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Abstract. A fundamental solution for the free Weyl equation is easily constructed
using the Clifford relation of the Pauli matrices. But, we insist on Feynman’s idea of
representing a fundamental solution using classical objects. To do this, we first re-
formulate the usual matrix-valued Weyl equation on the ordinary Euclidian space to
the “non-commutative scalar”-valued equation on the superspace, called the super Weyl
equation. Then, we may find the classical mechanics corresponding to that super Weyl
equation. Using analysis on the superspace, we may associate the classical Hamiltonian
with that super Weyl equation. From this mechanics, we define phase and amplitude
functions which are solutions of the Hamilton-Jacobi and continuity equations,
respectively. Moreover, they are exactly solvable. Then, we define a Fourier integral
operator with phase and amplitude given by those functions, which gives a solution to
the initial value problem of that super Weyl equation. The method and idea developped
here, may be applied not only to the Pauli, Weyl or Dirac equations but also to any
system of P.D.E’s.

1. Introduction and the result. Let y(t, q): R x R3— C? satisfy

z'h% Wt Q=Hq), H=—icha,

0q;
Y0, 9)=y(q).

Here, Yi(t, 9)="(,(¢, g), ¥,(t, q)), ¢ and % are positive constants, the summation with
respect to j=1,2,3 is abbreviated. And the Pauli matrices {¢;} are 2x2 matrices
satisfying the following relations (I,, stands for the m x m identity matrix):

(1.2) 6;0,+0,6,=20,1, for j,k=1,2,3, (Clifford relation)

(1.1)

(1.3) 6,6,=i6;, 0,06;=i0,, 0636,=i0,,
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for example,

01 0 —i 1 0
1.4 o'1=<1 0), 02=<i 0 ), a3=<0 _1).

Applying formally the Fourier transformation (which contains a parameter #) with
respect to ge R to (1.1), we get

5 . - ) .
ifi—y(t, p)=Hy(t, p) where H= cajpj=c< p3' Py lpz).
ot pit+ipy; —P3

As H?=c? p|*I, by (1.2), we easily have
e~ " B(p)=[cos(ch ™ 't| p L, —ic ™| p| ™~ sin(ch™'t] p NHI(p)
Therefore, we have

ProrosITION 1.1. For any teR,

(1.5)  e™ ™" My(q)=nh) 3> f dpe"h‘”e""‘“’ﬁlz?(p>=f dq'E(t, 4, 4'W(q')

Rs
with
(1.6)
Et, q,q)=Q2nh) "> f dpe™ "4~ P[cos(ch ™ t|p NI, —ic™ | p|~*sin(ch~t| p)H] .
R3

On the other hand, Feyman’s main motivation for deriving his notorious measure,
is to clarify the so-called “Bohr correspondence” as explicitly as possible. He expressed
quantum objects using classical quantities as ingredients of the integral representation
with respect to his measure. But it seems difficult to imagine from the above formula
that there exist classical objects when 7i—0. Therefore, he could not apply his idea to
the equation containing “spin” and posed a problem in p. 355 of Feynman & Hibbs [7].

In spite of this, we claim that there exists the classical mechanics corresponding
to the Weyl equation and that a fundamental solution of (1.1) is constructed as a Fourier
integral operator using phase and amplitude functions defined by that classical
mechanics. Therefore, the Weyl equation is obtained by quantizing that classical
mechanics after Feynman’s procedure. Because the Hamiltonian defined on the super-
space is ““of first order both in even and odd variables,” we should modify Feynman’s
argument from the Lagrangian formulated “path integral” to the Hamiltonian for-
mulated one.
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MaN THeoreM (Path-integral representation of a solution for the Weyl equation).

(1.7)
Y(t, 9) =b((27th')‘ 25 J

dedn D (1, %, 8, &, me™ 'L F (1Y), 71))
g3z -

B =q
Here, #(t, %, 0, &, m) and D(t, X, 8, £, m) are solutions of the Hamilton-Jacobi and contihuity
equations, (1.17) and (1.19) respectively.

ReMARK. Unfamiliar notation above is roughly explained in the course of
describing the outline of our procedure below. For example, one may intuitively regard
odd variables 6;, m, as something-like odd forms on “R® = ;.’°= . R”, where the space
R® has the Fréchet-Grassmann structure. See also Appendix A where the fundamentals
of superanalysis (=analysis on the superspace R™") is given. :

Outline of our procedure (1)-(6). (1) We identify a “spinor” y(t, q)="(,(¢, 9),
V(t, 9)): R x R®*—C? with an even supersmooth function u(t, x, 6) = u(t, x)+ u,(t, x)0,0, :
RxR325E,,. Here, R3? is the superspace and u(t, x), u,(t, x) are the Grassmann
continuation of (¢, q), ¥,(t, q), respectively. For example,

4
Cza(lpl)TU(G)=uo+u19102€¢ev with uo=yy, u=y,.

2

(2) We represent the matrices {a;} satisfying (1.2) and (1.3), which act on u(t, x, 6)

as follows:
2
al<0,£i>=il_1<9192+12 0 ),
i 06 00,00,
2
(1.8) 02<0,ii>=—2'1<9192—12 9 ),
i 00 06,00,
a3<9,ii>=1_91_6__gzi.
i 00 00, 00,

Here, the symbol 4 is an arbitrary parameter in C* =C—{0}.

REMARK. It is easily checked that only when |A|=1, {bo;(0, —il0,)#} are unitary
matrices.

(3) Therefore, we may define a differential operator given by

2
(1.9) yz(ﬁi,e,ii):crlh@lezuz 0 >i
i ox i a0 00,00, ) ox,
2\ 9 G o\ 0
+icl“7i<9102—/12 g )———ich<1—91—~—02—>——
00,00, ) ox, 00, 200,/ ox,
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which corresponds to H, and we have the superspace version of the Weyl equation

ENEXAV

0
h—ult, x, 6)==7f<~ >
ot i Ox i 00

(1.10)
u(0, x, H)=u(x, 9) .

