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Abstract

For a simple graph F , let Ex(n, F ) and Exsp(n, F ) denote the set of graphs with the maximum

number of edges and the set of graphs with the maximum spectral radius in an n-vertex graph without

any copy of the graph F , respectively. The Turán graph Tn,r is the complete r-partite graph on n vertices

where its part sizes are as equal as possible. Cioabă, Desai and Tait [The spectral radius of graphs with

no odd wheels, European J. Combin., 99 (2022) 103420] posed the following conjecture: Let F be any

graph such that the graphs in Ex(n, F ) are Turán graphs plus O(1) edges. Then Exsp(n, F ) ⊂ Ex(n, F )
for sufficiently large n. In this paper we consider the graph F such that the graphs in Ex(n, F ) are

obtained from Tn,r by adding O(1) edges, and prove that if G has the maximum spectral radius among

all n-vertex graphs not containing F , then G is a member of Ex(n, F ) for n large enough. Then Cioabă,

Desai and Tait’s conjecture is completely solved.

Key words: Spectral radius; Spectral extremal graph; Turán graph.

1 Introduction

Let F be a simple graph. A graph G is F -free if there is no subgraph of G isomorphic to F . The Turán type

extremal problem is to determine the maximum number of edges in a graph on n vertices that is F -free,

and the maximum number of edges is called the Turán number, denoted by ex(n, F ). Such a graph with

ex(n, F ) edges is called an extremal graph for F and we denote by Ex(n, F ) the set of all extremal graphs

on n vertices for F . The Turán graph is the complete r-partite graph on n vertices where each partite set has

either ⌊nr ⌋ or ⌈nr ⌉ vertices and the edge set consists of all pairs joining distinct parts, denoted by Tn,r. The

well-known Turán Theorem [26] states that the extremal graph corresponding to Turán number ex(n,Kr+1)
is Tn,r, i.e. ex(n,Kr+1) = e(Tn,r). Erdős, Stone and Simonovits [12, 11] presented the following result

ex(n, F ) =

(

1− 1

χ(F )− 1

)
n2

2
+ o(n2), (1)

where χ(F ) is the vertex-chromatic number of F . There are lots of researches on Turán type extremal

problems (such as [2, 13, 3, 17, 24, 16]).

In this paper we focus on spectral analogues of the Turán type problem for graphs, which was proposed

by Nikiforov [20]. The spectral Turán type problem is to determine the maximum spectral radius instead

of the number of edges among all n-vertex F -free graphs. The graph which attains the maximum spectral

radius is called a spectral extremal graph. We denote by Exsp(n, F ) the set of all spectral extremal graphs

for F . Researches of the spectral Turán type problem have drawn increasing extensive intersect (see [18,

1, 15, 22, 28]). Nikiforov [19] showed that if G is a Kr+1-free graph on n vertices, then λ(G) ≤ λ(Tn,r),
with equality if and only if G = Tn,r. This implies that if G attains the maximum spectral radius over all
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n-vertex Kr+1-free graphs for sufficiently large n, then G ∈ Ex(n,Kr+1). Cioabă, Feng, Tait and Zhang

[4] proved that the spectral extremal graph for Fk belongs to Ex(n, Fk), where Fk is the graph consisting

of k triangles which intersect in exactly one common vertex. In addition, Chen, Gould, Pfender and Wei

[3] proved that ex(n, Fk,r+1) = e(Tn,r) + O(1), where Fk,r+1 is the graph consisting of k copies of Kr+1

which intersect in a single vertex. Naturally, Cioabă, Desai and Tait [5] raised the following conjecture.

Conjecture 1.1 (Cioabă et al. [5]). Let F be any graph such that the graphs in Ex(n, F ) are Turán graphs

plus O(1) edges. Then Exsp(n, F ) ⊂ Ex(n, F ) for sufficiently large n.

The results of Nikiforov [19], Cioabă, Feng, Tait and Zhang [4], Li and Peng [27], and Desai, Kang, Li,

Ni, Tait and Wang [8] tell us that Conjecture 1.1 holds for Kr+1, Fk, Hs,k and Fk,r, where Hs,k is the graph

defined by intersecting s triangles and k odd cycles of length at least 5 in exactly one common vertex. In

this paper, we shall prove the following theorem which confirms Conjecture 1.1.

Theorem 1.2. Let r ≥ 2 be an integer, and F be any graph such that the graphs in Ex(n, F ) are obtained

from Tn,r by adding O(1) edges. For sufficiently large n, if G has the maximal spectral radius over all

n-vertex F -free graphs, then

G ∈ Ex(n, F ).

2 Notation and Preliminaries

In this section we introduce some notation and give the preparatory lemmas.

Let G = (V (G), E(G)) be a simple graph with vertex set V (G) and edge set E(G). If u, v ∈ V (G),
and uv ∈ E(G), then u and v are said to be adjacent. For a vertex v ∈ V (G), the neighborhood NG(v) (or

simply N(v)) of v is {u| uv ∈ E(G)}, and the degree dG(v) (or simply d(v)) of v is |NG(v)|. The minimum

and maximum degrees are denoted by δ(G) and ∆(G), respectively. For S ⊆ V (G) and v ∈ V (G), let

dS(v) = |NS(v)| = |NG(v)∩S|. For V1, V2 ⊆ V (G), e(V1, V2) denotes the number of edges of G between

V1 and V2. For S ⊆ V (G), denote by G \ S the graph obtained from G by deleting all vertices of S and the

incident edges. Denote by G[S] the graph induced by S whose vertex set is S and whose edge set consists

of all edges of G which have both ends in S.

Let G be a simple graph with n vertices. The adjacent matrix of G is A(G) = (aij)n×n with aij = 1
if ij ∈ E(G), and aij = 0 otherwise. The spectral radius of G is the largest eigenvalue of A(G), denoted

by λ(G). Let G1, . . . , Gs be the components of G, then λ(G) = max{λ(Gi)| i ∈ [s]}. For a connected

graph G, let x = (x1, . . . , xn)
T be an eigenvector of A(G) corresponding to λ(G). Then x is a positive real

vector, and

λ(G)xi =
∑

ij∈E(G)

xj , for any i ∈ [n]. (2)

The following Rayleigh quotient equation is very useful:

λ(G) = max
x∈Rn

+

xTA(G)x

xTx
= max

x∈Rn
+

2
∑

ij∈E(G) xixj

xTx
. (3)

We have the following two lemmas from Zhan [29].

