\frac{n}{r}-3 \sqrt{\epsilon} n\right)
$$

thus $\lambda(K)=\Theta(n)$. From (15), it follows that there exists a constant $c_{1}>0$ such that $\lambda\left(K^{\prime}\right)-\lambda(K) \geq \frac{c_{1}}{n}$. Therefore, by Lemma 2.7] $\lambda\left(T_{n, r}\right)-\lambda(K) \geq \lambda\left(K^{\prime}\right)-\lambda(K) \geq \frac{c_{1}}{n}$.

Claim 2. There exists a constant $c_{2}>0$ such that $\lambda\left(T_{n, r}\right)-\lambda(K) \leq \frac{c_{2}}{n^{2}}$.
Proof. According to the definition of K, we have $e(G)=e\left(G_{\text {in }}\right)+e(K)-e\left(G_{\text {out }}\right)$. By Lemma 3.7 for any $i \in[r]$, and every vertex $u \in C_{i}, u$ is adjacent to all vertices of $V \backslash V_{i}$. Thus

$$
e\left(G_{\text {out }}\right) \leq \sum_{1 \leq i<j \leq r}\left|B_{i}\right|\left|B_{j}\right| \leq\binom{ r}{2}(2 a)^{2} \leq 2 a^{2} r^{2} .
$$

Therefore

$$
\begin{align*}
\lambda(G) & =\frac{\mathbf{x}^{\mathrm{T}} A(G) \mathbf{x}}{\mathbf{x}^{\mathrm{T}} \mathbf{x}} \\
& =\frac{2 \sum_{i j \in E(K)} x_{i} x_{j}}{\mathbf{x}^{\mathrm{T}} \mathbf{x}}+\frac{2 \sum_{i j \in E\left(G_{i n}\right)} x_{i} x_{j}}{\mathbf{x}^{\mathrm{T}} \mathbf{x}}-\frac{2 \sum_{i j \in E\left(G_{\text {out }}\right)} x_{i} x_{j}}{\mathbf{x}^{\mathrm{T}} \mathbf{x}} \\
& \leq \lambda(K)+\frac{2 e\left(G_{\text {in }}\right)}{\mathbf{x}^{\mathrm{T}} \mathbf{x}}-\frac{2 e\left(G_{\text {out }}\right)\left(1-\frac{20 a^{2} r^{2}}{n}\right)^{2}}{\mathbf{x}^{\mathrm{T}} \mathbf{x}} \\
& \leq \lambda(K)+\frac{2\left(e\left(G_{\text {in }}\right)-e\left(G_{\text {out }}\right)\right)}{\mathbf{x}^{\mathrm{T} \mathbf{x}}}+\frac{e\left(G_{\text {out }}\right) \frac{40 a^{2} r^{2}}{n}}{\mathbf{x}^{\mathrm{T}} \mathbf{x}} \\
& \leq \lambda(K)+\frac{2 a}{\mathbf{x}^{\mathrm{T}} \mathbf{x}}+\frac{\frac{80 a^{4} r^{4}}{n}}{\mathbf{x}^{\mathrm{T}} \mathbf{x}}, \tag{16}
\end{align*}
$$

where (16) holds by Lemma 3.9 and $e\left(G_{\text {out }}\right) \leq 2 a^{2} r^{2}$.
On the other hand, let \mathbf{y} be an eigenvector of $T_{n, r}$ corresponding to $\lambda\left(T_{n, r}\right), k=n-r\left\lfloor\frac{n}{r}\right\rfloor$. Since $T_{n, r}$ is a complete r-partite graph on n vertices where each partite set has either $\left\lfloor\frac{n}{r}\right\rfloor$ or $\left\lceil\frac{n}{r}\right\rceil$ vertices, we may assume $\mathbf{y}=(\underbrace{y_{1}, \ldots, y_{1}}_{k\left\lceil\frac{n}{r}\right\rceil}, \underbrace{y_{2}, \ldots, y_{2}}_{n-k\left\lceil\frac{n}{r}\right\rceil})^{\mathrm{T}}$. Thus by (2), we have

$$
\begin{equation*}
\lambda\left(T_{n, r}\right) y_{1}=(r-k)\left\lfloor\frac{n}{r}\right\rfloor y_{2}+(k-1)\left\lceil\frac{n}{r}\right\rceil y_{1}, \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
\lambda\left(T_{n, r}\right) y_{2}=(r-k-1)\left\lfloor\frac{n}{r}\right\rfloor y_{2}+k\left\lceil\frac{n}{r}\right\rceil y_{1} . \tag{18}
\end{equation*}
$$