Moreover, the “complete Weyl symbol” of (1.9) (see Appendix B) is given by
(1.11) (0, m)y=icA™ 10,0, — A%k " *m my)E, —cA™ 10,0, + A%k *m,m,)E,
—ick 10,1y +0,m,)¢,
=icA”NE +iE,)0,0, —icAk ™ (& —iEm m, —ick ™ E4(0,my +0,7,) .
Here, % is an arbitrary parameter in R* or in iR* (R* =R—{0}), related to the Fourier

transformation with respect to odd variables.
(4) We consider the classical mechanics corresponding to #(&, 8, n) given by

d

4, 0He6m A, OHEOT o g jk=1,23,
(1.12) dt o¢; dt 0x;

i()l=_w, inm:_w for I,m=1,23.

dt om, dt o0,

PROPOSITION 1.2. There exists a unique global solution (x(t), &(t), 0(t), n(t)) of (1.12)
with any initial data (x(0), £(0), 0(0), n(0)) =(x, &, 8, ) e R4

REMARKS. (i) We also denote the above solution x() by x(t, x, &, 0, n), etc., if
necessity occurs.

(i) Instead of R32x K32, we regard the space R°* as the cotangent space
T*R312 of R312,

Moreover, we have
PROPOSITION 1.3.  For any fixed (t, {, m), the map defined by
x, O (x=x(t, x, ¢ 0,m), 0=0(, x, £, 0, m))

gives a supersmooth diffeomorphism R3?>R32. Therefore, there exists the inverse map
given by

(i: g) - ()_Czy(t, X, §9 gs 7_7:)5 sz(t, X, §9 gﬂ 7_7:)) s

which satisfies

VL/
T
g

= =
Rall

<

a

'\/

1

N’

(1.13)
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We put’

(1.14) At x, ¢, 0, m)= J {<X(5) | &(5)> + <B(s) | mls) > — A (x(s), &(s), B(s), n(s)}ds ,

and

(1.15) (1, %, & 0, m)= (x| &) +7k 10| m) + ZLolt, %, & 6, metedn.

PropoSITION 1.4. &(t, %, &, 8, ) can be expressed as
(1.16)
F(, %, &8, my=<X| &+ [ &l cos(ck ™ 1| £ )~ i&s sin(ck ™ 1| EN] [k~ EIKO| =)
— i esin(ck M| E W& +i€)8,0, + ik 2k T — 1) sin(ck T | ENE, —i)myT,]
Moreover, if i=k, it satisfies the following Hamilton-Jacobi equation:

2 05 _ oF
9y #2757 Voo
(1.17) 5 TR E 0T (a' 65) ’

F0,% 0, m)=<x| >+ ).
REMARK. For the meaning of |£|, |£]7, sin| £| and cos| |, see Appendix A.

Now, we put

0ty 0¥
_ 9%0f  9%om

(1.18) 2(t, %, ¢, 0, m)=sdet 62.9? 22g ,
200¢  d0om

where “sdet” stands for the super-determinant, see [15]. Then, we get
ProrosiTiON 1.5.
2t %, & 0, ) ="""R)* &1 2[1 ] cos(ck ™| 1) —ifssin(ck ™1 E ]
If =k, then it satisfies the following continuity equation:
05,0 @6%> 0 <gax>_0,
(1.19) ot 0x o¢ 00
20,%,¢0,m)=1.

In the above, the argument of 9 is (t, %, &, 8, ), those of 04 /0 and 0. [om are (%4, 0, F5),
respectively.

From here on, we change the order of variables (%, &, 8, 7) to (X, 8, &, ).
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We define an operator
(1.20) (@(Ou)x, 0)=(2nh) "k Udgd;_z@m(t, %, 0, & m)e IOROED Fy(E 1)

where # stands for the Fourier transformation defined for functions on the superspace.
The function u(t, %, 8) = (%(t)u)(x, ) will be shown as a desired solution for (1.10) if
fi=k.
(5) On the other hand, using the Fourier transformation, we have readily that
7 .
(1.21) Jf<;i,0,£i)=ﬂ
i Ox i 00
where # is a (Weyl type) pseudo-differential operator with symbol #(£, 8, n) defined
by
(1.22)
0+w

(Hu)(x, 0) =(2nk) " 3k? deédndydwem_ Kyl ik 1<"_“"">Jf<£, , n)u(y, ).
THEOREM 1.6. (1) For teR, U(t) is a well defined unitary operator in % .,(R>?)
ifi=kand |2|=1.
Q) () Rat—Ut)e B(LE (R, L&AR1) is continuous.
(W) UWU(s)=%(t+s) for any t, seR.
(i) PutA=i Forue $sg o, o(R>1?), we put u(t, X, 0) = (U()u)(x, ). Then, it satisfies

-0 ut, %, 0)= Hu(t, %, ),
(1.23) o
w0, %, 0y =u(z, B).

(6) We interpret the above theorem with 7i=% and | A| =1 using the identification
maps

(124)  #:LAR*: C?) - L3 (R and b: L2 (R*?) > LAR?: C?).
That is, remarking b #$y = Hiy and putting U(2)y =b%(t)#y, we have

TueoreM 1.7. (1) For te R, U(t) is a well defined unitary operator in L*(R*: C?).
(2) () Rt U{)eB(L*(R3: C?), LXR?: C?) is continuous.

@iy U@®U(s)=U(t+s) for any t, seR.

(iii) Put A=i. For e CZ(R?: C?), we put Y(t, @) =b(U0)$ )|z, =, Then, it satisfies

a
i 5 Y(t, g9 =Hy(t, q),
4

¥(0, 9)=y(q) .

(1.25)
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CoRrOLLARY 1.8. H is an essentially self-adjoint operator in L*(R®: C?).

ReMark. The main result in this paper is announced in Inoue [11].

2. Proofs of Propositions 1.2-1.5.
2.1. Formulation of the classical mechanics. On the superspace R>!?, we introduce
an even supersmooth function

@.1) u(x, 0) =uo(x) +u; (x)0,0, .

Here, for u;(g)e C*(R*>: C), we define its Grassmann continuation as in [8], [14]:

22 uix)= | |Z=0 - Ofuj(xp)xé  where x=xg+xeR3°, xp=x=geR?.
REMARK. Supersmooth functions should satisfy a Cauchy-Riemann like equation
as explained in [14].

For ¥(q)="'(¥(q), ¥,(q)) and u(x, 8) =uy(x)+u,(x)d8,0,, we make a correspondence
defined by

23) { u(x, 0)=(#yY)(x,0) where u;_(x) =z|°:|=0 (1/a)ogy j(xp)x§ for j=1,2,
' ¥(q)=(bu)q) where ;. 1(9)=ulq) for k=0,1.
Or

aZ
Y1(@)=ulg,0), V(g = 0,00, u(g, 0) .

