

Contents of Volume 118, Number 1

H. Kita, On a converse inequality for maximal functions in Orlicz spaces	110
G. LÓPEZ and J. F. MENA, RNP and KMP are equivalent for some Banach	
spaces with shrinking basis	1117
B. Yood, C^* -seminorms	19 - 26
A. IWANIK, Toeplitz flows with pure point spectrum	2735
S. Pérez-Esteva, Duality on vector-valued weighted harmonic Bergman spaces	37 - 47
T. Dobrowolski, J. Grabowski and K. Kawamura, Topological type of weak-	
ly closed subgroups in Banach spaces	49-62
F. Beckhoff, Topologies of compact families on the ideal space of a Banach	
algebra	63~75
H. RENDER and A. SAUER, Algebras of holomorphic functions with Hadamard	
multiplication	77~1.00

STUDIA MATHEMATICA

Executive Editors: Z. Ciesielski, A. Pełczyński, W. Żelazko

The journal publishes original papers in English, French, German and Russian, mainly in functional analysis, abstract methods of mathematical analysis and probability theory. Usually 3 issues constitute a volume.

Detailed information for authors is given on the inside back cover. Manuscripts and correspondence concerning editorial work should be addressed to

STUDIA MATHEMATICA

Śniadeckich 8, P.O. Box 137, 00-950 Warszawa, Poland, fax 48-22-6293997

Subscription information (1996): Vols. 117(2,3)-121 (14 issues); \$30 per issue.

Correspondence concerning subscription, exchange and back numbers should be addressed to

Institute of Mathematics, Polish Academy of Sciences
Publications Department

Śniadeckich 8, P.O. Box 137, 00-950 Warszawa, Poland, fax 48-22-6293997

© Copyright by Instytut Matematyczny PAN, Warszawa 1996

Published by the Institute of Mathematics, Polish Academy of Sciences
Typeset in TEX at the Institute
Printed and bound by

Englishman & Registration Brand william & Registration

PRINTED IN POLAND

ISSN 0039-3223

STUDIA MATHEMATICA 118 (1) (1996)

On a converse inequality for maximal functions in Orlicz spaces

b

H. KITA (Oita)

Abstract. Let $\Phi(t) = \int_0^t a(s) \, ds$ and $\Psi(t) = \int_0^t b(s) \, ds$, where a(s) is a positive continuous function such that $\int_1^\infty a(s)/s \, ds = \infty$ and b(s) is quasi-increasing and $\lim_{s \to \infty} b(s) = \infty$. Then the following statements for the Hardy-Littlewood maximal function Mf(x) are equivalent:

(j) there exist positive constants c_1 and s_0 such that

$$\int_{1}^{s} \frac{a(t)}{t} dt \ge c_1 b(c_1 s) \quad \text{ for all } s \ge s_0;$$

(ij) there exist positive constants c_2 and c_3 such that

$$\int\limits_0^{2\pi}\varPsi\bigg(\frac{c_2}{|f|_{\mathbb{T}}}|f(x)|\bigg)\,dx \leq c_3+c_3\,\int\limits_0^{2\pi}\varPhi\bigg(\frac{1}{|f|_{\mathbb{T}}}Mf(x)\bigg)\,dx \quad \text{ for all } f\in L^1(\mathbb{T}).$$

1. Introduction. Let \mathbb{T} be the group of real numbers modulo 2π and f(x) be a real-valued integrable function defined on \mathbb{T} with period 2π . The classical Hardy-Littlewood maximal function Mf(x) is defined by

(1.1)
$$Mf(x) := \sup_{x \in I} \frac{1}{|I|} \int_{I} |f(y)| dy,$$

where the supremum is taken over all open intervals $I \subseteq \mathbb{T}$ with $x \in I$.

The aim of this paper is to give a necessary and sufficient condition for a function f(x) to be in an Orlicz space L^{Ψ} if the maximal function Mf(x) defined by (1.1) is in L^{Φ} . Let us recall the definition of L^{Ψ} .

DEFINITION 1.1. Let $\Psi(t)$ be a nondecreasing continuous function such that $\Psi(0) = 0$ and $\lim_{t\to\infty} \Psi(t) = \infty$. Put

$$(1.2) L^{\Psi} := \Big\{ f: \int\limits_{0}^{2\pi} \Psi(\varepsilon|f(x)|) \, dx < \infty \text{ for some } \varepsilon > 0 \Big\}.$$

Key words and phrases; Hardy-Littlewood maximal function, Orlicz space.