Lemma 2.1 (Zhan [29]). Let A and B be two nonnegative square matrices. If B < A and A is irreducible,

then λ(B) < λ(A).

Lemma 2.2 (Zhan [29]). Let A be a nonnegative square matrix. If B is a principal submatrix of A, then

λ(B) ≤ λ(A). If A is irreducible and B is a proper principal submatrix of A, then λ(B) < λ(A).

2



Let A(G) be the adjacent matrix of graph G. Then G is connected if and only if A(G) is irreducible.

Combining with Lemmas 2.1 and 2.2, we have the following result.

Lemma 2.3. Let G be a connected graph. If G′ is a proper subgraph of G, then λ(G′) < λ(G).

Recall the classical stability theorem proved by Erdős [9, 10] and Simonovits [23]:

Lemma 2.4 (Erdős [9, 10], Simonovits [23]). For every r ≥ 2, ε > 0, and (r+1)-chromatic graph F , there

exists δ > 0 such that if a graph G of order n satisfies e(G) > (1− 1
r − δ)n

2

2 , then either G contains F , or

G differs form Tn,r in at most εn2 edges.

Write Kr(n1, . . . , nr) for the complete r-partite graph with classes of sizes n1, . . . , nr. Nikiforov [21]

proved the spectral version of Stability Lemma.

Lemma 2.5 (Nikiforov [21]). Let r ≥ 2, 1/ ln n < c < r−8(r+21)(r+1), 0 < ε < 2−36r−24 and G be a

graph on n vertices. If λ(G) > (1− 1
r − ε)n, then one of the following statements holds:

(a) G contains a Kr+1(⌊c ln n⌋, . . . , ⌊c ln n⌋, ⌈n1−√
c⌉);

(b) G differs from Tn,r in fewer than (ε1/4 + c1/(8r+8))n2 edges.

From the above theorem, one can easily get the following result.

Corollary 2.6. Let F be a graph with chromatic number χ(F ) = r + 1. For every ε > 0, there exist δ > 0
and n0 such that if G is an F -free graph on n ≥ n0 vertices with λ(G) ≥ (1 − 1

r − δ)n, then G can be

obtained from Tn,r by adding and deleting at most εn2 edges.

For Kr(n1, n2, . . . , nr), let n =
∑r

i=1 ni. For convenience, we assume that n1 ≥ n2 ≥ . . . ≥ nr > 0.

It is well-known [6, p. 74] or [7] that the characteristic polynomial of Kr(n1, n2, . . . , nr) is given as

φ(Kr(n1, n2, . . . , nr), x) = xn−r

(

1−
r∑

i=1

ni

x+ ni

)
r∏

j=1

(x+ nj).

So the spectral radius λ(Kr(n1, n2, . . . , nr)) satisfies the following equation:

r∑

i=1

ni

λ(Kr(n1, n2, . . . , nr)) + ni
= 1 (4)

Feng, Li and Zhang [14, Theorem 2.1] proved the following lemma, which can also be seen in Ste-

vanović, Gutnam and Rehman [25].

Lemma 2.7 (Feng et al. [14], Stevanović et al. [25]). If ni − nj ≥ 2, then

λ(Kr(n1, . . . , ni − 1, . . . , nj + 1, . . . , nr)) > λ(Kr(n1, . . . , ni, . . . , nj, . . . , nr)).

The following lemma was given in [4].

Lemma 2.8 (Cioabă et al. [4]). Let A1, . . . , Ap be finite sets. Then

|A1 ∩ . . . ∩Ap| ≥
p
∑

i=1

|Ai| − (p− 1)

∣
∣
∣
∣

p
⋃

i=1

Ai

∣
∣
∣
∣
.
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3 Proof of Theorem 1.2

Let F be any graph such that the graphs in Ex(n, F ) are Turán graphs plus O(1) edges. We may assume

that the graphs in Ex(n, F ) are obtained from Tn,r by adding a edges. Then ex(n, F ) = e(Tn,r)+ a, which

implies that χ(F ) = r + 1 by (1) and the fact (1 − 1
r )

n2

2 − r
8 ≤ e(Tn,r) ≤ (1 − 1

r )
n2

2 . In the sequel, we

always assume that G is a graph on n vertices containing no F as a subgraph and attaining the maximum

spectral radius. The aim of this section is to prove that G is obtained from Tn,r by adding a edges for n
large enough.

The sketch of our proof is as follows: Firstly, we give a lower bound on λ(G), and determine a partition

V (G) = V1 ∪ · · · ∪ Vr such that
∑

1≤i<j≤r e(Vi, Vj) attains the maximum by using the spectral version of

Stability Lemma. Then we show that any vertex except at most 2a vertices in Vi is adjacent to all vertices

in Vj for any i, j ∈ [r] and j 6= i. Next, we prove that all vertices have eigenvector entry very close

to the maximum entry and show that the partition is balanced. Finally, we prove e(G) = ex(n, F ) by

contradiction.

Lemma 3.1. G is connected.

Proof. Suppose to the contrary that G is not connected. Assume G1, . . . , Gs are the components of G and

λ(G1) = max{λ(Gi)| i ∈ [s]}, then λ(G) = λ(G1) and |V (G1)| ≤ n − 1. For any vertex u ∈ V (G1),
let G′ be the graph obtained from G1 by adding a pendent edge uv at u and n − 1 − |V (G1)| isolated

vertices. Then λ(G′) > λ(G1) = λ(G) by Lemma 2.3. This implies that G′ contains a copy of F as a

subgraph, denote it as F1, then uv is an edge of F1. Next, we claim that dG1
(u) < |V (F )|. Otherwise,

dG1
(u) ≥ |V (F )|. Then there exists a vertex w ∈ NG1

(u) and w /∈ V (F1). Then F1 − uv + uw
is a copy of F in G1, this is a contraction. Due to the arbitrary of vertex u, ∆(G1) < |V (F )|. Thus

λ(G) = λ(G1) ≤ ∆(G1) < |V (F )| < λ(Tn,r) and this contradicts the fact that G has the maximum

spectral radius among all n-vertex F -free graphs as Tn,r is F -free. Therefore, G is connected.

