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Abstract

In this paper we give examples to show that a conjecture on k-walks of
graphs, due to B. Jackson and N.C. Wormald, is false. We also give a
maximum degree condition for the existence of k-walks and k-trees in
2-connected graphs.

1 Introduction

All graphs considered here are simple and finite. We use G to denote a graph, and use
V (G) and E(G) to denote its vertex set and edge set, respectively. For any v ∈ V (G),
NG(v) denotes the set of neighbors of v in G, and |NG(v)| the degree of v in G.
Sometimes, we simply use N(v) and d(v) to denote them, respectively, if no confusion
occurs. Let δ(G) = min{d(v) | v ∈ V (G)} and ∆(G) = max{d(v) | v ∈ V (G)}. A
k-walk of G is a spanning closed walk of G using each vertex at most k times.
When k = 1, a k-walk of G is a hamiltonian cycle of G. We say that G is K1,r-
free if no induced subgraph of G is isomorphic to K1,r. A graph G is t-tough if for
any S ⊆ V (G), the number of components c(G − S) ≤ |S|/t. For notations and
terminology not defined here, we refer to [1].

A well known conjecture by Chvatál [8] states that every sufficiently tough graph
has a hamiltonian cycle. Many results for a K1,3-free graph to be hamiltonian have
been obtained. Since the concept of a k-walk is a generalization of the concept of
a hamiltonian cycle, in [3] B. Jackson and N.C. Wormald investigated k-walks and
obtained the following results.

Theorem 1.1. [3] Let k ≥ 2 be an integer. If G is connected and for any S ⊆ V (G),
c(G − S) ≤ (k − 2)|S| + 2, then G has a k-walk.

As a consequence, the following result is immediate.

Theorem 1.2. [3] Every 1/(k − 2)-tough graph has a k-walk.

A well known conjecture related to k-walks is stated as follows, which is still
open.
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Conjecture A. [3] Every 1/(k − 1)-tough graph has a k-walk.

Theorem 1.3. [3] If G is connected and K1,k+1-free, then G has a k-walk.

Theorem 1.4. [3] Let j ≥ 1, k ≥ 3 be integers. If G is j-connected and K1,j(k−2)+1-
free, then G has a k-walk.

The authors of [3] believe that Theorem 1.4 can be sharpened as follows.

Conjecture B. [3] Let j ≥ 1, k ≥ 2 be integers. If G is j-connected and K1,jk+1-free,
then G has a k-walk.

Clearly, Conjecture B holds for j = 1. But, as we will see in Section 2, it is
false for j ≥ 2. Our counterexamples are based on a result of [4], where the author
constructed a family of graphs Gj , j ≥ 3, which are j-connected, j-regular and
non-hamiltonian. From their graphs Gj, we employ a similar technique to construct
counterexamples to Conjecture B for j ≥ 3. Also, we give a minimally 2-connected
graph to show that Conjecture B is false for j = 2. So, perhaps 1/k-tough graphs do
not have k-walks. In some sense, we feel that Conjecture A, if true, is best possible.

In Section 3, we give a maximum degree condition for the existence of k-walks
and k-trees in 2-connected graphs, which is best possible for k-trees. But, we know
that under this condition it is impossible for graphs to have a hamiltonian cycle.

2 Negative Answer for Conjecture B

In order to construct our counterexamples for j ≥ 3, first of all, we need the following
lemmas.

Lemma 2.1. [4] For any integer j ≥ 3, there always exist j-connected and j-regular
non-hamiltonian graphs.

The counterexamples are constructed as follows. Let G be a j-connected and
j-regular non-hamiltonian graph, j ≥ 3. For every x ∈ V (G), we create jk − 1 new
vertices x1, x2, · · · , xjk−1, and for every edge α ∈ E(G) incident to x, we create a new
vertex xα. Denote

D(x) = {xα | α ∈ E(G) and is incident to x},
S(x) = {xi |i = 1, 2, · · · , jk − 1}.

Obviously, |D(x)| = dG(x) = j and |S(x)| = jk − 1. We construct a new graph G∗

as follows:
V (G∗) =

⋃

x∈V (G)

(D(x) ∪ S(x)),

E(G∗) = E1 ∪ E2,

in which,
E1 = {xαyα | α = xy ∈ E(G)},
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Figure 1: A counterexample graph G

E2 = {uv | u ∈ D(x), v ∈ S(x) for some x ∈ V (G)}.
From the construction, the following result follows immediately.