We define the operators {e;} as

i A 0 —i A0
e1= - 01_*7 Py €2= — 01+*7 3

A i 09, A i 00,
esz\/7<92_ii_>, e = __’<92+£i>‘

A i 09, A i 90,

Here, A€ R* or €iR”, the branch of \/a is taken as |arg./a | <n/2 for ae C\(— 0, 0]
and put ﬁzi.” o| for ae(— o0, 0]. Then, they satisfy

(25) ej€k+ekej= —25],( .

(2.4)

Now, we put

A0 i i 02
61<0,7%>=?(62e3+e164):l}. 1(01924‘12 691602>,
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(2.6) a<016> (eje,+eje;)=—A" 1<00—i 62)
' N"diee) 2 T YT 2" 00,00,)°
A0 i 0 2
“(0 zw)““z(““+e“”=1‘méaf*bag'

Then, it satisfies the relations (1.2) and (1.3). When A=, we have

0
b01<9, ag)ﬁw:allﬁ N

) b02<9, a—%)#l/lZGZI/I ,

bas <9, ;{9)#1// =0, .

Therefore, we get the superspace representation of the Weyl equation given by
(1.10).

As s explained in Appendix B, we obtain “Weyl symbol” for operators (0, —iAd,)
as follows:

61(0, 7r)=ii_1(0192—/’[2k_27t177:2) s
(2.3) 00, m)y=—A"10,0,+A*k " *nm,),
03(0, ’IE)= —lk_l(GInl +927t2) .

Therefore, we have the complete Weyl symbol of (1.9) which gives (1.11).
Now, following [5], [6], we introduce the graded Poisson bracket {{, }} as

E, Ej))= Z <aE1 OE, OE, aEl) 5 <6E1 0E, JE, 6E1>
j aéj 5)6 aé k agk 67rk 601‘ ank

2.9) {E O}}=-{{0, E}}= Z (@B—O—B—Qa—E>+ki <6E — aE)

T4 ),
axl aéj x] 661 =1 aak aTEk a@k 671:"
0, 00, 00, 00 » (00, 00 00, 00
{{01’02}} Z(a 1 2+ 2 1>__Z< 1 2+ 2 1>.
xJ 61 ﬁx] aél k 60k ank 59,( 67tk
Here, E, E,, E;€ $s5..(7*R™" and O, Oy, 0, € ¥ 0a(7 *R™"). Then, the classical
mechanics governed by He g5 .,(7 *R™") is given by

“-ol)= (o). H}}

I I for e (TR, o(t)=o(X(1), 5(t).

Hamilton flows: In our case, we have (1.12). More precisely,
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%xl =icA”1(0,0,— A%k *m,m,)=co,(0, ),

-d—xz =—cA 0,0, + A%k *mmy)=co,(0, ),

dt
d g
Ex3= —ick™ 'O +0,m,)=co5(0, ) ,
d .
E£]=O for _]—':1,2,3,
d aen . I
2.11) :1701 =icAk (&, —il)m, —ick™E50,

d
592= —icAR (& —i&)my —ick™1E50,

d
‘d?”l = —icA” Y&, +i&,)0, +ick ™ ' Esmy

d
" =icA™ W&, +i&,)0, +ick ™ Em, .

2.2. Proof of Proposition 1.2. Rewriting the above, we have

s " 8,(0) 0,
(2.12) —\ 77 )=iex| ? with [ 6,0 \ [ 6,
i\ ™ % n0 |\ n |
i i 75(0) 7,
where
-k, 0 0 M2 —iEy)
Xo 0 —kTEy -G 0
a 0 — AT +iE) kg, 0
ATNE +iEy) 0 0 k™1&,
As X2=Fk"?| £ |21, we get
(2.13) e X =cos(ck ™ 't| E, +ik| E|  sin(ck ™| EPDX .

For notational simplicity, we put n=¢; +if,, 1=¢, —i&,.
Remarking ¢;(t)=¢;, we have

99
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(.14)
01(s)=cos(ck™'s| E)0, +i &| " sin(ck ™ 5| £ N[ — &30, + Ak ™z, ]
= [cos(ck " 's| E)—i&3| €17 sin(ck ™ s E)]0, +idk 1 £ | sin(ek T s| €D,
0,(s)=cos(ck ™ 's| £)0, — 1| & |~ " sin(ck ™ 's| £ N[E30, + Ak m, ]
=[cos(ck 15| &) — i3 €17 sin(ck ™ 's| £1)]0, —idk | £ sin(ck s € Dy
my(s)=cos(ck ™ 's| & Ny +4 &7 sin(ck ™ s| EN[— A7 enb, + &5, ]
=[cos(ck ™ s| )+ s & |7  sin(ck ™ 5| £ )]my —id™ k| & |7 sin(ck T s £ NG,
Ty(s) =cos(ck ™ 's| ENmy 44 €] sin(ek T s| EDIAT RNl + £am,]
=[cos(ck™'s| ) +i&;1 & |~ sin(ck ™ 's| &) ]m, +id ™ Ky E| 7V sin(ck ™ s| £ DO,
On the other hand, putting
a1(t)=1A71(0,()0,() — A%k " 2m (t)my(t))
(2.15) o5(t)= — A7 1(0,(10,(t) + A%k > (1), (1)) ,
a5(t)= — ik~ 1 (01(t)n,(8) + 0,(t)m, (1)) ,

and differentiating with respect to ¢, we get easily

d [ gy 0 —63 52
(2.16) o o, |=2ck"'Y| o, where Y= &0 =& .
‘ O3 O3 & & 0

As
—&3-¢&F  &¢, $aéy
Y?= &é, _53?_512 &¢, and Y3=—|6|2Y,
£i¢s &Ey &3¢
we have

217y  e*>F Y=L || tsinQRek | EY 4| €| 2(1 —cosRQek T | E)) V2.
This implies
a,(s)=g; +sinQck ™5 £ )| ¢ |7 H(—Eaa, +E203)
+(1—cos2ck s EMIEI T2 [— (€3 +¢Day +E1820,+E1€505]
(2.18)  ay(s)=g,+sin(2ck " 5| EDIEIT (€30, —¢193)
+(1—cos2ck ™ 's| ENIEIT2[E1620, — (EE+EDar + 6285051,
o3(s)=a;3+sinQck 15| EDI €T (— &0, +E10,)
+(1—cos2ck ™| ENI 17261830, +E2ésa, — (1 +EDas]
Putting y=ck ™ '1| &|,
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t
oz=J- dssin(2ck ™ 's|Ey=c" k|| sin®y,

