
ar
X

iv
:2

10
5.

03
70

2v
1 

 [
cs

.I
T

] 
 8

 M
ay

 2
02

1

On a conjecture on APN permutations

Daniele Bartoli∗ and Marco Timpanella†

Abstract

The single trivariate representation proposed in [C. Beierle, C. Carlet, G. Lean-
der, L. Perrin, A Further Study of Quadratic APN Permutations in Dimension Nine,
arXiv:2104.08008] of the two sporadic quadratic APN permutations in dimension 9
found by Beierle and Leander [4] is further investigated. In particular, using tools from
algebraic geometry over finite fields, we prove that such a family does not contain any
other APN permutation for larger dimensions.

Keywords: APN permutations, algebraic varieties, Lang-Weil bound.

1 Introduction

Vectorial Boolean functions play an important role in cryptography, as they are one of the
key ingredients in the design of secure cryptographic primitives. In order for these primitives
to resist to differential attacks [5], vectorial Boolean functions with strong properties must
be employed. One of these properties has been captured in the definition of APN functions.

Definition 1.1. A function F : F
n
2 → F

m
2 , n,m positive integers, is APN if for every

α ∈ F
n
2 , α 6= 0, and β ∈ F

m
2 , the equation F (x + α) + F (x) = β has at most two solutions

for x ∈ F
n
2 .

Because of their applications, APN functions have been widely investigated; see for
instance [1, 6, 8, 9, 11] and the survey [12]. In the design of symmetric primitives, APN
functions are often required to be permutations. However, it seems that APN permutations
are as rare as they are interesting, and very little is known about them. Up to CCZ-
equivalence, all of the APN permutations known so far belong to a few families, namely:

1. APN monomial functions in odd dimension;

2. one infinite family of quadratic polynomials in odd dimension [7];
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3. Dillon’s permutation in dimension 6 [13];

4. two sporadic quadratic APN permutations in dimension 9 [4].

Note that only the first two items above are actually infinite families.
The example in [13] was found to be a particular case of a specific structure called

“butterfly”; see [17]. Such a structure was later generalized, but unfortunately it was
proved in [9] that it is impossible for a generalized butterfly to be APN unless it operates
on 6 bits.

Very recently, the two sporadic quadratic permutations in dimension 9 obtained in [4]
have been investigated in [3]. A single trivariate representation (up to EA-equivalence) of
those two permutations as

Cu : F
3
2m → F

3
2m

(x, y, z) 7→ (x3 + uy2z, y3 + uxz2, z3 + ux2y)

was proposed.
In particular, for m ≥ 3 being a multiple of 3 and u ∈ F2m not being a 7-th power, the

authors of [3] found that the differential uniformity of Cu is bounded above by 8. Also,
based on numerical experiments, they conjecture that Cu is not APN if m is greater than
3; see [3, Conjecture 1].

In this note, using a connection with algebraic surfaces over finite fields and an estimate
on the number of F2m-rational points related to the Lang-Weil bound, we prove that, when
m ≥ 20 is a multiple of 3 and u ∈ F2m \ {0} is not a 7-th power, the trivariate function
Cu is not APN. As by [3, Remark 4] it was already observed that Cu is not APN for
m ∈ {6, 9, 12, 15, 18}, our result proves the first statement in [3, Conjecture 1].

2 Connection with algebraic surfaces

In the following we let q = 2m, where m ≥ 3 is a multiple of 3. Proving that Cu is not APN
is equivalent to showing that the homogeneous system











αx2 + α2x+ uγy2 + uβ2z = 0

βy2 + β2y + uαz2 + uγ2x = 0

γz2 + γ2z + uβx2 + uα2y = 0

(1)

has at least 4 solutions for a certain choice of (α, β, γ) ∈ F
3
q, (α, β, γ) 6= (0, 0, 0); see [3,

Theorem 2]. As the authors point out in the proof of [3, Theorem 2], System (1) has at
most 2 solutions if αβγ = 0, and hence in the following we will assume αβγ 6= 0. Also, we
will consider α 6= u2β3/γ2.

Note that (0, 0, 0) and (α, β, γ) are always solutions of System (1).
From the first equation of System (1),

z =
αx2 + α2x+ uγy2

uβ2
,

2



and thus we obtain










r1(x, y) := α3x4 + α5x2 + u2β4γ2x+ u2αγ2y4 + uβ5y2 + uβ6y = 0

r2(x, y) := α2γx4 + (α4γ + uαβ2γ2 + u3β5)x2 + uα2β2γ2x

+u2γ3y4 + u2β2γ3y2 + u3α2β4y = 0.