In the following, let λ(G) be the spectral radius of G, x be a positive eigenvector corresponding to λ(G)
with max{xi| i ∈ V (G)} = 1. Without loss of generality, we assume that xz = 1. If there are multiple

such vertices, we choose and fix z arbitrarily among them.

Lemma 3.2.

λ(G) ≥
(

1− 1

r

)

n− r

4n
+

2a

n
.

Proof. Let H be an F -free graph on n vertices with maximum number of edges. Since G attains the

maximum spectral radius over all n-vertex F -free graphs, and ex(n, F ) = e(Tn,r) + a, by the Rayleigh

quotient equation, we have

λ(G) ≥ λ(H) ≥ 1TA(H)1

1T1
=

2(e(Tn,r) + a)

n
≥ 2

n

((

1− 1

r

)
n2

2
− r

8
+ a

)

≥
(

1− 1

r

)

n− r

4n
+

2a

n
.

Let ℓ be an integer satisfying ℓ ≫ max{a, |V (F )|}.

Lemma 3.3. For every ǫ > 0, there exists an integer n0 such that if n ≥ n0, then

e(G) ≥ e(Tn,r)− ǫn2.

Furthermore, G has a partition V (G) = V1 ∪ . . . ∪ Vr such that
∑

1≤i<j≤r e(Vi, Vj) attains the maximum,

and
r∑

i=1

e(Vi) ≤ ǫn2,

4



and for each i ∈ [r],
(
1

r
− 3

√
ǫ

)

n < |Vi| <
(
1

r
+ 3

√
ǫ

)

n.

Proof. From Lemma 3.2 and Corollary 2.6, it follows that G is obtained from Tn,r by adding or deleting at

most ǫn2 edges for large enough n. Then there is a partition of V (G) = U1 ∪ . . . ∪ Ur with
∑r

i=1 e(Ui) ≤
ǫn2,

∑

1≤i<j≤r e(Ui, Uj) ≥ e(Tn,r)−ǫn2 and ⌊nr ⌋ ≤ |Ui| ≤ ⌈nr ⌉ for each i ∈ [r]. So e(G) ≥ e(Tn,r)−ǫn2.

Furthermore, G has a partition V = V1∪ . . .∪Vr such that
∑

1≤i<j≤r e(Vi, Vj) attains the maximum. In this

case,
∑r

i=1 e(Vi) ≤
∑r

i=1 e(Ui) ≤ ǫn2 and
∑

1≤i<j≤r e(Vi, Vj) ≥
∑

1≤i<j≤r e(Ui, Uj) ≥ e(Tn,r) − ǫn2.

Let s = max
{∣
∣|Vj | − n

r

∣
∣ , j ∈ [r]

}
. Without loss of generality, we assume

∣
∣|V1| − n

r

∣
∣ = s. Then

e(G) ≤
∑

1≤i<j≤r

|Vi||Vj |+
r∑

i=1

e(Vi)

≤ |V1|(n − |V1|) +
∑

2≤i<j≤r

|Vi||Vj |+ ǫn2

= |V1|(n − |V1|) +
1

2

(

(
r∑

j=2

|Vj |)2 −
r∑

j=2

|Vj |2
)

+ ǫn2

≤ |V1|(n − |V1|) +
1

2
(n− |V1|)2 −

1

2(r − 1)
(n− |V1|)2 + ǫn2

< − r

2(r − 1)
s2 +

r − 1

2r
n2 + ǫn2,

where the last second inequality holds by Hölder’s inequality, and the last inequality holds since
∣
∣|V1| − n

r

∣
∣ =

s. On the other hand,

e(G) ≥ e(Tn,r)− ǫn2 ≥
(

1− 1

r

)
n2

2
− r

8
− ǫn2 >

r − 1

2r
n2 − 2ǫn2,

as n is large enough. Therefore, r
2(r−1)s

2 < 3ǫn2, which implies that s <

√
6(r−1)ǫ

r n2 <
√
6ǫn < 3

√
ǫn.

The proof is completed.

Lemma 3.4. Let θ > 0 and ǫ > 0 be sufficiently small constants with θ < 1
100r5ℓ

and 2ǫ < θ3. We denote

W := ∪r
i=1{v ∈ Vi| dVi

(v) ≥ 2θn}, (5)

and

L :=

{

v ∈ V (G)| d(v) ≤
(

1− 1

r
− 3rǫ

1

3

)

n

}

. (6)

Then |L| ≤ ǫ
1

3n and W ⊆ L.

Proof. We first prove the following claims.

Claim 1. |W | < θn

Proof. It follows from Lemma 3.3 that
∑r

i=1 e(Vi) ≤ ǫn2. On the other hand, let Wi := W ∩ Vi for all

i ∈ [r]. Then

2e(Vi) =
∑

u∈Vi

dVi
(u) ≥

∑

u∈Wi

dVi
(u) ≥ 2|Wi|θn

5



Thus
r∑

i=1

e(Vi) ≥
r∑

i=1

|Wi|θn = |W |θn.

Therefore, we have that |W |θn ≤ ǫn2. This proves that |W | ≤ ǫn
θ < θn.

Claim 2. |L| ≤ ǫ
1

3n.

Proof. Suppose to the contrary that |L| > ǫ
1

3n. Then there exists a subset L′ ⊆ L with |L′| = ⌊ǫ 1

3n⌋.

Therefore,

e(G[V \ L′]) ≥ e(G) −
∑

v∈L′

d(v) ≥ e(Tn,r)− ǫn2 − ǫ
1

3n2

(

1− 1

r
− 3rǫ

1

3

)

>
(n− ⌊ǫ 1

3n⌋)2
2

(

1− 1

r

)

+ a

≥ e(Tn′,r) + a = ex(n′, F ),

where n′ = n − ⌊ǫ 1

3n⌋ and n is large enough. However, e(G[V \ L′]) > ex(n′, F ) implies that G[V \ L′]
contains an F , which contradicts that G is F -free.

Next, we prove that W ⊆ L. Otherwise, there exists a vertex u0 ∈ W and u0 /∈ L. Without loss of

generality, let u0 ∈ V1. Since V (G) = V1 ∪ . . . ∪ Vr is the partition such that
∑

1≤i<j≤r e(Vi, Vj) attains

the maximum, dV1
(u0) ≤ dVi

(u0) for each i ∈ [2, r]. Thus d(u0) ≥ rdV1
(u0), that is dV1

(u0) ≤ 1
rd(u0).