Combining (17) and (18), we obtain

$$
\left(\lambda\left(T_{n, r}\right)+\left\lceil\frac{n}{r}\right\rceil\right) y_{1}=\left(\lambda\left(T_{n, r}\right)+\left\lfloor\frac{n}{r}\right\rfloor\right) y_{2} .
$$

Without loss of generality, we assume that $y_{2}=1$. Then

$$
y_{2} \geq y_{1}=\frac{\lambda\left(T_{n, r}\right)+\left\lfloor\frac{n}{r}\right\rfloor}{\lambda\left(T_{n, r}\right)+\left\lceil\frac{n}{r}\right\rceil} \geq 1-\frac{1}{\lambda\left(T_{n, r}\right)+\left\lceil\frac{n}{r}\right\rceil} .
$$

Since $\lambda\left(T_{n, r}\right) \geq \delta\left(T_{n, r}\right) \geq n-\left\lceil\frac{n}{r}\right\rceil, y_{1} \geq 1-\frac{1}{n}$. Let $H \in \operatorname{Ex}(n, F)$. Then $e(H)=\operatorname{ex}(n, F)=e\left(T_{n, r}\right)+a$. Therefore

$$
\begin{align*}
\lambda(G) & \geq \lambda(H) \geq \frac{\mathbf{y}^{\mathrm{T}} A(H) \mathbf{y}}{\mathbf{y}^{\mathrm{T}} \mathbf{y}} \\
& \geq \frac{\mathbf{y}^{\mathrm{T}} A\left(T_{n, r}\right) \mathbf{y}}{\mathbf{y}^{\mathrm{T}} \mathbf{y}}+\frac{2 a}{\mathbf{y}^{\mathrm{T}} \mathbf{y}}\left(1-\frac{1}{n}\right)^{2} \\
& \geq \lambda\left(T_{n, r}\right)+\frac{2 a}{n}\left(1-\frac{2}{n}\right) . \tag{19}
\end{align*}
$$

Combining (16), (19) and $\mathbf{x}^{\mathrm{T}} \mathbf{x} \geq n\left(1-\frac{20 a^{2} r^{2}}{n}\right)^{2} \geq n-40 a^{2} r^{2}$, we get

$$
\begin{aligned}
& \lambda\left(T_{n, r}\right)-\lambda(K) \\
\leq & \frac{2 a}{\mathbf{x}^{T} \mathbf{x}}-\frac{2 a}{n}+\frac{4 a}{n^{2}}+\frac{\frac{80 a^{4} r^{4}}{n}}{\mathbf{x}^{\mathrm{T}} \mathbf{x}} \\
\leq & \frac{2 a}{n-40 a^{2} r^{2}}-\frac{2 a}{n}+\frac{4 a}{n^{2}}+\frac{\frac{80 a^{4} r^{4}}{n}}{n-40 a^{2} r^{2}} \\
\leq & \frac{80 a^{3} r^{2}}{n\left(n-40 a^{2} r^{2}\right)}+\frac{4 a}{n^{2}}+\frac{80 a^{4} r^{4}}{n\left(n-40 a^{2} r^{2}\right)} \\
\leq & \frac{c_{2}}{n^{2}}
\end{aligned}
$$

where c_{2} is a positive constant.
Combining Claim 1 and Claim 2, we have

$$
\frac{c_{1}}{n} \leq \lambda\left(T_{n, r}\right)-\lambda(K) \leq \frac{c_{2}}{n^{2}}
$$

which is a contradiction when n is sufficiently large. Thus $\left|n_{i}-n_{j}\right| \leq 1$ for any $1 \leq i<j \leq r$.