(2)

Taking the linear combination γr1(x, y) + αr2(x, y) = 0, System (2) is equivalent to

{

α3x4 + α5x2 + u2β4γ2x+ u2αγ2y4 + uβ5y2 + uβ6y = 0

(α2γ2 + u2αβ3)x2 + (α3γ2 + uβ2γ3)x+ (uαγ3 + β3γ)y2 + (u2α3β2 + β4γ)y = 0.
(3)

Since (α2γ2 + u2αβ3) 6= 0,

x2 =
(α3γ2 + uβ2γ3)x+ (uαγ3 + β3γ)y2 + (u2α3β2 + β4γ)y

α2γ2 + u2αβ3
, (4)

and

x4 =
(α3γ2 + uβ2γ3)2x2 + (uαγ3 + β3γ)2y4 + (u2α3β2 + β4γ)2y2

(α2γ2 + u2αβ3)2

=
Ax+By4 + Cy2 +Dy

(α2γ2 + u2αβ3)3
, (5)

where

A = γ6(α3 + uβ2γ)3,

B = αγ2(αγ2 + u2β3)(uαγ2 + β3)2,

C = (α4γ2 + u2α3β3 + uαβ2γ3 + β5γ) ·
·(u4α4β4 + uα3γ5 + u3α2β3γ3 + α2β3γ3 + u2αβ6γ + u2β2γ6),

D = γ4β2(α3 + uβ2γ)2(u2α3 + β2γ).

Using (4) and (5) in System (3) reads

{

u3β6γ2(uα7 + u2α4β2γ + uα2βγ4 + u3αβ4γ2 + u5β7 + γ7)x = Q(y)

(α2γ2 + u2αβ3)x2 + (α3γ2 + uβ2γ3)x+ (uαγ3 + β3γ)y2 + (u2α3β2 + β4γ)y = 0,
(6)

with

Q(y) = (u+ 1)2(u2 + u+ 1)2αβ6γ2(αγ2 + u2β3)y4 + β4(u4α8γ2 + u6α7β3 + u5α5β2γ3

+u4α4β5γ + uα3βγ6 + u3α2β4γ4 + α2β4γ4 + u5αβ7γ2 + u2αβ7γ2 + u3αγ9

+u7β10 + u2β3γ7)y2 + uβ6(u5α7β2 + u3α4β4γ + u3α3γ6 + α3γ6 + u2α2β3γ4

+u4αβ6γ2 + u6β9 + uβ2γ7)y.
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Note that H(α, β, γ) := uα7 + u2α4β2γ + uα2βγ4 + u3αβ4γ2 + u5β7 + γ7 factorizes as

(ξ5β + ξα+ γ) · (ξ5β + ηξα+ η3γ) · (ξ5β + η2ξα+ η6γ) · (ξ5β + η2ξα+ η2γ) ·
(ξ5β + η4ξα+ η5γ) · (ξ5β + η5ξα+ ηγ) · (ξ5β + η6ξα+ η4γ),

where F
∗

8 = 〈η〉 and ξ = 7
√
u /∈ Fq, since u is not a 7-th power by assumption. Thus, there

are no (α, β, γ) ∈ F
3
q, (α, β, γ) 6= (0, 0, 0) such that H(α, β, γ) = 0.

Now, after taking the resultant of the two equations of System (6) and eliminating x,
we are left with a polynomial in y of degree 8, namely

P̄α,β,γ(y) = uαβ10(αγ2 + u2β3)3y(y + β)Pα,β,γ(y),

where

Pα,β,γ(y) = A6y
6 +A5y

5 +A4y
4 +A3y

3 +A2y
2 +A1y +A0, (7)

and

A6 = (u+ 1)4(u2 + u+ 1)4α2β4γ4,

A5 = (u+ 1)4(u2 + u+ 1)4α2β5γ4,

A4 = (u+ 1)4(u2 + u+ 1)4α2β6γ4,

A3 = (u+ 1)4(u2 + u+ 1)4α2β7γ4,

A2 = u2(u6α14 + u2α8β4γ2 + α4β2γ8 + u8α3β5γ6 + u2α3β5γ6 + u10α2β8γ4

+u7αβ4γ9 + uαβ4γ9 + u8β14u8 + u9β7γ7 + u3β7γ7 + u4γ14),

A1 = βA2,

A0 = u4(u+ 1)(u2 + u+ 1)α2β3γ4(uα7 + u2α4β2γ + uα2βγ4 + u3αβ4γ2 + u5β7 + γ7).

Note that u2+u+1 6= 0. Indeed, if m is odd and u2+u+1 = 0 then u ∈ F4, a contradiction.
On the other hand if m is even then u3 = 1 and, by 3 | (2m − 1)/7, u(2

m
−1)/7 = 1, a

contradiction to our assumptions on u.