0
t

BZJ ds(1—cos(2ck 's| ) =t—c™ k| €| 'sinycosy,
0

we have

(2.19)

dso(s)=a,t+af é I_l(—§3g2+§2‘2’3)+ﬁ| é |_2[_(§§+§32)Q'1+§1§29'2+§1§3‘_73] »
Jo

dsoy(s)=a2t+al &1 71 (E3a, —E103) +BIEIT2[Ei L0, — (6T + €30, +E,8505]
v O

ft

dsa3(s)=g3l+oc|él_l(—§2g1+§1g2)+ﬂ|§I_2[§1§3q1+§2§3g2—(§12+§22)g3] .
v

As X;=ca;, we have
t
xj(t)=)_cj+cj dsa ;(s) for j=1,2,3.
0

Therefore, we get

(2.20)
Xy () =%y +egyt+eal §] 78302 +Ea03) +eIEI T [~ (83 +ED)ar + €180+ E18503],
xy() =X, +eart+col &7 (Ea1—¢103) + Bl E1 T2 [€1 80, —(§1+ED)as +¢2E5a5]
x3(t)= X3+ cast+cd &1~ Ea01 +&100) +efl €1 7281 €301+ Eaéaa, — (€ +E5)as] .

By (2.14) and (2.20), we prove not only the global existence in time of solutions of
(1.11) but also their explicit forms.

2.3. Proof of Proposition 1.3. Put
y=ck "¢ and d=|&|cosy—ifssiny.
From (2.14), we get

“180, + ik~ €| sinym,

(2.21) ?‘
] “160,— ik~ 'h) €| tsinymy

2:
which yield
0,=1£167'[0, ~iAk™ Al &1 sinyr]=,(t, €, 0, 1),

2.22) _ ) _
0,=18167 [0, +idk 'l &| ™ sinyn ] =w,(t, £, 0, 1) -
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These imply
(2.23) 0,0,=1&1?67°[0,0, + Ak~ 1| €| 1siny<O|m) — A%k "% & 727 sin® ymymy]
(2.24) Olny=1£167[<O| =) +2iak Y| £| ™ 'sinymm,] -

Therefore, substituting these, we have

g, =iA"1(0,0,— A%k " *mymy) =0,4(t, ¢, 6,m),
(2.25) Gy=—A" 0,0, + A%k *mimy) =0,(t, £, 0, 1),
a3=—ik 10,7, +0,m,) =041, ¢, 0, 7).

That is, we have

('t
X=X —¢C dSO'l(S)=y1(t,)E, éa g’ E)a
v O
(t
(226) )_C2=322—‘C dSUZ(S)=y2(t= X, é’ g; 7_Z) s
Jo
[t
X3=X3—C dSO'3(S)=y3(t, X-’ é’ g’ 7_t) .
JO

From the above (2.22), (2.26), we have proved the existence and explicit form for
)_Cj:yj(t’ .7?, éa 99 71:) and Qj:w(t5 éa g’ 7})
2.4. Proof of Proposition 1.4. By simple calculation, we have

@227 St x ¢ 0,7) =J ds[<(s) | E()> + <O(s) | mls)> — H(E(s), B(s), m(s))]
0

= ft ds{(s) | ni(s)> =cn jt dsa(s)+icj f dso(s)+c¢; ft dso(s) .
o (0]

0 0
Here, we used
O|ny=[—ick™ 130, +icik *qmy]m, —[ick ™ '¢30, +icAk ~*ijn,In,
=c;0;+ic(l,0,—E,0,)=cno, +icio,+ 305 .
Now, we define
(2.28) S5 60 D=S05 6 0.1 |y oyes.s0m0-oteiin s
where
S, x, & 0, m)=<{x| &) +hk KO md>+ Slt, x, £, 0, 1) .
By (2.26) and (2.27), we put £(t, %, 0, {, ;)= <(t, x, £, 0, 1_1)] =~ and

x=y(,X%,§,0,m)



FREE WEYL EQUATION 103

t

(2.29) Lt x,0,¢ )= ()Ej—c ft dsa,-(s)) &Rk 0 ) +enf j dsa ((s)

0 0

+icn jt dsoy(s)+ ¢, Jtdsal(s)

0 0

=(X|E+nk™ 10| n> +ic<§1 Jtdsaz(s)—gz ftdsal(s)>.
0 0
Remarking
¢ J: dsoy(s)— &, £ dsoy(s)=c™ k| &|” ' sinycosp(&10,— &0 )t
+e 7k E] 77 sin® y[Ea(¢101 +£200) — 1 ]%as]
and substituting this into (2.29), we get
L, %, 0, & m)y=(X| &) +hk 0| =) +iK|£| > sin® y(—| ¢ Pa3 +¢3¢9))
—ik| &| " sinycosp(£,0,—¢10,) .
On the other hand, as
810, =820, =—A""10,0,— ik *fimi7,
310+ 8500 —In Py =ik~ 0|70 n> +iA™ En0,0, —idk "2 EsAmy s
we get
S, %0, &, m)=(X| &+ k™ | £ 7% n|?sin y)<0 | m)

—i| &7 2siny[A7 kn(| & | cosy —ifssiny)0,0, + Ak " 7(| £ | cos y + iy siny)mm,] .
Using (2.22) and putting #(t, %, £, 8, 1) =<1, X, 0, £, ) |Q=w(r.:_,6,
(2.30) &, x, ¢, 8, m)

= CF|E+87 1[Ik Y £|KB) =y — iA~ Yy sinyB, 0, + Ak~ 1(2hk t — 1) sinym,m,]

It is easily checked that if i=%, then ¥(t, X, £, 0, n) satisfies the Hamilton-Jacobi
equation (1.17). Indeed, as

o We have

Sz,=¢; for j=1,2,3,
Sy, =0k E|my—id " knsinyB,], S5,=0"'[Ak Y| &|m,+id” knsinyd, ],
we get
F5.S5,=0" [k~ ENPmymy —ifd ™Y E I siny<B| m) — (A7 knsiny)*0,0,] ,
0,5, +0,%5,=06"[Ak | £1<0| n)—2iA" 'knsiny8,0,] .
Substituting these into #(¥%, 8, ), we have
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Q.31) H(Fs, B, F5)=ich ‘0,0, —icik iS5, S5, —ick ™ Eo(0,F5,+0,%%)
=c| €267 2[iA™ 00,0, — Ak~ 2(| | siny + iE5 cos y)<B | ) — ik Ak~ *fim m,] .