On the other hand, since u0 6∈ L, we get d(u0) > (1− 1
r − 3rǫ

1

3 )n. Thus

dV2
(u0) ≥ d(u0)− dV1

(u0)− (r − 2)

(
1

r
+ 3

√
ǫ

)

n

≥
(

1− 1

r

)

d(u0)− (r − 2)

(
1

r
+ 3

√
ǫ

)

n

>
n

r2
− 3(r − 1)ǫ

1

3n− 3(r − 2)
√
ǫn (7)

>
n

r2
− 6rǫ

1

3n.

Recall from Claim 1 and Claim 2 that |W | < θn and |L| ≤ ǫ
1

3n, hence, for any i ∈ [r] and sufficiently large

n, we have

|Vi \ (W ∪ L)| ≥
(
1

r
− 3

√
ǫ

)

n− θn− ǫ
1

3n ≥ ℓ.

We claim that u0 is adjacent to at most a vertices in V1 \ (W ∪ L). Otherwise, let u1,1, u1,2, . . . , u1,a+1

be the neighbors of u0 in V1 \ (W ∪L). Let u1,a+2, . . . , u1,ℓ be another ℓ− a− 1 vertices in V1 \ (W ∪L).

For any j ∈ [ℓ], since u1,j 6∈ L and u1,j 6∈ W , we have d(u1,j) >
(

1− 1
r − 3rǫ

1

3

)

n, and dV1
(u1,j) < 2θn.

Thus,

dV2
(u1,j) ≥ d(u1,j)− dV1

(u1,j)− (r − 2)

(
1

r
+ 3

√
ǫ

)

n

>
n

r
− 3rǫ

1

3n− 2θn− 3(r − 2)
√
ǫn (8)

>
n

r
− 6rǫ

1

3n− 2θn.

6



By Lemma 2.8, we consider the common neighbors of u0, u1,1, . . . , u1,ℓ in V2,

|NV2
(u0) ∩NV2

(u1,1) ∩ · · · ∩NV2
(u1,ℓ) \ (W ∪ L)|

≥ dV2
(u0) +

ℓ∑

j=1

dV2
(u1,j)− ℓ |V2| − |W | − |L|

>
n

r2
− 6rǫ

1

3n+ ℓ
(n

r
− 6rǫ

1

3n− 2θn
)

− ℓ
(n

r
+ 3

√
ǫn
)

− θn− ǫ
1

3n

>
n

r2
− 16rℓǫ

1

3n− (2ℓ+ 1)θn > ℓ,

for sufficiently large n. This implies that there exist ℓ vertices u2,1, u2,2, . . . , u2,ℓ in V2 \ (W ∪ L) such

that {u0, u1,1, . . . , u1,ℓ} and {u2,1, . . . , u2,ℓ} induce a complete bipartite graph. For an integer s with

2 ≤ s ≤ r − 1, suppose that for any 1 ≤ i ≤ s, there exist ui,1, ui,2, . . . , ui,ℓ ∈ Vi \ (W ∪ L) such

that {u0, u1,1, . . . , u1,ℓ}, {u2,1, . . . , u2,ℓ}, . . ., {us,1, . . . , us,ℓ} induce a complete s-partite graph. We next

consider the common neighbors of these vertices in Vs+1. Similarly, by (7) and (8), we get that for each

i ∈ [s] and j ∈ [ℓ],

dVs+1
(u0) >

n

r2
− 6rǫ

1

3n,

and

dVs+1
(ui,j) >

n

r
− 6rǫ

1

3n− 2θn.

By Lemma 2.8 again, we can obtain

∣
∣NVs+1

(u0) ∩
(
∩i∈[s],j∈[ℓ]NVs+1

(ui,j)
)
\ (W ∪ L)

∣
∣

≥ dVs+1
(u0) +

∑

i∈[s],j∈[ℓ]
dVs+1

(ui,j)− sℓ |Vs+1| − |W | − |L|

>
n

r2
− 6rǫ

1

3n+ sℓ
(n

r
− 6rǫ

1

3n− 2θn
)

− sℓ
(n

r
+ 3

√
ǫn
)

− θn− ǫ
1

3n

>
n

r2
− 16srℓǫ

1

3n− (2sℓ+ 1)θn > ℓ,

where n is sufficiently large. Hence there exist ℓ vertices us+1,1, us+1,2, . . . , us+1,ℓ ∈ Vs+1 \ (W ∪L) such

that {u0, u1,1, . . . , u1,ℓ}, . . ., {us+1,1, . . ., us+1,ℓ} induce a complete (s + 1)-partite graph. Thus, for each

i ∈ [2, r], there exist ui,1, ui,2, . . . , ui,ℓ in Vi \ (W ∪ L) such that {u0, u1,1, . . . , u1,ℓ}, {u2,1, . . . , u2,ℓ}, . . .,
{ur,1, . . . , ur,ℓ} induce a complete r-partite graph. Let G′ be the graph induced by {u0, u1,1, . . . , u1,ℓ}, . . .,
{ur,1, . . . , ur,ℓ}. Since u0 is adjacent to u1,1, . . . , u1,a+1, then e(G′) > e(Trℓ+1,r) + a, by the definition of

Turán number, G′ contains an F , this is a contradiction. Therefore u0 is adjacent to at most a vertices in

V1 \ (W ∪ L). Hence

dV1
(u0) ≤ |W |+ |L|+ a

< θn+ ǫ
1

3n+ a

< 2θn,

for sufficiently large n. This is a contradiction to the fact that u0 ∈ W . Hence W ⊆ L.
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Lemma 3.5. For each i ∈ [r],
e(G[Vi \ L]) ≤ a.

Furthermore, for each i ∈ [r], there exists an independent set Ii ⊆ Vi \ L such that

|Ii| ≥ |Vi| − ǫ
1

3n− a.

