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Abstract
In this paper we give examples to show that a conjecture on k-walks of
graphs, due to B. Jackson and N.C. Wormald, is false. We also give a
maximum degree condition for the existence of k-walks and k-trees in
2-connected graphs.

1 Introduction

All graphs considered here are simple and finite. We use G to denote a graph, and use
V(G) and E(G) to denote its vertex set and edge set, respectively. For any v € V(G),
Ng(v) denotes the set of neighbors of v in G, and |Ng(v)| the degree of v in G.
Sometimes, we simply use N(v) and d(v) to denote them, respectively, if no confusion
occurs. Let 6(G) = min{d(v) | v € V(G)} and A(G) = max{d(v) | v € V(G)}. A
k-walk of G is a spanning closed walk of GG using each vertex at most k& times.
When k = 1, a k-walk of G is a hamiltonian cycle of G. We say that G is Kj,-
free if no induced subgraph of G is isomorphic to Kj,. A graph G is t-tough if for
any S C V(G), the number of components ¢(G — S) < |S|/t. For notations and
terminology not defined here, we refer to [1].

A well known conjecture by Chvatél [8] states that every sufficiently tough graph
has a hamiltonian cycle. Many results for a K; s-free graph to be hamiltonian have
been obtained. Since the concept of a k-walk is a generalization of the concept of
a hamiltonian cycle, in [3] B. Jackson and N.C. Wormald investigated k-walks and
obtained the following results.

Theorem 1.1. [3] Let k > 2 be an integer. If G is connected and for any S C V(QG),
(G —95) < (k—2)|S|+2, then G has a k-walk.

As a consequence, the following result is immediate.
Theorem 1.2. [3] Every 1/(k — 2)-tough graph has a k-walk.

A well known conjecture related to k-walks is stated as follows, which is still
open.
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Conjecture A. [3] FEvery 1/(k — 1)-tough graph has a k-walk.
Theorem 1.3. [3] If G is connected and K 11-free, then G has a k-walk.

Theorem 1.4. [3] Let j > 1, k > 3 be integers. If G is j-connected and Ky j(x—2)+1-
free, then G has a k-walk.

The authors of [3] believe that Theorem 1.4 can be sharpened as follows.

Conjecture B. [3] Let j > 1, k > 2 be integers. If G is j-connected and K ji1-free,
then G has a k-walk.

Clearly, Conjecture B holds for j = 1. But, as we will see in Section 2, it is
false for j > 2. Our counterexamples are based on a result of [4], where the author
constructed a family of graphs G;, j > 3, which are j-connected, j-regular and
non-hamiltonian. From their graphs G;, we employ a similar technique to construct
counterexamples to Conjecture B for j > 3. Also, we give a minimally 2-connected
graph to show that Conjecture B is false for j = 2. So, perhaps 1/k-tough graphs do
not have k-walks. In some sense, we feel that Conjecture A, if true, is best possible.

In Section 3, we give a maximum degree condition for the existence of k-walks
and k-trees in 2-connected graphs, which is best possible for k-trees. But, we know
that under this condition it is impossible for graphs to have a hamiltonian cycle.

2 Negative Answer for Conjecture B

In order to construct our counterexamples for j > 3, first of all, we need the following
lemmas.

Lemma 2.1. [4] For any integer j > 3, there always exist j-connected and j-reqular
non-hamiltonian graphs.

The counterexamples are constructed as follows. Let G be a j-connected and
j-regular non-hamiltonian graph, j > 3. For every « € V(G), we create jk — 1 new

vertices xt, 2, - - -, 27¥~1 and for every edge o € F(G) incident to x, we create a new

vertex x,. Denote
D(z) ={zs | @ € E(G) and is incident to x},

S(x)={a"[i=1,2,---,jk—1}.
Obviously, |D(z)| = dg(z) = j and |S(z)| = jk — 1. We construct a new graph G*

as follows:
V(e = |J (D) usS)),
zeV(G)
E(G") = Ey U By,
in which,

E, = {xaya ‘ o=y € E(G)}v
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Figure 1: A counterexample graph G

Ey ={wv | u e D(z), veS(x)for some z e V(G)}.

From the construction, the following result follows immediately.
Lemma 2.2. G* is j-connected and Ky ji11-free.

Next, we shall show the following result.
Lemma 2.3.G* does not have any k-walks.

Proof. Suppose that G* has a k-walk W. Then we can show that, for every vertex
xz € V(G), there exists a sub-walk W, = v; vo -+ vgj,_1 in W such that S(z) =
{vy1 <@ < jk —1} and D(z) = J* {vai 1}

Otherwise, in order to meet all vertices of S(z), the sum of the meeting times of
vertices in D(z) is at least |S(z)| + 2 = jk + 1. Since Ng(S(z)) = D(x) and both
D(z) and S(z) are independent sets in G*, there exists at least one vertex in D(z)
which is met at least k& + 1 times in W, a contradiction.