On the other hand,
(2.32)

S=Hk " 106N m)+ [ —il™ 'kn0,0,+iik ~'(2hk ' —1)in,n, 10,5 L siny) .
As we get easily

O (07 ) =ck™MEITA(E siny+il cosy) and S8 'siny)=ck Y E|25 2,
we have
(2.33) S=chik | £P67 (|| siny+iscosp){BF|m)
+c7€"1|§|25‘2[—i/1_1767]9-1924-1'/17%‘1(27?7?_1—l)ﬁ7_tl7_tz] .

Comparing (2.31) and (2.33), we proved that the Hamilton-Jacobi equation is satisfied
under the condition (k™ 1)2—2Ak "' +1=0.

2.5. Proof of proposition 1.5. From (2.30), we get easily

2y S

o 0%0¢  0%0m

234 9t % & 0, m)=sdet = U
(2.34) (t, %, , 0, ;) =sde 29 2y
a06¢  o0on

= Ak~ ED T2 ¢ cos(ck 1] £y —ig;sin(ck ™ EN]*

and it is checked easily that it satisfies the continuity equation (1.19).

For future use, we derive the continuity equation from the Hamilton-Jacobi
equation in a more general situation, that is, without resorting to the concrete expression
of 2(t, %, £, 0, m).

PrROPOSITION 2.1. Let &(t, %, &, 0, m) satisfy the Hamilton-Jacobi equation below
where (%, &, 0, m)ye T *Rmin=R2mi2n,

(2.35) St %, &, 0, m)+ A (X, S5 0, F5)=0.
Putting
02y 0*%
- 0x0¢ 0xon
2(t, %, £, 0, ;) =sdet 623? 2y ,
000¢  ofon

we have
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(2.36) DA 0 DH )+ 05(DH,)=0,
where H#,, =K (%, %z 0, %).

ProoF. Let (Xp)=(X;, 8,) and (£, =({;, 7). By differentiating the Hamilton-
Jacobi equation with respect to = ,, we get
0%, , 0%

054 04

Hz.=0 for 4,C=1,....mym+1,...,m+n.

Differentiating this once more with respect to X, we have
2
a_zx 4 > A +(_ l)p(B)(p(AHp(C)) 4 V_ a‘yfic —
0Xg05, 0Xgo=E,0X, ~° 0B, 0X. 0Xg

Here, p(A4) denotes the parity of the variable indexed by A4. Putting ¥, =025/0Xz0Z2 ,
and rewriting the above, we get

(2.37) ZZBA 4 (—1)POWA +pB) oA
ot

Hog o+ (—1PARB T PO+ PO, 7 E )
In general, for any invertible (m+n) x (m+ n) even supermatrix £ depending on a
parameter 7 (regardless of whether 7 is even or odd), we have

X,

(2.38) ai sdet ¥ =str(Z ~'Z) sdet & =sdet X str(Z.Z 1) .
T

Here, we use the following convention:
<5_Q”> =(— l)p(r)p(A) 0Z45 .
0t /4 ot

(See Berezin [3, pp. 109-110] and Leites [16, p. 44].)
Defining & =sdet(¥,)=sdet & and using the first equality above, we have

9197 _ (=gl %4
ot

Multiplying (—1)P"% ! to (2.37) and remarking

0 09
2.39 — PP G (= 1y OPD T pB) B _gir( S SN =D 7,
(2.39) (=P (1) 0%, (FxS ) 0%
0Hz. OH:
2.40 )Y~ )P AprB +pBpCO)+pOpA) gp 7 2c 77 Ec
(2.40) (=D (=1) X, X,
we get
0z
@‘laﬁwz‘l 6? He+—==0,
ot 0X¢ 0X.
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02 0
e
ot | 0X.

(@A) =0.

Remark. The above proof is due to Mafies & Zumino [17].

COROLLARY 2.2.  Putting u(t, %, &, 0, ;)=2'(t, %, &, 0, m), we have
@.41) by O+ 0pt) =0,
where the argument of K, is (X, % 0, %p).

3. Proofs of the Main Theorem.

It is easy to have

ProrosiTION 3.1.  Operators {6,(0, —iAdg)} are unitary in £ .(R°'?) only when
1Al=1.

Therefore, we assume that =% and [A|=1.
3.1. Unitarity. In order to prove the unitarity of the operator %(f), we rewrite
it as follows:

U(tyu(x, B) = 2rh) ~>12H ”dﬁdny(t, x, 0, &, mje™ eI Fy(E )

As Fu(l, m)="Hit (&) +7~ "ae(E)m 7, we get
3.1 AU(tu(x, B)=vy(t, x)+v,(t, x)0,0, ,
where

volt, x)=(2mh )32 deﬂ(t)[ﬁo(f) —o8(0)™ " Aq sin y(t)id (§)]
3.2

v,(t, &)=(2nH) 32 Jdéu(t)[&(t) 1 Iysin y()do(E) + 6(r) ~ 180, (6)]
Here, we put
8(t)=|&|cosy(t)—i&3siny(t), &(t)=|&|cosy(t)+ilssiny(0),
yW=ch &l n=&+i,, =& —is,
|8(¢) 1> =1& 1% cos® y(t) + &3 sin y(t)= | n |* cos® y(t) + £5 .

Simple but lengthy calculations using the Parseval equality lead us to
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ProrosITION 3.2.

%@l =llull  in iR
3.2. Regularity.