Lemma 2.2. G∗ is j-connected and K1,jk+1-free.

Next, we shall show the following result.

Lemma 2.3.G∗ does not have any k-walks.

Proof. Suppose that G∗ has a k-walk W . Then we can show that, for every vertex
x ∈ V (G), there exists a sub-walk Wx = v1 v2 · · · v2jk−1 in W such that S(x) =

{v2i|1 ≤ i ≤ jk − 1} and D(x) =
⋃jk

i=1{v2i−1}.
Otherwise, in order to meet all vertices of S(x), the sum of the meeting times of

vertices in D(x) is at least |S(x)| + 2 = jk + 1. Since NG(S(x)) = D(x) and both
D(x) and S(x) are independent sets in G∗, there exists at least one vertex in D(x)
which is met at least k + 1 times in W , a contradiction.

Then every vertex in D(x) is met exactly k times, since the sum of meeting times
of all vertices in D(x) is |S(x)| + 1 = jk and |D(x)| = j. We can denote W by
xαWx1Wx2 · · ·Wxnyα, where n = |V (G)|, x = x1, y = xn, α = xy ∈ E(G) and
xi �= xl, i �= l. Since W is a k-walk, there must exist an edge ei ∈ E(G) such that
ei = xixi+1 for each 1 ≤ i ≤ n − 1. Thus, we can obtain a hamiltonian cycle of G, a
contradiction. The proof is complete. �

From above, we can see that Conjecture B is false for j ≥ 3. Now we consider the
case j = 2. The following Figure 1 shows a 2-connected graph G with ∆(G) = 2k
and without any k-walks.

In fact, as shown in Figure 1, we can see that |N(ai)∩N(bi)| = |N(ci)∩N(di)| =
2k−1, i = 1, 2, 3, k ≥ 2, and G is 2-connected with ∆(G) = 2k. Both N(ai)∩N(bi)
and N(ci)∩N(di) are independent sets, i = 1, 2, 3. By a proof analogous to that in
Lemma 2.3, we know that there exists a walk Wi with ends ai and di which contains
only N(ai) ∪ N(ci) ∪ {ai, bi, ci, di, wi}, since N(wi) = {ci, bi}; whereas W − Wi

does not contain any vertex of N(ai) ∪ N(ci) ∪ {ai, bi, ci, di, wi}. So, W can be
written as uW1vW2uW3v, a contradiction.
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Thus, we obtain the following negative answer to Conjecture B of [3].

Theorem 2.1.Conjecture B is false for j ≥ 2.

3 Maximum Degree Condition for the Existence of k-Walks
and k-Trees in 2-Connected Graphs

A k-tree of a connected graph G is a spanning tree of G with maximum degree at
most k. In this section we consider only 2-connected graphs. A graph G is minimally
2-connected if, for any e ∈ E(G), G − e has a cut vertex.

Lemma 3.1. [2] If G is a minimally 2-connected graph, then every 2-connected
subgraph of G is minimally 2-connected.

Lemma 3.2. [2] If G is a minimally 2-connected graph, then for any e ∈ E(G), e is
not a chord of any cycle of G.

More results on minimally 2-connected graphs can be found in [2].
Let G be a minimally 2-connected graph. We say that G satisfies Ω on a vertex-

cut {u, v} if one of the following conditions holds
(P1) c(G−{u, v}) is even, and for every component Gi of G−{u, v}, both |NG(u)∩
V (Gi)| and |NG(v) ∩ V (Gi)| are odd;

(P2) For every component Gi of G − {u, v}, every block of Gi + {u, v} satisfies (P1)
on the vertex-cut {x, y}, in which NG(x)∩V (G−B) �= ∅ and NG(y)∩V (G−B) �= ∅;

(P3) G = G′∪G′′, G′∩G′′ = {u, v}, and G′ and G′′ satisfies (P1) and (P2), respectively,
on the vertex-cut {u, v}.

Lemma 3.3. Let k ≥ 2 be an integer, G be minimally 2-connected, ∆(G) ≤ 2k− 2,
and {u, v} be a vertex-cut of G. Then, G contains a spanning tree T such that if G
satisfies Ω on {u, v}, then

(i) dT (u) ≤ d(u)/2, dT (v) ≤ d(v)/2 + 1 and dT (x) ≤ k, x ∈ V (G) − {u, v}, or

(ii) dT (u) ≤ 	d(u)/2
, dT (v) ≤ 	d(v)/2
 and dT (x) ≤ k, x ∈ V (G) − {u, v}.

