

Title	On a conjecture of Y. Nakai
Author(s)	Mount, Kenneth R.; Villamayor, O. E.
Citation	Osaka Journal of Mathematics. 10(2) P.325-P.327
Issue Date	1973
Text Version	publisher
URL	https://doi.org/10.18910/10533
DOI	10.18910/10533
rights	
Note	

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University

Mount, K.R. and Villamayor, O.E. Osaka J. Math. 10 (1973), 325-327

ON A CONJECTURE OF Y. NAKAI

KENNETH R. MOUNT AND O.E. VILLAMAYOR

(Received October 3, 1972)

Assume that A is the affine ring of an algebraic variety defined over a characteristic zero field k. Denote by Der(A/k) the algebra of high order derivations of A to itself, and denote by der(A/k) the subalgebra of Der(A/k) which is generated by the first order derivations of A to itself. Recently Y. Nakai in his discussions of high order derivations (see [3]) asked the following question: is the condition der(A/k)=Der(A/k) equivalent to the regularity of A? In this note we shall show that if A is the affine ring of a curve, then A is regular (i.e. the curve is non-singular) if and only if der(A/k)=Der(A/k).

1. In all that follows, k will denote a field of characteristic zero. If A is a k algebra, then we shall denote by $\operatorname{Der}^{n}(A/k)$ the module of n-th order derivations over k, from A to itself. We shall denote by $D^{n}(A/k)$ the A module of n-th order differentials, thus $\operatorname{Der}^{n}(A/k) = \operatorname{Hom}_{A}(D^{n}(A/k), A)$. We shall denote by $\operatorname{der}^{n}(A/k)$ the submodule of $\operatorname{Der}^{n}(A/k)$ which consists of linear combinations of derivations of the form $\delta_{1} \cdots \delta_{j}$ where $1 \leq j \leq n$ and $\delta_{i} \in \operatorname{Der}^{1}(A/k)$. (For a discussion of these concepts see [1] or [3].)

In [1] Theorem 16.11.2 it is shown that if A is differentiably lisse over k (hence in particular if A is regular), then each *n*-th order derivation is a combination of first order derivations. Thus to prove our assertion we need only prove the following theorem.

Theorem. Suppose that k is a field of characteristic zero and suppose that A is the local ring of a point on an irreducible algebraic curve. If A is not regular, then there exists an integer N and an element $w \in Der^{N}(A|k)$ such that w is not an element of der (A|k).

Proof. Denote by \overline{A} the integral closure of A in the quotient field Q of A. The ring \overline{A} is semi local, thus $\overline{A}=B_1\cap\cdots\cap B_s$ where each B_i is a discrete rank one valuation ring with integer valued valuation v_i . Denote by \overline{d} the canonical derivation from \overline{A} to $D^1(\overline{A}/k)$. The restriction of \overline{d} to A is a k derivation from

¹⁾ This research was supported in part by NSF Grant No. GP 28915.

A to $D^{1}(\bar{A}/k)$, therefore there exists a map σ from $D^{1}(A/k)$ to $D^{1}(\bar{A}/k)$ which is A linear such that if d is the canonical derivation from A to $D^{1}(A/k)$, then $\sigma d = \bar{d}$. Denote by K the kernel of this map. Because the formation of D^{1} commutes with localization (see [1, 16.4.15.]) $Q \otimes_{A} D^{1}(A/k) = Q \otimes_{\bar{A}} D^{1}(\bar{A}/k)$. Thus $D^{1}(A/k)$ has rank one and therefore K consists entirely of torsion elements. We assert that Image $(\sigma) = D^{1}(A/k)/K$ cannot be free when A is not regular. To see this first note that $\operatorname{Hom}_{A}(D^{1}(A/k), A) = \operatorname{Hom}_{A}(D^{1}(A/k)/K, A)$. Thus if $D^{1}(A/k)/K$ is free, then $\operatorname{Der}^{1}(A/k)$ is free. However, Lipman [2] has shown that $\operatorname{Der}^{1}(A/k)$ is free if and only if A is regular.

From now on we shall assume that A is not regular. The \overline{A} module $D^1(\overline{A}/k)$ is projective and hence free because \overline{A} is regular and semi local. Let u be a basis for $D^1(\overline{A}/k)$. Thus Image $(\sigma)=Mu$, where M is a finitely generated A submodule of \overline{A} . Let φ denote a derivation from A to A. The derivation φ extends uniquely to a derivation of \overline{A} to Q. Let δ denote the derivation from \overline{A} to \overline{A} which as an element of $\operatorname{Hom}_{\overline{A}}(D^1(\overline{A}/k), \overline{A})$ carries u to 1. Then $\varphi = \beta \delta$ where $\beta \in Q$. The fact that φ carries A to itself implies that $\beta M \leq A$. We know that $\beta M \neq A$ because M is not free. Thus βM is contained in the radical m of A.

Suppose now that x_1, \dots, x_r are generators for m. The module M is then generated by the elements $\delta(x_1), \dots, \delta(x_r)$. W wish to show that $v_i(\beta) > 0$ for each i when $\beta\delta$ carries A to itself. Let t_i denote a generator for the maximal ideal of B_i . Because $B_i \otimes_{\overline{A}} D^1(\overline{A}/k) = D^1(B_i/k)$, and $D^1(B_i/k)$ has basis $dt_i, u = u_i dt_i$ where u_i is a unit in B_i . Thus $\delta(x_j) = u_i^{-1} \frac{d}{dt_i}(x_j)$ for $1 \le j \le r$ $\left(\frac{d}{dt_i}$ is the dual of $dt_i\right)$, therefore $v_i(\delta x_j) = v_i\left(\frac{d}{dt_i}(x_j)\right)$. Clearly, $v_i\left(\frac{d}{dt_i}(x_j)\right) = v_i(x_j) - 1$. As we have noted before $\beta\delta x_j$ is in m for each j. Hence $v_i(\beta\delta x_i) \ge \min_i(v_i(x_i))$, thus $v_i(\beta) \ge 1$.

Now denote by *I* the *A* submodule of *Q* which consists of the β such that $\beta\delta$ is a derivation of *A* to itself. The previous discussion has shown that *I* is contained in the radical of \overline{A} , and it is clearly finitely generated. Now if $\delta_1, \dots, \delta_v$ are first order derivations of *A* to itself, then $\delta_i = \beta_i \delta$ for some $\beta_i \in I$. Thus $\delta_1 \dots \delta_v = \sum_{j < v} y_j \delta^j + \beta_1 \dots \beta_v \delta^v$, and therefore each composition of *v* derivations of *A* to itself has as coefficient of δ^v an element of I^v . Then, if *R* is the radical of $\overline{A}, \beta_1 \dots \beta_v \in R^v$. Let *C* be the conductor of \overline{A} , hence there is an *N* such that $R^N \subseteq C$ and $R^N \neq C$. So, choose $y \in C, y \notin R^N$. Then $y\delta^N$ is an *N*-th order derivation from *A* to itself, but $y\delta^N$ is not in der(A/k) because *y* is not in $I^N \subseteq R^N$.

Northwestern University Universidad de Buenos Aires

326

CONJECTURE OF Y. NAKAI

References

- [1] A. Grothendieck: *Elements de géométrie algébrique* IV, Part 4, Inst. Hautes Etudes Sci. Publ. Math. 32 (1967).
- [2] J. Lipman: Free derivation modules on algebraic varieties, Amer. J. Math. 87 (1965), 874–898.
- [3] Y. Nakai: High order derivations I, Osaka J. Math. 7 (1970), 1-27.