PROPOSITION 3.3.  When u(x, 0) € Fss ey o R>12), U(t)u is differentiable with respect
to (t, x, 0)e R x K312,

Proor. From (3.1) with (3.2), the differentiability with respect to 8; is clear.
Differentiation with respect to x is formally formulated in (3.2), and Lebesgue’s
dominated convergence theorem guarantees that procedure. Same for the time de-
rivatives. O

3.3. Calculation of infinitesimal generator. Applying the Hamilton-Jacobi and
continuity equations and remarking d:(u(t, £)H# Sz, 09, %)) =0, we have

0 ifi~ 1 - in’ in=1
(3.3) E(ue‘h N=(+ih 'pH)e™ T=—p[---Je™ 7,
where
(3.4

[.--]{;agj,;ﬁj+zn-lx]=ch-15-l|§|(i§3cosv+|§|sinv)

+in | E267 A 0,0, — R (| €| siny +ié5 cos y)F| m)y — ik 2Adm, ) -

Here, we substituted quantities before (2.31) and itself into #, for deriving (3.4).
On the other hand, by simple calculation, we have

uH(—ihids, 0, —iddz)e™ '

- 0?2 _ 0 0 .
=cul iA™ 90,0, +ilf——+ <1—0ff—9<—_>>‘”‘y
Cﬂ<l Ho U, T 1AR 20,00, & 1 o0, 2 o0, 4

=cu{' . ,}eih-ly’ )

In the above, we put
(3.5) {--}=1€167 (¢scosy—i|£|siny)
+87EPLA 0,0, —ih ™ 2aim my + B (= &5 cosy+il €| siny)<B| =] .
Comparing (3.4) and (3.5), we have —i#i[---]=c¢{ - -}, which implies
B0 A0

) 957,

5
7 w(oulx, 0)= s o
oy MU, 0) (iw i 80

>%(t)u(x, 0) .
O

ReEMAaRk. In calculating the righ-hand side, here we used the exact form. But, in
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general, we must establish the composition formula of pseudo-differential operators of
Weyl type and Fourier integral operators of above type, by which the “infinitesimal
generator” is calculated. This will be given in a forthcoming paper.

3.4. Evolutional property.
ProOPOSITION 3.4.

UOUSyu=U(t+su  forany ueFso(R3?).
PrOOF. As #U(s\u=u(s, x, 8) =v4(s, x)+v,(s, x)8,0,,

U(R)uls, x, 0)=(2mh) ~>2 Jdéem IR () ()G — O(s) ™ A sin y(s)idy)
—5(t)” HAn sin p()o(s) T (A 'y sin y(s)ido +O(s)idy)]

+(@2nh) 32 Jdﬁe B pOu()L8(0) T ATy sin p(e)ado — O(s) ™A sin y(s)idy )

+ (1)~ 18()0(s) ~ (A~ 1y sin p(s)ido + O(s)i)16,6 .
By simple calculation, we get
117 2(0(1)(s) — 1 | sin p(@) sin p(s))do = | £ 1~ 1 6(t + 8)ido ,
— A(3(t) sin y(s) + 8(s)f sin y(e))dd, = — Af &1 sinple + )l
and
| E|716(t + s)iig— Aff| €|~ L sin p(t + 8)it, = pult + s)[dig — AGS(t +5) ™ * sinp(e + s)d, ] -
Analogously, the coefficient of 0,0, is calculated as
| €| LA™ Yy siny(t + s)dg + 8(t + )i, ]

Therefore, we have the evolutional property. ]

4. Concluding remarks.

There are many problems stemming from physicists’ saying:

(1) They say that a neutrino does not interact with electro-magnetic field.

It is well-known that the Weyl equation itself is introduced as a model equation
following Dirac’s derivation of the Dirac equation. The Weyl equation is considered
as meaningless because it does not preserve parity, until neutrino is discovered as an
elementary particle without parity conservation. Therefore, we mathematicians should
have a confidence of our intrinsic ability of recognizing the beauty of the equation itself.
But to do so, we pose a question whether we can interpret physicists’ saying on the
insensibility of a neutrino with respect to any electro-magnetic field. One candidate for
this will be to construct an intertwining operator W () such that
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W (U =Ut; )W ,0)  forany teR.

Here, U ,(¢; 0) is the fundamental solution of the following problem with a given external
electro-magnetic potential A(t, q)=(Ay(t, q), A,(t, q), A,(t, g), A5(t, 9)):

0 3 o e
ih E lp(t’ q) = HA(t)l//(tﬂ Q) > HA(t) = Z €Oy <_ A "'? Ak(t9 q)) + eAO(ta q) ’

k=1 i Oqy
Y0, 9)=yY(q) .

In this case, we will have no ““explicit” formula for U (t; 0) or %,(t; 0), in general, but
we will have

4.1)

0
—Uy(t; O)u

=4,0
ey ((O)u

t=0

and

U, (t; s)=b< Hm 9, t,_ 1) - ULy, s)>1¢ with tj=s+J(t;s) .

(2) Another very important problem: Whether a neutrino has or aquires a mass?

To answer this, it is useless to consider the Weyl equation itself, because it is derived
as a simplified version of the Dirac equation without mass term. But we have an
experience, though not proved mathematically, that the quantization of a Lagrangian
in a curved space aquires a mass term caused by the curvature (the problem of (1/12)R,
see [12]). Therefore, we propose to do the above treatment in case where there exists
an external gravitational background. That is, for a given Minkowski metric
dr®+2h;(q, H)dq’dt — g,;(t, q)dq'dq’ on R x M, we take the square root of it using the
Pauli matrices and the frame bundle, formulate and solve that Weyl equation in the
same way as above. Here, M is a Riemannian 3-dimensional manifold with metric
gi;(t, g)dg'dg’. See, for example, Antoine, Comtet and Knecht [1].

(3) The Weyl equation in the domain with suitable boundary conditions.

Berry and Mondragon [4] proposed to study “a Dirac Hamiltonian describing
massless spin-half particles (‘neutrino’) moving in a finite domain of the plane r=(x, y)
under the action.of a 4-scalar (not electric) potential V(r)”. See also [1].

Appendix A. Fundamentals of superanalysis. For symbols {o;}72 ; satisfying the
Grassmann relation
0;0,+0,0;=0, Lk=12,...,

we put

(€={X= Y X,a’lX,eC},

Ies
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where
J={I=(ik)e{0, U= i< oo} ,
k

ol=gitgi ..., I=(iy,iy..), o0=1, §0=(0,0,..)e5.