Proof of Theorem 1.2. Now we prove that $e(G)=\operatorname{ex}(n, F)$. Otherwise, we assume that $e(G) \leq$ $\operatorname{ex}(n, F)-1$. Let $H \in \operatorname{Ex}(n, F)$. Then $|E(H)|=e\left(T_{n, r}\right)+a$. By Lemma 3.10, we may assume that $V_{1} \cup \ldots \cup V_{r}$ is a vertex partition of H. Let $E_{1}=E(G) \backslash E(H), E_{2}=E(H) \backslash E(G)$, then $E(H)=\left(E(G) \cup E_{2}\right) \backslash E_{1}$, and

$$
|E(G) \cap E(H)|+\left|E_{1}\right|=e(G)<e(H)=|E(G) \cap E(H)|+\left|E_{2}\right|
$$

which implies that $\left|E_{2}\right| \geq\left|E_{1}\right|+1$. Furthermore, by Lemma 3.7 we have

$$
\begin{equation*}
\left|E_{2}\right| \leq a+\sum_{1 \leq i<j \leq r}\left|B_{i}\right|\left|B_{j}\right| \leq a+\binom{r}{2}(2 a)^{2} \leq 3 a^{2} r^{2} \tag{20}
\end{equation*}
$$

According to (3) and (20), for sufficiently large n, we have

$$
\begin{aligned}
\lambda(H) & \geq \frac{\mathbf{x}^{\mathrm{T}} A(H) \mathbf{x}}{\mathbf{x}^{\mathrm{T}} \mathbf{x}} \\
& =\frac{\mathbf{x}^{\mathrm{T}} A(G) \mathbf{x}}{\mathbf{x}^{\mathrm{T}} \mathbf{x}}+\frac{2 \sum_{i j \in E_{2}} x_{i} x_{j}}{\mathbf{x}^{\mathrm{T}} \mathbf{x}}-\frac{2 \sum_{i j \in E_{1}} x_{i} x_{j}}{\mathbf{x}^{\mathrm{T}} \mathbf{x}} \\
& =\lambda(G)+\frac{2}{\mathbf{x}^{\mathrm{T}} \mathbf{x}}\left(\sum_{i j \in E_{2}} x_{i} x_{j}-\sum_{i j \in E_{1}} x_{i} x_{j}\right) \\
& \geq \lambda(G)+\frac{2}{\mathbf{x}^{\mathrm{T}} \mathbf{x}}\left(\left|E_{2}\right|\left(1-\frac{20 a^{2} r^{2}}{n}\right)^{2}-\left|E_{1}\right|\right) \\
& \geq \lambda(G)+\frac{2}{\mathbf{x}^{\mathrm{T}} \mathbf{x}}\left(\left|E_{2}\right|-\frac{40 a^{2} r^{2}}{n}\left|E_{2}\right|-\left|E_{1}\right|\right) \\
& \geq \lambda(G)+\frac{2}{\mathbf{x}^{\mathrm{T}} \mathbf{x}}\left(1-\frac{40 a^{2} r^{2}}{n}\left|E_{2}\right|\right) \\
& \geq \lambda(G)+\frac{2}{\mathbf{x}^{\mathrm{T} \mathbf{x}}}\left(1-\frac{40 a^{2} r^{2}}{n} 3 a^{2} r^{2}\right) \\
& >\lambda(G),
\end{aligned}
$$

which contradicts the assumption that G has the maximum spectral radius among all F-free graphs on n vertices. Hence $e(G)=\operatorname{ex}(n, F)$.