 $^{1991\ \}textit{Mathematics Subject Classification:}\ \textbf{Primary 42B25},\ 46E30.$

The space L^{Ψ} is called an *Orlicz space* (see Kita and Yoneda [3], Rao and Ren [6], Zygmund [9]).

We note that if $\Psi(t) = t^p \ (p > 1)$, then the Orlicz space L^{Ψ} defined by (1.2) is the usual Lebesgue space.

Let a(s) be a positive continuous function defined on $[0,\infty)$ with the following property:

(1.3)
$$\int_{1}^{\infty} \frac{a(s)}{s} \, ds = \infty.$$

A function b(s) defined on $[0, \infty)$ is said to be quasi-increasing on $[0, \infty)$ if there exists a positive constant $c_0 \ge 1$ such that

$$(1.4) 0 < b(s_1) \le c_0 b(c_0 s_2) \text{for all } 0 < s_1 < s_2.$$

Let b(s) be a continuous quasi-increasing function defined on $[0, \infty)$ satisfying

$$\lim_{s \to \infty} b(s) = \infty.$$

Put

2

$$(1.6) \qquad \varPhi(t) := \int\limits_0^t \, a(s) \, ds \quad \text{and} \quad \varPsi(t) := \int\limits_0^t \, b(s) \, ds \quad \text{ for } t \geq 0.$$

The detailed results on maximal functions in the class $\Phi(L) := \{f : \int_{\mathbb{R}^n} \Phi(|f(x)|) dx < \infty\}$ can be found in the book of Kokilashvili and Krbec [4]. In this paper we consider the maximal functions of functions in an Orlicz space L^{Ψ} , where $\Psi(t)$ does not necessarily satisfy the Δ_2 -condition, that is, there exist positive constants c and t_0 such that $\Psi(2t) \leq c\Psi(t)$ for all $t \geq t_0$. The following result can be found in Kita [2].

THEOREM 1.2. Let a(s), b(s), $\Phi(t)$ and $\Psi(t)$ satisfy (1.3)-(1.6). Then the following statements are equivalent:

(i) there exists a positive constant c_1 such that

(1.7)
$$\int_{1}^{s} \frac{a(t)}{t} dt \le c_1 b(c_1 s) \quad \text{for all } s \ge 1;$$

(ii) there exists a positive constant c2 such that

$$(1.8) \quad \int\limits_{0}^{2\pi} \varPhi(Mf(x)) \, dx \leq c_2 + c_2 \, \int\limits_{0}^{2\pi} \varPsi(c_2|f(x)|) \, dx \quad \textit{ for all } f \in L^1(\mathbb{T}).$$

We consider a converse inequality to (1.8). We say that a measurable function f(x) is in $L \log L(\mathbb{T})$ provided that $\int_0^{2\pi} |f(x)| \log^+ |f(x)| dx < \infty$,

where $\log^+ t = \log t$ for $t \ge 1$ and $\log^+ t = 0$ for $0 \le t < 1$. Stein [7] proved the following result (see Torchinsky [8], p. 93).

THEOREM 1.3. Let $f \in L^1(\mathbb{T})$. If $Mf \in L^1(\mathbb{T})$, then $f \in L \log L(\mathbb{T})$.

2. Main theorem. In this section we give a generalization of Theorem 1.3 to functions in an Orlicz space L^{Ψ} , which is also a generalization of the result of Moscariello [5].

THEOREM 2.1. Let a(s), b(s), $\Phi(t)$ and $\Psi(t)$ satisfy (1.3)-(1.6). Then the following statements are equivalent:

(j) there exist positive constants c_3 and $s_0 > 1$ such that

(2.1)
$$\int_{1}^{s} \frac{a(t)}{t} dt \ge c_3 b(c_3 s) \quad \text{for all } s \ge s_0;$$

(jj) there exist positive constants c_4 and c_5 such that

$$(2.2) \qquad \int_{0}^{2\pi} \Psi\left(\frac{c_4}{|f|_{\mathbb{T}}}|f(x)|\right) dx$$

$$\leq c_5 + c_5 \int_{0}^{2\pi} \Phi\left(\frac{1}{|f|_{\mathbb{T}}} Mf(x)\right) dx \quad \text{for all } f \in L^1(\mathbb{T}),$$

where $|f|_{\mathbb{T}} := \frac{1}{2\pi} \int_0^{2\pi} |f(x)| dx$.