Besides trivially defined linear operations of sums and scalar multiplications, we
have a product operation in €: For

X=73 X,0', Y=) Yyo¥,
Jed Ke s

we put

XYZZ(XY)IO'I with (XY)IZ Z (—l)t(l;J’K)XJYK,
I=J+K

Ies
Here, 17(1; J, K) is an integer defined by
dlo¥=(=1)yIRg!l  [=J+K.
ProposiTiON A.1 ([15]). € forms an co-dimensional Fréchet-Grassmann algebra

over &, that is, an associative, distributive and non-commutative ring with degree, which
is endowed with the Fréchet topology.

ReMARK. (1) Degree in € is defined by introducing subspaces
Qimz{Xz Y X,a’} for j=0,1,...
Ies | =j
which satisfy
C=p O(g[j] gul. gkl gl+H
i= ’ :
(2) Define

proj{(X)=X;, for X=) X,o'eC.

Ies

The topology in € is given by X—0 in € if and only if proj,(X)—0 in C, for any Ie 4.
This topology is equivalent to the one introduced by the metric dist(X, ¥)=
dist(X — Y) where dist(X) is defined by

G0y L 1Prei)
fer 2"0 14| proj(X)|

(3) We introduce parity in € by setting

{ 0 lf X:ZIEJ,HI:evXIO.I’

1 o0
with r(I)=1+? Y 2k, for Ies .
k=1

p(X): I if X=ZI€J.|I|=odXIOJ’

undefined otherwise .
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We put

Cu=D L, U={XeC|p(X)=1},

{ C.=@,C={Xec€|p(X)=0},
C~C,.0C ,=C,  xC,.

Analogous to €, we define

R={XeC|ngXeR}, RU=RnCU"
{ c‘Rev—_‘gzncgev5 c’Rod:gin(god=(£od’
9%ginev('B“R()dﬂé‘:ﬂevX9‘01:1 N

We introduced the body (projection) map ng by
ngX=projg(X)=X5=X"=X; forany Xe@,
and the soul part X of X as

Xs=X—Xpg= Y Xo!.

=1
We define the (real) superspace R™" by
Rrlr=R" x RE, .
The distance between X, YeR™!" is defined by
dist,, (X, Y)=dist,,,(X—Y)
with

. v 1 | proj,(x;) | ) C ( 1 [ proj;(0,) | )
dist,, (X)) = - + - .
(X 121 <1§y 2D 1+ projx;)] kgl I;J 2" 14| proj(0,)|

We use the following notation:
X=X )nin=(x,0)eR""  with
x=(Xk=1=0x)]=1 eR™O, O=(X)5Ln:1=(0i-, RO,
We generalize the body map 7, from R™" or R™° to R™ by putting
X=(x,0) e R"" - 13X = Xz =(xp, 0) = xp=npx=(MsXy, ..., TgX,) ER™.

We call x;e R,, and 6, R, as even and odd (alias bosonic and ferminionic) variable,
respectively.

ReMARk. For é=(¢,, ..., £,)eR™O=R", we define |£|eR,, as follows: Putting

1E1=1¢ls+18ls  with [&ls= X [&le’, [0, [&|eR,

I} =even>2
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we should have
| f |2 = fﬁ (éj,B + éj,s)(ij,B +a) = .il sz,B + 'Zl fj.B(é:j,s“i'a) + .Zl éj,Sa P
i= j= i= i=

$js= ) fj,ral’ §= ) EJ,_IUI

|I|=even>2 |I|=even>2

with Z being the complex conjugate of ¢;; in C. Therefore,
m 1/2
|€|B:{Z€]2,B} ]
j=1

A€l et X 1EhEL(—D = f C LDV Ch

I+J=K j=

which are solved by induction with respect to the length | K|. For example, if | K|=2,
we have

Elk=1215" 3. Gl

If | K|=4,
21 |x=|¢& |1;1<2 Z Einé x+ Z . 21 51',15(_ 1)L
=1 I+T=K j=
- Z Z €1 E 1A= 1)“’“’”) s
I+J=K j=1
etc.

Supersmooth functions: For u,(q)e C*(R™: C), we put

= 1
u(x)= Y, — Ouy(xg)xg for x=xgz+xg,
lai=0 o!
which is called the Grassmann continuation of u(q). We define a function ue %SS_EV(SR'"'”)
by

WX =ulx, 0= Y ux)6°,

lal<n

called a supersmooth function on R™”". For example, we define sin| &|, cos| ¢ | as

. o 1. S
SUHEDY —'sm<lfla+n—n>l€|§, CUHEDY ,cos<1£in+"7”>iz|§.

n=0 2 n=0 N

We may characterize this function as a solution of a certain Cauchy-Riemann type
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partial differential equation. See more exactly [15].
Derivations: For a given supersmooth function u(X) on R™", we define its deriva-
tives as follows: For j=1,2,...,mand k=1,2, ..., n, we put

Ui(X)= ). 0x,u,x)0°,

lal<n

Ueen(X)= 3 (= D" (03 -+ 63 - 037,

laj<n
where lk(a):zzf;ll a; and 0, '=0. U(X) are called the partial derivatives of u with
respect to X, at X=(x, ) and are denoted by
0
Uj(X)=6—u(x, 0)=0, u(x, ) for j=1,2,...,m,
Xj

Um+s(X)=%u(x, 0) = 0,u(x, 0) for s=1,2,...,n,

or simply by
U(X)=0x u(X) for k=1,...,m+n.

For
a=(a,a), a=(a,...,0)eN™, a=(ay,...,a,)e{0,1}",
2= 2 o, lal= Y a, lal=|al+]al,
ji=1 k=1
we put

03=0i05  with 03=0%--- 0%, =05 -+ Ofn.
EXAMPLE. 0,,0,0,05= —0,0;, 04,04,0,0,0,=0,% —0,=20,,0,,0,0,0;, etc.
Integration: We define

J dxdOu(x, 8)= dx{ J dBu(x, 0)}
Rmin J Rmlo Roln

=| dXg@, - 0pw)(Xp) (m(R™%)=R")

JR™

~

= | dﬂ{ J dxu(x, 0)} = J dBdxu(x, 0) .
J ROIn Rgmlo Rmin

Especially for odd integration, we have the following curious looking but well-known
relations
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J do, - -do,0, - 6,=1 and J db, --- d8,1=0 (Berezin integral) .
Roln Roln

Remarks for the need of oo number of Grassmann generators. (i) Though €
does not form a field because X*=0 for any Xe @ 4, but if X, Ye € satisfy XY =0 for
any Ye(_4, then X=0. This property holds only when the number of generators is
infinite. By this, we may determine the derivative dgu(X) uniquely.

