On a Conjecture of Tutte Concerning Minimal Tree Numbers

F. GÖBEL AND A. A. JAGERS

Department of Mathematics, Technische Hogeschool Twente, Enschede, The Netherlands

Communicated by the Editors

Received October 22, 1976

A counterexample is given to a conjecture by Tutte on the minimum number of spanning trees that a 3-connected planar graph with a prescribed number of edges may have.

1. Introduction and Summary

Tutte [3] has stated the following conjecture.

Among all 3-connected planar graphs with 2m edges, the graph with the smallest number of spanning trees is the wheel W_{m+1} .

The conjecture appears in erroneous form as problem 16 in appendix IV of the recent book by Bondy and Murty [1]. In this note we disprove Tutte's conjecture by giving an infinite sequence of graphs for which the tree number is smaller, even of a smaller order of magnitude than that for the corresponding wheels. The smallest counterexample graph in the sequence has 30 edges.

2. Definitions

A network is a 3-connected planar (simple) graph. If G is a multigraph, then $\kappa(G)$ is the tree number, also called complexity, of G, that is: the number of spanning trees of G; $\kappa_e(G)$ is the number of spanning trees of G containing a given edge e of G. Let P_k be the path on k points. Let A_n ($n \geq 3$) be defined as $P_2 \circ P_{n-2}$, that is the graph consisting of disjoint copies of P_2 and P_{n-2} with additional edges joining both vertices of P_2 to every vertex of P_{n-2} . Then A_n is a network with n vertices and 3n-6 edges ($n \geq 4$). See also figure 1.

3. RESULTS

THEOREM. $\kappa(A_n) = nh_{n-1}/2$, where h_n is defined by $h_2 = 2$, $h_3 = 8$, $h_n = 4h_{n-1} - h_{n-2}(n \ge 4)$.

Proof. Let S_n and H_{n-1} be the graph and the multigraph obtained from A_n by deleting or contracting, respectively, the edge $\{1, 2\}$ (see Fig. 1). Now each spanning tree of A_n

Fig. 1. Some example graphs.

either contains or does not contain e, hence

$$\kappa(A_n) = \kappa_e(A_n) + \kappa(S_n) = \kappa(H_{n-1}) + \kappa(S_n). \tag{1}$$

On the other hand, the quotient $\theta_e = \kappa_e(A_n)/\kappa(A_n)$ can be interpreted as the resistance of A_n viewed as a two-terminal electrical network with the edges as branches of unit resistance, the vertices as nodes, and vertices 1 and 2 as terminal nodes. (See e.g. Mayeda's book [2].) It follows that $\theta_e^{-1} = 1 + (n-2)/2 = n/2$, whence

$$\kappa(A_n) = \frac{n}{2} \kappa(H_{n-1}), \ \kappa(S_n) = \frac{n-2}{2} \kappa(H_{n-1}).$$
(2)

Using the matrix-tree-theorem, we may express $\kappa(H_{n-1})$ as an $(n-2) \times (n-2)$ determinant:

Let d_n be the determinant of the tridiagonal $n \times n$ matrix $P = (p_{ij})$ with $p_{ii} = 4$, and $p_{ij} = -1$ if |i - j| = 1. Then $\kappa(H_{n-1}) = 9d_{n-4} - 6d_{n-5} + 1$

 d_{n-6} , and, since $(d_n)_{n=0}^{\infty}$ satisfies the linear difference equation $d_{n+2} = 4d_{n+1} - d_n$, so does $\kappa(H_{n-1})$:

$$\kappa(H_{n-1}) = 4\kappa(H_{n-2}) - \kappa(H_{n-3}). \tag{3}$$

Since $h_2 = \kappa(H_2)$ and $h_3 = \kappa(H_3)$, as can be verified directly, it follows from (3) that $h_n = \kappa(H_n)$ for all $n \ge 3$. The theorem then follows from the first half of (2).

COROLLARY 1. With the aid of the theorem, one easily finds $\kappa(A_{12})=1815792$. On the other hand, it is well-known that $\kappa(W_{n+1})=L_n^2-2-2(-1)^n=L_{2n}-2$ where $(L_n)_{n=1}^\infty$ is the sequence of Lucas numbers: $L_1=1$, $L_2=3$, $L_n=L_{n-1}+L_{n-2}$ $(n\geqslant 3)$. This yields $\kappa(W_{16})=1860496$. Since both A_{12} and W_{16} have 30 edges, we have the announced counterexample.

COROLLARY 2. One may solve the equation (3) to obtain an explicite formula for $\kappa(H_{n-1})$, hence for $\kappa(A_n)$. The result is

$$\kappa(A_n) = n\{(2+\sqrt{3})^{n-2} - (2-\sqrt{3})^{n-2}\}/2\sqrt{3}.$$

Let r = 6s. Then both A_{2s+2} and W_{3s+1} have r edges, and

$$\kappa(A_{2s+2}) \sim cr(2 + \sqrt{3})^{r/3}$$

whereas

$$\kappa(W_{3s+1}) \sim \left(\frac{1+\sqrt{5}}{2}\right)^r.$$

Since $(2 + \sqrt{3})^{1/3} < 1.5512 < 1.6180 < (1 + \sqrt{5})/2$, it follows that $\kappa(A_{2s+2}) < \kappa(W_{3s+1})$ for all sufficiently large s.

Remark. Let G be a network with r edges and let

$$\alpha = \liminf_{r \to \infty} \kappa(G)^{1/r}.$$

Then we have seen that $\alpha \leq (2 + \sqrt{3})^{1/3}$, but no reasonable lower bound for α seems to be known.

REFERENCES

- J. A. BONDY AND U. S. R. MURTY, "Graph Theory and its Applications," Macmillan & Co., London, 1975.
- 2. W. MAYEDA, "Graph Theory," Wiley, New York, 1972.
- 3. W. T. Tutte, written communication.