Proof. (j) \Rightarrow (jj). Without loss of generality, we may assume that $|f|_{\mathbb{T}} = 1$. Put $\Psi_1(t) = \Psi(c_3t)$ for $t \geq 0$. Then it is easy to see that

$$egin{align} I := \int\limits_0^{2\pi} arPhi(c_3|f(x)|)\,dx &= \int\limits_0^\infty |\{|f|>s\}|arPhi_1'(s)\,ds \ &= \int\limits_0^\infty |\{|f|>s\}|c_3b(c_3s)\,ds \ &= \Big(\int\limits_0^{s_0} + \int\limits_{s_0}^\infty \Big)|\{|f|>s\}|c_3b(c_3s)\,ds =: I_0 + I_1. \end{gathered}$$

Since b(s) is quasi-increasing, it follows from (1.4) that

$$(2.3) 0 < b(c_3s) \le c_0b(c_0c_3s_0) \text{for } 0 < s < s_0.$$

From (2.3) we have

$$(2.4) I_0 \leq 2\pi s_0 c_0 c_3 b(c_0 c_3 s_0).$$

By (2.1) we have

$$egin{aligned} I_1 & \leq \int\limits_{s_0}^{\infty} |\{|f| > s\}| igg(\int\limits_1^s rac{a(t)}{t} \, dtigg) \, ds \leq \int\limits_1^{\infty} |\{|f| > s\}| igg(\int\limits_1^s rac{a(t)}{t} \, dtigg) \, ds \ & = \int\limits_1^{\infty} rac{a(t)}{t} igg(\int\limits_1^{\infty} |\{|f| > s\}| \, dsigg) \, dt. \end{aligned}$$

For any t > 0, put

$$f_t(x) = \left\{ egin{array}{ll} f(x) & ext{if } |f(x)| > t, \ 0 & ext{if } |f(x)| \leq t. \end{array}
ight.$$

Then it is easy to see that

(2.5)
$$\int_{t}^{\infty} |\{|f| > s\}| \, ds \le \int_{|f| > t} |f(x)| \, dx \quad \text{ for all } t > 0.$$

Indeed,

$$\int_{|f|>t} |f(x)| \, dx = \int_{0}^{2\pi} |f_t(x)| \, dx = \int_{0}^{\infty} |\{|f_t|>s\}| \, ds$$

$$\geq \int_{t}^{\infty} |\{|f_t|>s\}| \, ds = \int_{t}^{\infty} |\{|f|>s\}| \, ds.$$

Therefore it follows from (2.5) that

$$I_1 \leq \int\limits_1^\infty rac{a(t)}{t} \Big(\int\limits_{|f|>t} |f(x)|\,dx\Big)\,dt.$$

By the converse inequality for the maximal function (see Guzmán [1], Torchinsky [8], p. 93), it follows from $|f|_{\mathbb{T}} = 1$ that

$$(2.6) I_1 \leq \int_{1}^{\infty} \frac{a(t)}{t} \cdot \frac{t}{c_6} \cdot |\{Mf > t\}| \, dt \leq \frac{1}{c_6} \int_{0}^{2\pi} \varPhi(Mf(x)) \, dx.$$

Therefore it follows from (2.4) and (2.6) that

$$\int\limits_{0}^{2\pi} \Psi(c_{3}|f(x)|) \, dx \leq 2\pi s_{0} c_{0} c_{3} b(c_{0} c_{3} s_{0}) + \frac{1}{c_{6}} \int\limits_{0}^{2\pi} \varPhi(Mf(x)) \, dx,$$

which is nothing but (2.2).

 $(jj)\Rightarrow (j)$. Let (jj) hold and assume that (j) does not hold. Then there exists a sequence $\{s_k:k\geq 0\}$ of numbers such that

$$1 = s_0 < s_1 < \dots \uparrow \infty \quad \text{as} \quad k \uparrow \infty;$$

(2.8) $\int_{1}^{s_k} \frac{a(s)}{s} < \frac{1}{2^k} b\left(\frac{s_k}{2^k}\right) \quad \text{for all } k \ge 1;$

(2.9)
$$b\left(\frac{s_k}{2^k}\right) \ge k2^k \quad \text{for all } k \ge 1;$$

$$(2.10) s_{k+1} \ge 4c_0 s_k \text{for all } k \ge 0$$

where c_0 is the constant appearing in (1.4).