Proof. Suppose to the contrary that there exists an i0 ∈ [r] such that e(G[Vi0 \ L]) > a. Without loss of

generality, we may assume that e(G[V1\L]) > a. By Lemmas 3.3 and 3.4, we have |Vi\L| ≥
(
1
r − 3

√
ǫ
)
n−

ǫ
1

3n ≥ ℓ for any i ∈ [r]. Let u1,1, u1,2, . . . , u1,ℓ be ℓ vertices chosen from V1 \ L such that the induced

subgraph of {u1,1, u1,2, . . . , u1,ℓ} in G contains at least a+ 1 edges. For any j ∈ [ℓ], u1,j /∈ L implies that

u1,j /∈ W by Lemma 3.4, thus d(u1,j) >
(

1− 1
r − 3rǫ

1

3

)

n, and dV1
(u1,j) < 2θn. Then we have

dV2
(u1,j) ≥ d(u1,j)− dV1

(u1,j)− (r − 2)

(
1

r
+ 3

√
ǫ

)

n

>
n

r
− 3rǫ

1

3n− 2θn− 3(r − 2)
√
ǫn (9)

>
n

r
− 6rǫ

1

3n− 2θn.

Applying Lemma 2.8, we get

|NV2
(u1,1) ∩NV2

(u1,2) ∩ · · · ∩NV2
(u1,ℓ) \ L|

≥
ℓ∑

j=1

dV2
(u1,j)− (ℓ− 1) |V2| − |L|

≥ ℓ
(n

r
− 6rǫ

1

3n− 2θn
)

− (ℓ− 1)
(
1
r + 3

√
ǫ
)
n− ǫ

1

3n

>
n

r
− 10rℓǫ

1

3n− 2ℓθn > ℓ,

for sufficiently large n. So there exist ℓ vertices u2,1, u2,2, . . . , u2,ℓ ∈ V2 such that {u1,1, . . . , u1,ℓ} and

{u2,1, . . . , u2,ℓ} induce a complete bipartite graph. For an integer s with 2 ≤ s ≤ r − 1, suppose that

for any 1 ≤ i ≤ s, there exist ui,1, ui,2, . . . , ui,ℓ ∈ Vi \ L such that {u1,1, . . . , u1,ℓ}, {u2,1, . . . , u2,ℓ}, . . .,
{us,1, . . . , us,ℓ} induce a complete s-partite subgraph in G. We next consider the common neighbors of

these vertices in Vs+1. Similarly, by (9), we get that for each i ∈ [s] and j ∈ [ℓ],

dVs+1
(ui,j) ≥

n

r
− 6rǫ

1

3n− 2θn.

By Lemma 2.8 again, we can obtain

∣
∣
(
∩i∈[s],j∈[ℓ]NVs+1

(ui,j)
)
\ L
∣
∣

≥
∑

i∈[s],j∈[ℓ]
dVs+1

(ui,j)− (sℓ− 1) |Vs+1| − |L|

≥ sℓ
(n

r
− 6rǫ

1

3n− 2θn
)

− (sℓ− 1)
(
1
r + 3

√
ǫ
)
n− ǫ

1

3n

>
n

r
− 10rsℓǫ

1

3n− 2sℓθn > ℓ,

for sufficiently large n. Thus there exist ℓ vertices us+1,1, us+1,2, . . . , us+1,ℓ ∈ Vs+1\L such that {u1,1, . . . , u1,ℓ},

{u2,1, . . . , u2,ℓ}, . . ., {us+1,1, . . . , us+1,ℓ} induce a complete (s + 1)-partite subgraph in G. Therefore, for
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each i ∈ [2, r], there exist ui,1, ui,2, . . . , ui,ℓ in Vi \ L such that {u1,1, . . . , u1,ℓ}, {u2,1, . . . , u2,ℓ}, . . .,
{ur,1, . . . , ur,ℓ} induce a complete r-partite graph. Let G′ be the graph induced by {u1,1, . . . , u1,ℓ}, . . .,
{ur,1, . . . , ur,ℓ}. Then e(G′) > e(Trℓ,r)+ a, which implies that G′ contains a copy of F , this is a contradic-

tion. Thus for each i ∈ [r], e(G[Vi \ L]) ≤ a.

Therefore, the subgraph obtained from G[Vi\L] by deleting one vertex of each edge in G[Vi\L] contains

no edges, which is an independent set of G[Vi \ L]. Therefore, for each i ∈ [r], there exists an independent

set Ii ⊆ Vi such that

|Ii| ≥ |Vi \ L| − a ≥ |Vi| − ǫ
1

3n− a.

Lemma 3.6. L is empty and e(G[Vi]) ≤ a for each i ∈ [r].

Proof. We first prove that L = ∅. Otherwise, let v be a vertex in L. Then d(v) ≤ (1− 1
r − 3rǫ

1

3 )n. Recall

that xz = max{xi| i ∈ [n]}, then λ(G) = λ(G)xz =
∑

wz∈E(G) xw ≤ d(z). Hence

d(z) ≥ λ(G) ≥
(

1− 1

r
− r

4n2
+

2a

n2

)

n >

(

1− 1

r
− 3rǫ

1

3

)

n,

as n is large enough. Hence z /∈ L. Without loss of generality, we may assume that z ∈ V1. Let G′ be the

graph with V (G′) = V (G) and edge set E(G′) = E(G \ {v}) ∪ {vw| w ∈ N(z) ∩ (∪r
i=2Ii)}. We claim

that G′ is F -free. Otherwise, G′ contains a copy of F , denoted as F ′, as a subgraph, then v ∈ V (F ′). Let

NG′(v) ∩ V (F ′) = {w1, . . . , ws}. Obviously, wi /∈ V1 and wi /∈ L for any i ∈ [s]. If z /∈ V (F ′), then

(F ′ \ {v}) ∪ {z} is a copy of F in G, which is a contradiction. Thus z ∈ V (F ′). For any i ∈ [s],

dV1
(wi) = d(wi)− dV \V1

(wi)

≥
(

1− 1

r
− 3rǫ

1

3

)

n− a− ǫ
1

3n− (r − 2)
(n

r
+ 3

√
ǫn
)

>
n

r
− 6rǫ

1

3n− a,

where the last second inequality holds as wi /∈ L and e(G[Vj \ L]) ≤ a for wi ∈ Vj . Using Lemma 2.8, we

get

∣
∣
∣

s⋂

i=1

NV1
(wi) \ L

∣
∣
∣

≥
s∑

i=1

dV1
(wi)− (s− 1)|V1| − |L|

> s
(n

r
− 6rǫ

1

3n− a
)

− (s − 1)
(n

r
+ 3

√
ǫn
)

− ǫ
1

3n

>
n

r
− 10srǫ

1

3n− sa > 1.