Proof. By induction on |V (G)|. For |V (G)| = 3, 4, 5, 6, the lemma holds obvi-
ously. We assume that the lemma holds for graphs with order less than |V (G)|. Let
G1, G2, · · · , Gr be the components of G − {u, v}, r ≥ 2, and let Hi = Gi + {u, v},
i = 1, 2, · · · , r. Then, Hi has at least two blocks, and each block is minimally 2-
connected or a K2, see [2]. Let Bi, 1, Bi, 2, · · · , Bi, si

, be the blocks of Hi such that
Bi, j ∩ Bi, j+1 = {xi, j+1}, u = xi, 1, v = xi, si+1, and dHi

(u, Bi, t) < dHi
(u, Bi, j)

if and only if t < j. We distinguish the following two cases to consider Hi, i =
1, 2, · · · , r.
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Case 1. If Bi, j , 1 ≤ j ≤ si, satisfies Ω on {xi, j , xi, j+1}, then by the induction
hypothesis, Bi, j contains a spanning tree Ti, j such that

dTi, j
(xi, j) ≤ dBi, j

(xi, j)/2, dTi, j
(xi, j+1) ≤ dBi, j

(xi, j+1)/2 + 1

and dTi, j
(x) ≤ k, x ∈ V (Bi, j) − {xi, j , xi, j+1}. Let Ti =

⋃si

j=1 Ti, j. Then, Ti is a
spanning tree of Hi such that

dTi
(u) ≤ dHi

(u)/2, dTi
(v) ≤ dHi

(v)/2 + 1

and dTi
(x) ≤ k, x ∈ V (Gi).

Case 2. There exists a subset I ⊆ {1, 2, · · · , si} and I �= ∅ such that Bi, t, t ∈ I ,
does not satisfy Ω on {xi, xi+1}. Let Ti, t = K2, if Bi, t = K2. If Bi, t, t ∈ I , is
minimally 2-connected, then by the induction hypothesis, it contains a spanning tree
Ti, t such that

dTi, t
(xi, t) ≤ 	dBi, t

(xi, t)/2
, dTi, t
(xi, t+1) ≤ 	dBi, t

(xi, t+1)/2


and dTi, t
(x) ≤ k, x ∈ V (Bi, t) − {xi, t, xi, t+1}. Let t0 = max{t | t ∈ I}. Note that

for every j ∈ {1, 2, · · · , si} − I , Bi, j satisfies Ω on {xi, j, xi, j+1}. Then,
(1) If j < t0, then Bi, j contains a spanning tree Ti, j such that

dTi, j
(xi, j) ≤ dBi, j

(xi, j)/2, dTi, j
(xi, j+1) ≤ dBi, j

(xi, j+1)/2 + 1

and dTi, j
(x) ≤ k, x ∈ V (Bi, j) − {xi, j, xi, j+1}.

(2) If j > t0, then by the symmetry of xi, j+1 and xi, j , we have that Bi, j has a
spanning tree Ti, j such that

dTi, j
(xi, j) ≤ dBi, j

(xi, j)/2 + 1, dTi, j
(xi, j+1) ≤ dBi, j

(xi, j+1)/2

and dTi, j
(x) ≤ k, x ∈ V (Bi, j) − {xi, j, xi, j+1}.

Next, let Ti =
⋃si

j=1 Ti, j. Then, Ti is a spanning tree of Hi such that

dTi
(u) ≤ 	dHi

(u)/2
, dTi
(v) ≤ 	dHi

(v)/2


and dTi
(x) ≤ k, x ∈ V (Gi). In both cases, we use ei and fi to denote the edges

incident to u and v, respectively, on the u-v path in Ti. Now we distinguish two cases
to consider G.

Case a. G satisfies Ω on {u, v}.

Subcase a.1. ( P1) is true.
Then, r is even, dHi

(u) and dHi
(v) are odd, and

dTi
(u) ≤ (dHi

(u) + 1)/2, dTi
(v) ≤ (dHi

(v) + 1)/2

and dTi
(x) ≤ k, x ∈ V (Gi). Let T =

⋃r
i=1 Ti −

⋃r/2
i=1 e2i −

⋃(r−2)/2
i=1 f2i+1.
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Subcase a.2. (P2) is true.
Then,

dTi
(u) ≤ dHi

(u)/2, dTi
(v) ≤ dHi

(v)/2 + 1

and dTi
(x) ≤ k, x ∈ V (Gi). Let T =

⋃r
i=1 Ti −

⋃r
i=2 fi.