Then every vertex in D(z) is met exactly k times, since the sum of meeting times
of all vertices in D(z) is |S(z)] + 1 = jk and |D(z)| = j. We can denote W by
ToWaaWay -+ - Wa Yo, where n = |[V(G)], ¢ = 21, y = %n, o = zy € E(G) and
x; # 1,1 # 1. Since W is a k-walk, there must exist an edge e¢; € E(G) such that
e; = x;w;pq for each 1 < ¢ <n — 1. Thus, we can obtain a hamiltonian cycle of G, a
contradiction. The proof is complete. [J

From above, we can see that Conjecture B is false for j > 3. Now we consider the
case j = 2. The following Figure 1 shows a 2-connected graph G with A(G) = 2k
and without any k-walks.

In fact, as shown in Figure 1, we can see that [N (a;) NN (b;)| = |N(¢;) "N (d;)| =
2k—1,i=1, 2, 3, k > 2, and G is 2-connected with A(G) = 2k. Both N(a;)NN(b;)
and N(¢;) N N(d;) are independent sets, i = 1, 2, 3. By a proof analogous to that in
Lemma 2.3, we know that there exists a walk W; with ends a; and d; which contains
only N(a;) UN(¢;) U{ay, b, ¢, d;, w;}, since N(w;) = {¢;, b;}; whereas W — W,
does not contain any vertex of N(a;) U N(¢;) U {a;, b;, ¢, di, w;}. So, W can be
written as uWvWoulWsv, a contradiction.



138 ZEMIN JIN AND XUELIANG LI

Thus, we obtain the following negative answer to Conjecture B of [3].

Theorem 2.1.Conjecture B is false for j > 2.

3 Maximum Degree Condition for the Existence of k-Walks
and k-Trees in 2-Connected Graphs

A k-tree of a connected graph G is a spanning tree of G with maximum degree at
most k. In this section we consider only 2-connected graphs. A graph G is minimally
2-connected if, for any e € E(G), G — e has a cut vertex.

Lemma 3.1. [2] If G is a minimally 2-connected graph, then every 2-connected
subgraph of G is minimally 2-connected.

Lemma 3.2. [2] If G is a minimally 2-connected graph, then for any e € E(G), e is
not a chord of any cycle of G.

More results on minimally 2-connected graphs can be found in [2].

Let G be a minimally 2-connected graph. We say that G satisfies {2 on a vertex-
cut {u,v} if one of the following conditions holds
(P1) ¢(G —{u,v}) is even, and for every component G; of G — {u, v}, both |[Ng(u)N
V(G;)| and |Ng(v) N V(G;)| are odd;

(P») For every component G; of G — {u, v}, every block of G; + {u, v} satisfies (P;)
on the vertex-cut {z, y}, in which Ng(z)NV (G — B) # 0 and Ng(y)NV (G — B) # 0;

(P;) G =G'UG", G'NG" = {u,v}, and G’ and G” satisfies (P;) and (P,), respectively,
on the vertex-cut {u,v}.

Lemma 3.3. Let k > 2 be an integer, G be minimally 2-connected, A(G) < 2k — 2,
and {u,v} be a vertex-cut of G. Then, G contains a spanning tree T such that if G
satisfies 0 on {u,v}, then

(i) dr(u) < d(w)/2, dr(v) <d(w)/2+ 1 and dr(z) < k, x € V(G) — {u,v}, or
(i1) dr(u) < [d(u)/2], dr(v) < [d(v)/2] and dr(z) <k, z € V(G) — {u,v}.

Proof. By induction on [V(G)|. For |V(G)| = 3, 4, 5, 6, the lemma holds obvi-
ously. We assume that the lemma holds for graphs with order less than |V (G)|. Let

G1, Go, -+, G, be the components of G — {u,v}, r > 2, and let H; = G; + {u, v},
1 =1, 2, ---, r. Then, H; has at least two blocks, and each block is minimally 2-
connected or a Ky, see [2]. Let B; 1, B; o, --+, B; s, be the blocks of H; such that

B jN By jy1 = {xi jua}, w =i 1, v = i s41, and dp,(u, B ¢) < du,(u, B; ;)
if and only if ¢ < j. We distinguish the following two cases to consider H;, i =
1,2 -, 1.
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Case 1. If B; ;, 1 < j < s;, satisfies Q on {z; j, =; j41}, then by the induction
hypothesis, B; ; contains a spanning tree T; ; such that

de J(Iz J) < de ,(xl J)/2 de ,(xl J+1) < d& ](xz ]+1)/2+1
and dr.

@) <k 2 e V(B ) —{mi j, i jua} Let T, =L, T, ;. Then, T; is a
spanning tree of H; such that

de(u) S dHl(u)/Q, dTl(’U) S de(U)/Q +1
and dr,(z) <k, x € V(G)).