Thus there exists v′ ∈ V1 \ L such that v′ is adjacent to w1, . . . , ws. Then (F ′ \ {v}) ∪ {v′} is a copy of F
in G, which is a contradiction. Thus G′ is F -free.

By Lemma 3.5, we have e(G[V1 \L]) ≤ a, then the maximum degree in the induced subgraph G[V1 \L]
is at most a. Combining this with Lemma 3.4, we get

dV1
(z) = dV1∩L(z) + dV1\L(z) ≤ ǫ

1

3n+ a.
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Therefore, by Lemma 3.5, we have

λ(G) = λ(G)xz =
∑

v∼z

xv =
∑

v∈V1,v∼z

xv +

r∑

i=2




∑

v∈Vi,v∼z

xv





=
∑

v∈V1,v∼z

xv +
r∑

i=2




∑

v∈Ii,v∼z

xv +
∑

v∈Vi\Ii,v∼z

xv





≤ dV1
(z) +

r∑

i=2




∑

v∈Ii,v∼z

xv



+

r∑

i=2

|Vi \ Ii|

≤ ǫ
1

3n+ a+
r∑

i=2




∑

v∈Ii,v∼z

xv



+ (r − 1)(ǫ
1

3n+ a).

By Lemma 3.2, we have

r∑

i=2




∑

v∈Ii,v∼z

xv



 ≥
(

1− 1

r

)

n− r

4n
+

2a

n
− rǫ

1

3n− ra. (10)

By the Rayleigh quotient equation,

λ(G′)− λ(G) ≥ xT (A(G′)−A(G)) x

xTx
=

2xv
xTx





r∑

i=2




∑

w∈Ii,v∼z

xw



−
∑

uv∈E(G)

xu





≥ 2xv
xTx

((

1− 1

r

)

n− r

4n
+

2a

n
− rǫ

1

3n− ra−
(

1− 1

r
− 3rǫ

1

3

)

n

)

> 0,

where the last second inequality holds since (10) and
∑

uv∈E(G) xu ≤ d(v), and the last inequality holds for

n large enough. This contradicts the fact that G has the largest spectral radius over all F -free graphs, so L
must be empty. Furthermore, by Lemma 3.5, we have e(G[Vi]) ≤ a for each i ∈ [r].

Lemma 3.7. For any i ∈ [r], let Bi = {u ∈ Vi| dVi
(u) ≥ 1} and Ci = Vi \Bi. Then

(1) |Bi| ≤ 2a;

(2) For every vertex u ∈ Ci, u is adjacent to all vertices of V \ Vi.

Proof. We prove the assertions by contradiction.

(1) If there exists a j ∈ [r] such that |Bj | > 2a, then
∑

u∈Bj
dVj

(u) > 2a. On the other hand,

e(G[Vj ]) ≤ a by Lemma 3.6 . Therefore,

2a <
∑

u∈Bj

dVj
(u) =

∑

u∈Vj

dVj
(u) = 2e(G[Vj ]) ≤ 2a,

which is a contradiction.

(2) If there exists a vertex v ∈ Ci0 such that there is a vertex w1 /∈ Vi0 and vw1 /∈ E(G), where

i0 ∈ [r]. Let G′ be the graph with V (G′) = V (G) and E(G′) = E(G) ∪ {vw1}. We claim that G′

is F -free. Otherwise, G′ contains a copy of F , denoted as F ′, as a subgraph, then vw1 ∈ E(F ′). Let
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NG′(v) ∩ V (F ′) = {w1, . . . , ws}. Obviously, wi /∈ Vi0 for any i ∈ [s], then we have,

dVi0
(wi) = d(wi)− dV \Vi0

(wi)

≥
(

1− 1

r
− 3rǫ

1

3

)

n− a− (r − 2)
(n

r
+ 3

√
ǫn
)

(11)

>
n

r
− 6rǫ

1

3n− a,

where the last second inequality holds as L = ∅, and e(G[Vj ]) ≤ a for wi ∈ Vj . Using Lemma 2.8, we

consider the common neighbors of w1, . . . , ws in Ci0 ,

∣
∣
∣

s⋂

i=1

NVi0
(wi) \Bi0

∣
∣
∣

≥
s∑

i=1

dVi0
(wi)− (s− 1)|Vi0 | − |Bi0 |

> s
(n

r
− 6rǫ

1

3n− a
)

− (s− 1)
(n

r
+ 3

√
ǫn
)

− 2a

>
n

r
− 9rsǫ

1

3n− (s+ 2)a > 1.

Then there exists v′ ∈ Ci0 such that v′ is adjacent to w1, . . . , ws. Then (F ′ \{v})∪{v′} is a copy of F in G,

which is a contradiction. Thus G′ is F -free. From the construction of G′, we see that λ(G′) > λ(G), which

contradicts the assumption that G has the maximum spectral radius among all F -free graphs on n vertices.

Lemma 3.8. For any u ∈ V (G), xu ≥ 1− 20a2r2

n .

Proof. We will prove this lemma by contradiction. Suppose that there is a vertex v ∈ V (G) with xv <

1 − 20a2r2

n . Recall that xz = max{xi| i ∈ V (G)} = 1. Without loss of generality, we may assume that

z ∈ V1. Let G′ be the graph with V (G′) = V (G) and E(G′) = E(G\{v})∪{vw| w ∈ N(z)∩ (∪r
i=2Ci)}.

We claim that G′ is F -free. Otherwise, G′ contains a copy of F , denoted by F ′, as a subgraph, then

v ∈ V (F ′). Let NG′(v) ∩ V (F ′) = {w1, . . . , ws}. Obviously, wi /∈ V1 for any i ∈ [s]. If z /∈ V (F ′),
then (F ′ \ {v}) ∪ {z} is a copy of F in G, which is a contradiction. Thus z ∈ V (F ′). By using the similar

method as in Lemma 3.7, we get

dV1
(wi) >

n

r
− 6rǫ

1

3n− a,

for any i ∈ [s]. Using Lemma 2.8, we consider the common neighbors of w1, . . . , ws in C1,

∣
∣
∣

s⋂

i=1

NV1
(wi) \B1

∣
∣
∣

≥
s∑

i=1

dV1
(wi)− (s− 1)|V1| − |B1|

> s
(n

r
− 6rǫ

1

3n− a
)

− (s− 1)
(n

r
+ 3

√
ǫn
)

− 2a

>
n

r
− 9rsǫ

1

3n− (s+ 2)a > 1.
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Then there exists v′ ∈ C1 such that v′ is adjacent to w1, . . . , ws. Then (F ′ \ {v}) ∪ {v′} is a copy of F in

G, which is a contradiction. Thus G′ is F -free.