(ii) In general, we need at least countable number of operations in doing analysis.
If the number of Grassmann generators is finite, then the effect of odd variables may
vanish after finitely many operations.

Scalar products and norms: Following [8], we introduce

(fss,ev(fﬁ'"'")={u(X)= Y u(x)0°|ulg)e C*(R™: C) for any a} ,

la| =even<n

Fos.ev o RN = {u(X)z Y u(x)0°|ulg)e CR™: C) for any a} , etc.

la|=even<n

We define the conjugation u(x, 0) =) _u,(x)0°, where 0e=gon - - g, 8,=6; and u,(x)
being the complex conjugate of u,(x). Then, we define

(u, v)= dxd0dfe®u(x, O)(x, )= Y. f dxu(x)v,(x),
gmlo

Rml2n lal<n

((u’ v))k = Z (a}c;u, a;(v) = Z (a;uas a;Ua) 3

la| <k || +|al <k

(o= 2 ((1+]Xp»)"7205%u, (1+] X|*)"0%v)

laj+1<k
with

el ? =), (lld=0uw, Mulli = u -
The space % .,(R™") is the completion of %g ev.o( R™") in the norm || - ||. In our case,
we may identify

&
a%é,ev(w'z)?Lz(Rs: Cc?.

(See, more precisely, [8].)
Fourier transformations:
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(FooX&)=(2nh)~™? f dxe™ " HOy(x)

Rmio

(Few)(x)=(2nt)~™? J dge™ ™ 0w,
gmlio
(F,,v)(n):k"/zz,,j dfe™*7 O yg) |
Roln

(F,w)0)=k"1, f dme™ I w(n),

-
where
<n|y>=j‘;1 NiYis <p|w>=,§1 Py, 1=e T
We put
(FuNE, 1) = LmlndXe—m“<X'5>u<X)=g [(FaOIF0N)] ,
(Fo)x, 0)=c,p, L Az NuE) = S (Ew)NEANO)]
where

X|Ey=<(x|E+nk™KO|n)eR,,, Cn = (2mH) 22

REMARK. Though the differential calculus on Fréchet spaces has some difficulties
in general, such calculus on Fréchet-Grassmann algebra holds safely in our case. For
example, the implicit and inverse function theorems, and the chain rule for differentiation
are established as in the standard case.

Appendix B. Derivation of the Weyl symbol. Let a function a(q, p)e C*(T*R™)
be given. We define a pseudo-differential operator a(g, —i%d,) with symbol a(g, p) as

a(q, —iho Julg)=(2nh)~" Jf dpdq'e™ '@~ Pg(q, pYu(q’) .
R2m

Then, the Schwartz kernel K,(q, q') of a(q, —ifd,) is defined by

K(g,q ')=(27th)""'f dpe™ "4=9"q(g, p),

R™

which gives
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a(q, —ihd Julq) =J dq'K(q, q"uq’) .

Rm
We introduce the Weyl symbol as
a*(q, p)=f dq e‘“"""’&(wi, q—i>-
R™ 2 2

Conversely, for any (pseudo-)differential operator P(q, —i#d,), we define its ordinary
symbol as

. B3\ .-
(B.1) P(g, p)=e" ‘H’P(q,f—>e"*
i d0q
The Schwartz kernel is given formally as
(B.2) Kplg, q)=Q2ni) ™" J dpe™ '@~ 9PP(g, p).
Rm

Therefore, we have
(B.3) P™(q, p)=(2nh)"" H dq'dp'e™ 4 _"’P<q +q7 ) P') .
RZm
EXAMPLE. Let P(q, —itd,)=(—ik0,— AlQ)*=—h 26,12 +2ifi A(q)0,+ihd,A(q) + A X(g).
Then

P(g, p)=p>—2A(q)p+ AXq)+ihd,A(g) and P“(g,p)=(p—A(@)*.

These procedures are extended to pseudo-differential operators on the superspace
without any serious change: For any differential operator Q(8, 0/06), we define its symbol
as

(B.4) 00, n)=e_ik_’<o'">Q<0, é%)eik oIm>
The Schwartz kernel and Weyl symbol are given as
(B.5) K0, 0’)=k2J | dne® =™ 0@, ),
wol2
and
(B.6) o0, m)=k? ff | d0’d7r’e"k1<"""”">Q<9+%, n’).
gola

Therefore, for differential operators with respect to odd variables, we have
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-

a:(6, n)=e"‘k“<°'">01<9, 4 %)eik”“'”:”‘l(eﬁz—Azk”nlnz) ,
l

A0

i 00

- A DN .o,
0.3(0’ n)ze—lk <9|1t>0-3<9’ '60>elk <6|n>=1_l-k—1(91n1+02n2) .
1

(B.7) { 0,0, n)=e*ik1<9'">0'2<0, )e"k”“’]”:—1_1(91924—/127‘(_27“112),

.

Moreover, the Schwartz kernels are given by

K, (0,0)=ii"'(0,0,070,—1%),
(B.8) K, (0,0 =—471(0,0,010;+2%),
K,(0,0)=070,—0,0,,

and then

a0, n)=iA""(0,0,— A’k *n m)=0,(0,m),
(B.9) 030, m)=—A"1(0,0,+ 2’k " *m;my) =0,(0, m),
o¥(0, n)= —ik~ (0,7, +6,m,) .

For any differential operator P(x, —ihd,, 6, —iAd,) on the superspace R3!? rep-
resented by

i 0 A0 n o 3 Ao A8
P 9__565__ = s T Ta + j s T T j 9’*- s
<x i ox ae> a°<x i 6x> ,.;a’<x i ax>°’< i60>

we define its complete Weyl symbol as follows:

3
P¥(x, & 0, m)y=af(x, &)+ z aj’(x,&o;0, m).

j=1

ReMARK. In the context, we use g;(6, 7) abbreviating the upper index of (0, n).
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