Subcase a.3. ( P3) is true.
Then, G = G′ ∪ G′′, G′ ∩ G′′ = {u, v}, G′ and G′′ satisfies (P1) and (P2), respec-

tively, on the vertex-cut {u, v}. Without loss of generality, let G′ =
⋃2l

i=1 Hi, G′′ =⋃r
i=2l+1 Hi, 2l < r. Now, let T =

⋃r
i=1 Ti −

⋃l
i=1 e2i−1 −

⋃l
i=1 f2i −

⋃r−1
i=2l+1 fi.

Thus, in all the above subcases we have obtained a tree T which is a spanning
tree of G such that

dT (u) ≤ d(u)/2, dT (v) ≤ d(v)/2 + 1

and dT (x) ≤ k, x ∈ V (G) − {u, v}.

Case b. G does not satisfy Ω on {u, v}. Without loss of generality, let G = G∗∪G∗∗,
in which G∗(G∗∗) satisfies (does not satisfy) Ω on {u, v}. Clearly G∗∗ �= ∅.

Subcase b.1. G∗ = ∅.
Then, G∗ has a spanning tree T ∗ such that

dT ∗(u) ≤ dG∗(u)/2, dT ∗(v) ≤ dG∗(v)/2 + 1

and dT ∗(x) ≤ k, x ∈ V (G∗) − {u, v}.
(1) If G∗∗ is minimally 2-connected, then G∗∗ has a spanning tree T ∗∗ such that

dT ∗∗(u) ≤ 	dG∗∗(u)/2
, dT ∗∗(v) ≤ 	dG∗∗(v)/2


and dT ∗∗(x) ≤ k, x ∈ V (G∗∗) − {u, v}.
(2) If G∗∗ contains a vertex-cut, then G∗∗ has at least two blocks, each of which is
a K2 or minimally 2-connected. From Case 1 and Case 2 we know that G∗∗ has a
spanning tree T ∗∗ such that

dT ∗∗(u) ≤ 	dG∗∗(u)/2
, dT ∗∗(v) ≤ 	dG∗∗(v)/2


and dT ∗∗(x) ≤ k, x ∈ V (G∗∗) − {u, v}.
In both (1) and (2), let T = T ∗ ∪ T ∗∗ − f ∗, in which f ∗ is the edge incident to v

on the u-v path in T ∗. Then, T is a spanning tree of G such that (ii) holds.

Subcase b.2. G∗ = ∅.
By an analogous analysis, we can show that (ii) holds, and the details are omitted.
The proof is now complete. �

Lemma 3.4. [3] If G has a k-tree, then G has a k-walk.

Lemma 3.5. [2] Every 2-connected graph contains a minimally 2-connected spanning
subgraph.
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Thus, we get our main results as follows.

Theorem 3.1. Let k ≥ 2 be an integer and G be a 2-connected graph with ∆(G) ≤
2k − 2. Then, G contains a k-tree. And, for k ≥ 3 the result is best possible.

Theorem 3.2. Let k ≥ 2 be an integer and G be a 2-connected graph with ∆(G) ≤
2k − 2. Then, G contains a k-walk.

Now we construct an example to show that Theorem 3.1 is best possible. Let
K2, 2k−3 = K(X, Y ), X = {x, y}. Add four new vertices a1, b1, a2, b2, and connect
ai with x and bi with y, respectively. Denote thus obtained graph by H. Take k − 1
copies of H. Let u, v be two new vertices and connect u with all ai and v with all bi,
respectively. Denote thus obtained graph by G. Obviously, G is a 2-connected graph
with ∆(G) = 2k − 1. However, G does not have any k-trees. But, interestingly, G
contains k-walks.

4 Concluding Remark

We have obtained a maximum degree condition for the existence of k-walks in 2-
connected graphs. The problem to find an analogous condition for the existence of
k-walks in j-connected graphs is still left for further investigation. In [3] the authors
proved that the k-walk problem is NP-complete. In fact, using the technique in our
Section 2, we can also prove it.
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