We choose a collection $\{I_k: k \geq 1\}$, $I_k \subseteq \mathbb{T}$, of disjoint open intervals such that

(2.11)
$$|I_k| = \frac{1}{(s_k/2^k)b(s_k/2^k)} \quad \text{for } k \ge 1.$$

From (2.7), (2.9) and (2.10) it follows that

$$\sum_{k=1}^{\infty} |I_k| \le \sum_{k=1}^{\infty} \frac{1}{(s_k/2^k)k2^k} < \sum_{k=1}^{\infty} \frac{1}{s_k} \le \sum_{k=1}^{\infty} \frac{1}{4^k} < 2\pi.$$

Put

(2.12)
$$f(x) := \alpha_0 \sum_{k=1}^{\infty} \frac{k s_k}{2^k} \chi_{I_k}(x) \quad \text{for } x \in \mathbb{T},$$

where χ_{I_k} is the characteristic function of I_k and the positive constant α_0 will be defined later. It is easy to see that $f \in L^1(\mathbb{T})$. Indeed, by (2.9), (2.11) and (2.12) we have

$$\int_{0}^{2\pi} |f(x)| dx = \alpha_0 \sum_{k=1}^{\infty} \frac{k s_k}{2^k} |I_k| = \alpha_0 \sum_{k=1}^{\infty} \frac{k}{b(s_k/2^k)}$$

$$\leq \alpha_0 \sum_{k=1}^{\infty} \frac{1}{2^k} = \alpha_0 < \infty.$$

Put $\alpha_0 = 2\pi/(\sum_{k=1}^{\infty} k/b(s_k/2^k))$. Then $|f|_{\mathbb{T}} = 1$. We will prove that for each $0 < \varepsilon < 1$,

(2.13)
$$\int_{0}^{2\pi} \Psi(\varepsilon|f(x)|) dx = \infty.$$

From (2.11) and (2.12) it follows that

(2.14)
$$\int_{0}^{2\pi} \Psi(\varepsilon|f(x)|) dx = \sum_{k=1}^{\infty} \Psi\left(\frac{\varepsilon \alpha_0 k s_k}{2^k}\right) \frac{1}{(s_k/2^k)b(s_k/2^k)}.$$

The formula (1.6) implies that

$$\Psi\left(\frac{\varepsilon\alpha_0 k s_k}{2^k}\right) = \int_0^{\varepsilon\alpha_0 k s_k/2^k} b(s) ds = \int_0^{\varepsilon\alpha_0 k s_k/(c_0 2^k)} c_0 b(c_0 t) dt.$$

We can choose a positive integer k_0 sufficiently large so that $\varepsilon \alpha_0 k/c_0 \geq 2$

$$\Psi\left(\frac{\varepsilon\alpha_0 k s_k}{2^k}\right) \ge \int_0^{2s_k/2^k} c_0 b(c_0 t) dt$$

$$\ge \int_{s_k/2^k}^{2s_k/2^k} c_0 b(c_0 t) dt \quad \text{for all } k \ge k_0.$$

Since b(s) is quasi-increasing, it follows from (2.15) that

(2.16)
$$\Psi\left(\frac{\varepsilon\alpha_0 k s_k}{2^k}\right) \ge \frac{s_k}{2^k} b\left(\frac{s_k}{2^k}\right) \quad \text{for all } k \ge k_0.$$

From (2.14) and (2.16) we get

for all $k \geq k_0$. Then we get

$$\int_{0}^{2\pi} \Psi(\varepsilon|f(x)|) dx \ge \sum_{k=k_0}^{\infty} \frac{s_k}{2^k} b\left(\frac{s_k}{2^k}\right) \frac{1}{(s_k/2^k)b(s_k/2^k)} = \sum_{k=k_0}^{\infty} 1 = \infty.$$

Thus (2.13) holds.