Case 2. There exists a subset I C {1, 2, ---, s;} and I # () such that B; 4, t € I,
does not satisfy Q on {x;, x;11}. Let T; y = Ko, if B; v = Ko. I B; ¢, t € I, is
minimally 2-connected, then by the induction hypothesis, it contains a spanning tree
T, ¢ such that

dr, (i, ) < [dp, (i 0)/2], dr, (25, 1+1) < [dB, (T3, 141)/2]
and dr, ,(z) <k, x € V(B; +) — {2, t, ©i 141} Let to = maxz{t |t € I}. Note that
for every j € {1, 2, ---, s;} — I, B, ; satisfies Q on {x; ;, z; j11}. Then,

(1) If j < to, then B; ; contains a spanning tree T; ; such that
dr, (i, 5) < dp, (i )/2, dr, (i, j11) < dp, (33, 41)/2+ 1

and dTL J(I) < k/‘, HANSS V(Bl j) - {'T’h iy i, j+1}'
(2) If j > to, then by the symmetry of z; ;41 and z; ;, we have that B; ; has a
spanning tree T; ; such that

qu J(xz ]) <dp, (xL J)/2+ 1, dT1 J(xz J+1) <dp, ](x@ J+1)/2
and dr, ;(z) <k, z € V( i) —A{mi g, @)
Next let T; = U T Then T; is a spanning tree of H; such that

dr, (u) < [dp;(u)/2], dr,(v) < [dp,(v)/2]

and dr,(z) < k, « € V(G;). In both cases, we use e; and f; to denote the edges
incident to u and v, respectively, on the u-v path in T;. Now we distinguish two cases
to consider G.

Case a. G satisfies Q on {u, v}.

Subcase a.1. ( Pp) is true.
Then, r is even, dy,(u) and dy,(v) are odd, and

dr (u) < (dp,(w) +1)/2, dr,(v) < (dp, (v) +1)/2

and dp,(z) <k, € V(Gy). Let T = U_, Ti — U2 ea — U527 foinn.
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Subcase a.2. (P) is true.
Then,
de(u) < dH: (u)/Qa dT: (U) < dH1(U)/2 +1

and dr,(z) <k, 2 € V(Gy). Let T =, T: — U, fi-

Subcase a.3. ( Ps) is true.
Then, G =G UG", G'NG" = {u,v}, G’ and G” satisfies (P;) and SP2)7 respec-
tively, on the vertex-cut {u,v}. Without loss of generality, let G' = 2:1 H;,, G"=

U;:21+1 Hi, 2l <r. Now, let T'=J;_, T — Ué:l €2i-1 — U§:1 Jai — U::_2ll+1 fi-
Thus, in all the above subcases we have obtained a tree T which is a spanning
tree of G such that
dr(u) < d(u)/2, dr(v) <d(v)/2+1

and dr(z) <k, z € V(G) — {u,v}.

Case b. G does not satisfy Q on {u,v}. Without loss of generality, let G = G*UG**,
in which G*(G**) satisfies (does not satisfy) Q on {u, v}. Clearly G** # 0.

Subcase b.1. G* = ().
Then, G* has a spanning tree T such that

dr+(u) < dg«(u)/2, dr-(v) < dg-(v)/2+1

and dp«(z) < k, z € V(G*) — {u, v}.
(1) If G** is minimally 2-connected, then G** has a spanning tree 7** such that

dre-(u) < [dge+(u)/2], dr+(v) < [dg(v)/2]

and dp+(z) <k, z € V(G™) — {u, v}.

(2) If G** contains a vertex-cut, then G** has at least two blocks, each of which is
a K5 or minimally 2-connected. From Case 1 and Case 2 we know that G** has a
spanning tree 7°* such that

dre-(u) < [dg=+(u)/2], dr+(v) < [dg(v)/2]

and dp+(z) <k, z € V(G™) — {u, v}.
In both (1) and (2), let T'=T* UT** — f*, in which f* is the edge incident to v
on the u-v path in T*. Then, T is a spanning tree of G such that (ii) holds.

Subcase b.2. G* = ().
By an analogous analysis, we can show that (ii) holds, and the details are omitted.
The proof is now complete. [

Lemma 3.4. [3] If G has a k-tree, then G has a k-walk.

Lemma 3.5. [2] Every 2-connected graph contains a minimally 2-connected spanning
subgraph.
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Thus, we get our main results as follows.

Theorem 3.1. Let k > 2 be an integer and G be a 2-connected graph with A(G) <
2k — 2. Then, G contains a k-tree. And, for k > 3 the result is best possible.

Theorem 3.2. Let k > 2 be an integer and G be a 2-connected graph with A(G) <
2k — 2. Then, G contains a k-walk.

Now we construct an example to show that Theorem 3.1 is best possible. Let
Ky op—3=K(X, Y), X = {z,y}. Add four new vertices ay, by, as, b, and connect
a; with z and b; with y, respectively. Denote thus obtained graph by H. Take k — 1
copies of H. Let u, v be two new vertices and connect u with all a; and v with all b;,
respectively. Denote thus obtained graph by G. Obviously, G is a 2-connected graph
with A(G) = 2k — 1. However, G does not have any k-trees. But, interestingly, G
contains k-walks.

4 Concluding Remark

We have obtained a maximum degree condition for the existence of k-walks in 2-
connected graphs. The problem to find an analogous condition for the existence of
k-walks in j-connected graphs is still left for further investigation. In [3] the authors
proved that the k-walk problem is NP-complete. In fact, using the technique in our
Section 2, we can also prove it.
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