By Lemma 3.6, e(G[V1]) ≤ a, then dV1
(z) ≤ a. By (2), we have

λ(G)xz =
∑

w∼z

xw =
∑

w∼z,w∈V1

xw +
r∑

i=2

( ∑

w∼z,w∈Vi

xw

)

=
∑

w∼z,w∈V1

xw +
r∑

i=2

( ∑

w∼z,w∈Bi

xw +
∑

w∼z,w∈Ci

xw

)

,

which implies that

r∑

i=2

( ∑

w∼z,w∈Ci

xw

)

= λ(G) −
∑

w∼z,w∈V1

xw −
r∑

i=2

( ∑

w∼z,w∈Bi

xw

)

≥ λ(G) − dV1
(z)−

r∑

i=2

( ∑

w∈Bi

1
)

≥ λ(G) − a− (r − 1)2a, (12)

= λ(G) − (2r − 3)a,

where (12) holds as e(G[V1]) ≤ a, and |Bi| ≤ 2a for any i ∈ [r].
By Rayleigh quotient equation, we have

λ(G′)− λ(G) ≥ xT (A(G′)−A(G))x

xTx

=
2xv
xTx





r∑

i=2

( ∑

w∼z,w∈Ci

xw

)

−
∑

uv∈E(G)

xu





=
2xv
xTx





r∑

i=2

( ∑

w∼z,w∈Ci

xw

)

− λ(G)xv





>
2xv
xTx

(

λ(G)− (2r − 3)a− λ(G)
(

1− 20a2r2

n

))

≥ 2xv
xTx

(
r − 1

r
20a2r2 − r

4n

20a2r2

n
+

2a

n

20a2r2

n
− (2r − 3)a

)

> 0,

where the last second inequality holds as (12), and the last inequality follows by λ(G) ≥
(
1− 1

r

)
n− r

4n+
2a
n .

This contradicts the assumption that G has the maximum spectral radius among all F -free graphs on n
vertices. Thus xu ≥ 1− 20a2r2

n for any u ∈ V (G).

Let Gin = ∪r
i=1G[Vi]. For any i ∈ [r], let |Vi| = ni, K = Kr(n1, n2, . . . , nr) be the complete r-partite

graph on V1, V2, . . . , Vr , and Gout be the graph with V (Gout) = V (G) and E(Gout) = E(K) \ E(G).

Lemma 3.9. e(Gin)− e(Gout) ≤ a.
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Proof. Suppose to the contrary that e(Gin) − e(Gout) > a. For each i ∈ [r], let Si be the vertex set

satisfying Bi ⊆ Si ⊆ Vi and |Si| = ℓ. Let S = ∪r
i=1Si, G

′ = G[S]. By Lemma 3.7, we have e(G′) ≥
e(Trℓ,r) + e(Gin) − e(Gout) > e(Trℓ,r) + a, which implies that G′ contains an F , this is a contradiction.

So e(Gin)− e(Gout) ≤ a.

Lemma 3.10. For any 1 ≤ i < j ≤ r, |ni − nj| ≤ 1.

Proof. We prove this lemma by contradiction. Without loss of generality, suppose that n1 ≥ n2 ≥ . . . ≥ nr.

Assume that there exist i0, j0 with 1 ≤ i0 < j0 ≤ r such that ni0 − nj0 ≥ 2.

Claim 1. There exists a constant c1 > 0 such that λ(Tn,r)− λ(K) ≥ c1
n .

Proof. Let K ′ = Kr(n1, . . . , ni0 − 1, . . . , nj0 + 1, . . . , nr). Assume K ′ ∼= Kr(n
′
1, n

′
2, . . . , n

′
r), where

n′
1 ≥ n′

2 ≥ . . . ≥ n′
r. By (4), we have

1 =

r∑

i=1

ni

λ(K) + ni
=

ni0

λ(K) + ni0

+
nj0

λ(K) + nj0

+
∑

i∈[r]\{i0,j0}

ni

λ(K) + ni
, (13)

and

1 =

r∑

i=1

n′
i

λ(K ′) + n′
i

=
ni0 − 1

λ(K ′) + ni0 − 1
+

nj0 + 1

λ(K ′) + nj0 + 1
+

∑

i∈[r]\{i0,j0}

ni

λ(K ′) + ni
. (14)

Subtracting (14) from (13), we get

2(ni0 − nj0 − 1)λ2(K) + (ni0 + nj0)(ni0 − nj0 − 1)λ(K)

(λ(K) + ni0 − 1)(λ(K) + ni0)(λ(K) + nj0 + 1)(λ(K) + nj0)

=
∑

i∈[r]\{i0,j0}

ni(λ(K
′)− λ(K))

(λ(K) + ni)(λ(K ′) + ni)
+

(ni0 − 1)(λ(K ′)− λ(K))

(λ(K) + ni0 − 1)(λ(K ′) + ni0 − 1)

+
(nj0 + 1)(λ(K ′)− λ(K))

(λ(K) + nj0 + 1)(λ(K ′) + nj0 + 1)

≤ λ(K ′)− λ(K)

λ(K) + n′
r

( ∑

i∈[r]\{i0,j0}

ni

λ(K ′) + ni
+

ni0 − 1

λ(K ′) + ni0 − 1
+

nj0 + 1

λ(K ′) + nj0 + 1

)

=
λ(K ′)− λ(K)

λ(K) + n′
r

,

where the inequality holds as n′
r ≤ min{n1, . . . , ni0 − 1, . . . , nj0 + 1, . . . , nr}, and the last equality holds

by (14). Combining with the assumption ni0 − nj0 ≥ 2, we obtain

2λ2(K) + (ni0 + nj0)λ(K)

(λ(K) + ni0 − 1)(λ(K) + ni0)(λ(K) + nj0 + 1)(λ(K) + nj0)
≤ λ(K ′)− λ(K)

λ(K) + n′
r

. (15)

In view of the construction of K , we see that

n−
(n

r
+ 3

√
ǫn
)

≤ δ(K) ≤ λ(K) ≤ ∆(K) ≤ n−
(n

r
− 3

√
ǫn
)

,

thus λ(K) = Θ(n). From (15), it follows that there exists a constant c1 > 0 such that λ(K ′)− λ(K) ≥ c1
n .