Remark 2.1. Observe that this approach also shows that Cu is a differentially d-uniform
function with d ≤ 8, as stated in [3, Theorem 2]. Indeed, the above computations prove that
this is true if α 6= u2β3/γ2. On the other hand, assume that α = u2β3/γ2. Then the second
equation of System (3) reads

uγ2(u5β7 + γ7)x+ β(u3γ7y2 + γ7y2 + u8β8y + βγ7y) = 0,

where u5β7 + γ7 6= 0 as u is not a 7-th power. Thus, after eliminating x, System (3) is
equivalent to

{

x = β(u3γ7y2+γ7y2+u8β8y+βγ7y)
uγ2(u5β7+γ7)

Q1(y) = 0,
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where

Q1(y) = u10γ4β19y · (y + β) · ((u+ 1)4(u2 + u+ 1)4β10γ28(y6 + βy5 + β2y4 + β3y3) +

u2(u5β7 + γ7)2(u10β14 + u5β7γ7 + u2β7γ7 + γ14)2(y2 + βy) +

u4(u+ 1)(u2 + u+ 1)(u5β7 + γ7)3β9γ14).

As the degree of Q1(y) is 8, System (3) has at most 8 solutions if α = u2β3/γ2. Finally, if
αβγ = 0 System (3) has at most 2 solutions (see the first part of the proof of [3, Theorem
2]), and hence Cu is differentially d-uniform with d ≤ 8.

As a polynomial in the variables α, β, γ, y, Pα,β,γ(y) defines a surface V of degree 16
embedded in the three-dimensional projective space PG(3,F2). Good references for a more
comprehensive introduction to algebraic varieties and curves are [14, 15]. For a survey on
the use of algebraic varieties over finite fields in polynomial problems, we refer to [2].

Recall that System (1) always possesses the solutions (0, 0, 0) and (α, β, γ). Therefore,
in order to prove that Cu is not APN, it is enough to exhibit at least a choice of (α, β, γ)
for which V has an Fq-rational point not lying on y = 0 and y = β; see Theorem 2.5. To
prove the existence of such a point, we use the following results.

The following is a particular case of [1, Lemma 2.1].

Proposition 2.2. Let H be a plane of PG(3,F2) such that V ∩H contains a non-repeated
absolutely irreducible component defined over Fq. Then V possesses a non-repeated abso-
lutely irreducible component defined over Fq.

Proposition 2.3. There exists an Fq-rational component of V distinct from y = 0 and
y = β.

Proof. First note that y = 0 and y = β are not components of V : it is enough to observe
that Pα,β,γ(0) and Pα,β,γ(β) (seen as polynomials in α, β, γ, y) are not the zero polynomial
(this is readily seen by a direct computation).

Consider now the curve C defined as the intersection of V with the plane of equation
γ = 0. By direct computation, this curve has homogeneous equation

u8(α7 + uβ7)2y(y + β) = 0.

The component y = 0 is Fq-rational, absolutely irreducible, and non-repeated. Then Propo-
sition 2.2 yields the existence of an Fq-rational component of V through the line y = 0 = γ,
which is therefore distinct from both y = 0 and y = β.

To ensure the existence of a suitable Fq-rational point of V , we report the following
result.

Theorem 2.4. [10, Theorem 7.1] Let V ⊂ AG(n,Fq) be an absolutely irreducible variety
defined over Fq of dimension r > 0 and degree δ. If q > 2(r + 1)δ2, then the following
estimate holds:

|#(V ∩AG(n,Fq))− qr| ≤ (δ − 1)(δ − 2)qr−1/2 + 5δ13/3qr−1.
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Theorem 2.5. If m ≥ 20, Cu is not APN.

Proof. By Proposition 2.3, the surface V contains an absolutely irreducible component W
defined over Fq of degree at most 16.

Since m ≥ 20 the surface W contains at least 48q Fq-rational points with γ = 1 (it is
enough to apply Theorem 2.4 to the dehomogenization W∗ of W with respect to γ).

Affine Fq-rational points of V∗ lying on αβy(y + β) = 0 are contained in the three lines

α = 0 = y, α = 0 = y + β, β = 0 = y.

The intersection between V and α+u2β3 = 0 is a degree-44 curve which has at most 44q+1
Fq-rational points; see [16]. Therefore there exists at least an Fq-rational point (α, β, 1, y)

of V∗ with αβy(y+ β)(α+ u2β
3
) 6= 0. This provides a root y /∈ {0, β} of Pα,β,1(y) (see (7)),

and so Cu is not APN.
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