References

[1] L. Babai, B. Guiduli, Spectral extrema for graphs: the Zarankiewicz problem, Electron. J. Combin., 15 (2009) R123.
[2] B. Bollobás, Extremal Graph Theory, Academic Press, New York, 1978.
[3] G. Chen, R.J. Gould, F. Pfender, B. Wei, Extremal graphs for intersecting cliques, J. Combin. Theory Ser. B, 89 (2003) 159-171.
[4] S. Cioabă, L.H. Feng, M. Tait, X.D. Zhang, The maximum spectral radius of graphs without friendship subgraphs, Electron. J. Combin., 27 (4) (2020) P4.22.
[5] S. Cioabă, D.N. Desai, M. Tait, The spectral radius of graphs with no odd wheels, European J. Combin., 99 (2022) 103420.
[6] D. Cvetković, M. Doob, H. Sachs, Spectra of Graphs, Academic Press, New York, 1980.
[7] C. Delorme, Eigenvalues of complete multipartite graphs, Discrete Math., 312 (2012) 2532-2535.
[8] D.N. Desai, L. Kang, Y. Li, Z. Ni, M. Tait, J. Wang, Spectral extremal graphs for intersecting cliques, arXiv:2108.03587v2, 2021.
[9] P. Erdős, Some recent results on extremal problems in graph theory (Results), in: Theory of Graphs (International Symposium Rome, 1966), Grodon and Breach, New York, Dunod, Paris, 1966, pp. 117123.
[10] P. Erdős, On some new inequalities concerning extremal properties of graphs, in: Theory of Graphs (Proceedings of Colloquium, Tihany, 1966), Academic Press, New York, 1968, pp. 77-81.
[11] P. Erdős, M. Simonovits, A limit theorem in graph theory, Stud. Sci. Math. Hungar., 1 (1966) 51-57.
[12] P. Erdős, A.H. Stone, On the structure of linear graphs, Bull. Am. Math. Soc., 52 (1946) 1087-1091.
[13] P. Erdős, Z. Füredi, R.J. Gould, D.S. Gunderson, Extremal Graphs for Intersecting Triangles, J. Combin. Theory Ser. B, 64 (1995) 89-100.
[14] L.H. Feng, Q. Li, X.D. Zhang, Spectral radii of graphs with given chromatic number, Appl. Math. Lett., 20 (2007) 158-162.
[15] M. Fiedler, V. Nikiforov, Spectral radius and Hamiltonicity of graphs, Linear Algebra Appl., 432 (2010) 2170-2173.
[16] Z. Füredi, M. Simonovits, The history of degenerate (bipartite) extremal graph problems, in: Erdős Centennial, Bolyai Soc. Math. Stud., 25, János Bolyai Math. Soc., Budapest, 2013, pp. 169-264.
[17] P. Keevash, Hypergraph Turán problems, in Surveys in Combinatorics, Cambridge University Press, Cambridge, 2011, pp. 83-140.
[18] V. Nikiforov, Some inequalities for the largest eigenvalue of a graph, Combin. Probab. Comput., 11 (2002) 179-189.
[19] V. Nikiforov, Bounds on graph eigenvalues II, Linear Algebra Appl., 427 (2007) 183-189.
[20] V. Nikiforov, The spectral radius of graphs without paths and cycles of specified length, Linear Algebra Appl., 432 (2010) 2243-2256.
[21] V. Nikiforov, Stability for large forbidden subgraphs, J. Graph Theory, 62 (4) (2009) 362-368.
[22] V. Nikiforov, Some new results in extremal graph theory, Surveys in Combinatorics, London Math. Soc. Lecture Note Ser., 392, Cambridge University Press, Cambridge, 2011, pp. 141-181.
[23] M. Simonovits, A method for solving extremal problems in graph theory, stability problems, In: Theory of Graphs (Proceedings of Colloquium, Tihany, 1966), Academic Press, New York, 1968, pp. 279-319.
[24] M. Simonovits, Paul Erdős' influence on Extremal graph theory, in The Mathematics of Paul Erdős II, R.L. Graham, Springer, New York, 2013, pp. 245-311.
[25] D. Stevanović, I. Gutman, M. Rehman, On spectral radius and enery of complete multipartite graphs, Ars Math. Contemp., 9 (2015) 109-113.
[26] P. Turán, On an extremal problem in graph theory, Mat. Fiz. Lapok, 48 (1941) 436-452.
[27] Y. Li, Y. Peng, The spectral radius of graphs with no intersecting odd cycles, arXiv:2106.00587v1, 2021.
[28] M. Zhai, B. Wang, Proof of a conjecture on the spectral radius of C_{4}-free graphs, Linear Algebra Appl., 430 (2012) 1641-1647.
[29] X. Zhan, Matrix theory, Gradutate Studies in Mathematics. 147, American Mathematical Society, Providence, RI, 2013. $\mathrm{x}+253 \mathrm{pp}$.

[^0]: *This research was partially supported by the National Nature Science Foundation of China (Nos. 11871329, 11971298)
 ${ }^{\dagger}$ Corresponding author.
 Email address: lykang@shu.edu.cn (L. Kang), wj517062214@163.com (J. Wang), xys16720018@163.com (Y. Xue)