Therefore, by Lemma 2.7, λ(Tn,r)− λ(K) ≥ λ(K ′)− λ(K) ≥ c1
n .
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Claim 2. There exists a constant c2 > 0 such that λ(Tn,r)− λ(K) ≤ c2
n2 .

Proof. According to the definition of K , we have e(G) = e(Gin) + e(K) − e(Gout). By Lemma 3.7, for

any i ∈ [r], and every vertex u ∈ Ci, u is adjacent to all vertices of V \ Vi. Thus

e(Gout) ≤
∑

1≤i<j≤r

|Bi||Bj | ≤
(
r

2

)

(2a)2 ≤ 2a2r2.

Therefore

λ(G) =
xTA(G)x

xTx

=
2
∑

ij∈E(K) xixj

xTx
+

2
∑

ij∈E(Gin)
xixj

xTx
−

2
∑

ij∈E(Gout)
xixj

xTx

≤ λ(K) +
2e(Gin)

xTx
− 2e(Gout)(1− 20a2r2

n )2

xTx

≤ λ(K) +
2(e(Gin)− e(Gout))

xTx
+

e(Gout)
40a2r2

n

xTx

≤ λ(K) +
2a

xTx
+

80a4r4

n

xTx
, (16)

where (16) holds by Lemma 3.9 and e(Gout) ≤ 2a2r2.
On the other hand, let y be an eigenvector of Tn,r corresponding to λ(Tn,r), k = n − r⌊nr ⌋. Since Tn,r

is a complete r-partite graph on n vertices where each partite set has either ⌊nr ⌋ or ⌈nr ⌉ vertices, we may

assume y = (y1, . . . , y1
︸ ︷︷ ︸

k⌈n
r
⌉

, y2, . . . , y2
︸ ︷︷ ︸

n−k⌈n
r
⌉

)T. Thus by (2), we have

λ(Tn,r)y1 = (r − k)
⌊n

r

⌋
y2 + (k − 1)

⌈n

r

⌉
y1, (17)

and

λ(Tn,r)y2 = (r − k − 1)
⌊n

r

⌋
y2 + k

⌈n

r

⌉
y1. (18)

Combining (17) and (18), we obtain
(

λ(Tn,r) +
⌈n

r

⌉)

y1 =
(

λ(Tn,r) +
⌊n

r

⌋)

y2.

Without loss of generality, we assume that y2 = 1. Then

y2 ≥ y1 =
λ(Tn,r) + ⌊nr ⌋
λ(Tn,r) + ⌈nr ⌉

≥ 1− 1

λ(Tn,r) + ⌈nr ⌉
.

Since λ(Tn,r) ≥ δ(Tn,r) ≥ n−⌈nr ⌉, y1 ≥ 1− 1
n . Let H ∈ Ex(n, F ). Then e(H) = ex(n, F ) = e(Tn,r)+a.

Therefore

λ(G) ≥ λ(H) ≥ yTA(H)y

yTy

≥ yTA(Tn,r)y

yTy
+

2a

yTy

(

1− 1

n

)2

≥ λ(Tn,r) +
2a

n

(

1− 2

n

)

. (19)
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Combining (16), (19) and xTx ≥ n(1− 20a2r2

n )2 ≥ n− 40a2r2, we get

λ(Tn,r)− λ(K)

≤ 2a

xTx
− 2a

n
+

4a

n2
+

80a4r4

n

xTx

≤ 2a

n− 40a2r2
− 2a

n
+

4a

n2
+

80a4r4

n

n− 40a2r2

≤ 80a3r2

n(n− 40a2r2)
+

4a

n2
+

80a4r4

n(n− 40a2r2)

≤ c2
n2

,

where c2 is a positive constant.

Combining Claim 1 and Claim 2, we have

c1
n

≤ λ(Tn,r)− λ(K) ≤ c2
n2

,

which is a contradiction when n is sufficiently large. Thus |ni − nj| ≤ 1 for any 1 ≤ i < j ≤ r.

Proof of Theorem 1.2. Now we prove that e(G) = ex(n, F ). Otherwise, we assume that e(G) ≤
ex(n, F ) − 1. Let H ∈ Ex(n, F ). Then |E(H)| = e(Tn,r) + a. By Lemma 3.10, we may assume

that V1 ∪ . . . ∪ Vr is a vertex partition of H . Let E1 = E(G) \ E(H), E2 = E(H) \ E(G), then

E(H) = (E(G) ∪ E2) \ E1, and

|E(G) ∩ E(H)|+ |E1| = e(G) < e(H) = |E(G) ∩ E(H)| + |E2|,

which implies that |E2| ≥ |E1|+ 1. Furthermore, by Lemma 3.7, we have

|E2| ≤ a+
∑

1≤i<j≤r

|Bi||Bj | ≤ a+

(
r

2

)

(2a)2 ≤ 3a2r2. (20)
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According to (3) and (20), for sufficiently large n, we have

λ(H) ≥ xTA(H)x

xTx

=
xTA(G)x

xTx
+

2
∑

ij∈E2
xixj

xTx
−

2
∑

ij∈E1
xixj

xTx

= λ(G) +
2

xTx

( ∑

ij∈E2

xixj −
∑

ij∈E1

xixj

)

≥ λ(G) +
2

xTx

(

|E2|(1−
20a2r2

n
)2 − |E1|

)

≥ λ(G) +
2

xTx

(

|E2| −
40a2r2

n
|E2| − |E1|

)

≥ λ(G) +
2

xTx

(

1− 40a2r2

n
|E2|

)

≥ λ(G) +
2

xTx

(

1− 40a2r2

n
3a2r2

)

> λ(G),

which contradicts the assumption that G has the maximum spectral radius among all F -free graphs on n
vertices. Hence e(G) = ex(n, F ).
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