Now we prove that $\int_0^{2\pi} \Phi(Mf(x)) dx < \infty$. Put

$$F(x) = \Phi(Mf(x))\chi_{\{Mf>1\}}(x).$$

Then

$$\begin{split} J_1 &:= \int\limits_{Mf>1} \varPhi(Mf(x)) \, dx = \int\limits_{0}^{2\pi} F(x) \, dx = \int\limits_{0}^{\infty} \left| \{F > \lambda\} \right| d\lambda \\ &\leq 2\pi \varPhi(1) + \int\limits_{\varPhi(1)}^{\infty} \left| \{F > \lambda\} \right| d\lambda = 2\pi \varPhi(1) + \int\limits_{\varPhi(1)}^{\infty} \left| \{\varPhi(Mf) > \lambda\} \right| d\lambda \\ &= 2\pi \varPhi(1) + \int\limits_{1}^{\infty} \left| \{Mf > \varPhi^{-1}(\lambda)\} \right| d\lambda \\ &= 2\pi \varPhi(1) + \int\limits_{1}^{\infty} \left| \{Mf > t\} \right| a(t) \, dt. \end{split}$$

Since the operator M is simultaneously of weak-type (1,1) and of type (∞,∞) , it follows by the well known result (see Torchinsky [8], p. 92) that there exist positive constants c_7 and c_8 such that

$$(2.17) |\{Mf > t\}| \le \frac{c_7}{t} \int_{t/c_8}^{\infty} |\{|f| > s\}| \, ds \text{for all } t > 0.$$

Therefore

$$J_{1} \leq 2\pi \Phi(1) + c_{7} \int_{1}^{\infty} \frac{a(t)}{t} \left(\int_{t/c_{8}}^{\infty} |\{|f| > s\}| \, ds \right) dt$$

$$= 2\pi \Phi(1) + c_{7} \int_{1/c_{8}}^{\infty} |\{|f| > s\}| \left(\int_{1}^{c_{8}s} \frac{a(t)}{t} \, dt \right) ds$$

$$:= 2\pi \Phi(1) + c_{7} J_{2}.$$

It remains to estimate J_2 . By (2.10) we have

(2.18)
$$0 < \frac{\alpha_0 s_1}{2} < \ldots < \frac{\alpha_0 k s_k}{2^k} < \ldots \uparrow \infty \quad \text{as } k \uparrow \infty;$$

(2.19)
$$0 < \frac{s_k}{2^k} < \frac{1}{c_0} \cdot \frac{s_{k+1}}{2^{k+1}} \quad \text{for all } k \ge 1.$$

Since b(s) is quasi-increasing, it follows from (2.19) that

$$(2.20) b\left(\frac{s_k}{2^k}\right) \le c_0 b\left(\frac{s_{k+1}}{2^{k+1}}\right) for all k \ge 1.$$

Therefore, by (2.10) and (2.20), it follows that

$$\begin{split} |I_{k+1}| &= \frac{1}{\frac{s_{k+1}}{2^{k+1}} b \left(\frac{s_{k+1}}{2^{k+1}} \right)} \leq \frac{1}{\frac{s_{k+1}}{2^{k+1}} \cdot \frac{1}{c_0} b \left(\frac{s_k}{2^k} \right)} \\ &\leq \frac{1}{\frac{4c_0 s_k}{2^{k+1}} \cdot \frac{1}{c_0} b \left(\frac{s_k}{2^k} \right)} = \frac{1}{2} \cdot \frac{1}{\frac{s_k}{2^k} b \left(\frac{s_k}{2^k} \right)} = \frac{1}{2} |I_k|. \end{split}$$

Hence

(2.21)
$$|I_{k+1}| \le \frac{1}{2} |I_k|$$
 for all $k \ge 1$.

If $\alpha_0(k-1)s_{k-1}/2^{k-1} \le s < \alpha_0 k s_k/2^k$, then it follows from (2.18) and (2.21) that

(2.22)
$$|\{|f| > s\}| = \sum_{j=k}^{\infty} |I_j| \le 2|I_k| \quad \text{for all } k \ge 1.$$

We choose a positive integer k_1 such that $c_8\alpha_0k/2^k \leq 1$ for all $k \geq k_1$. If $\alpha_0(k-1)s_{k-1}/2^{k-1} \leq s < \alpha_0ks_k/2^k$, then it follows from (2.8) that

(2.23)
$$\int_{1}^{c_8 s} \frac{a(t)}{t} dt \leq \int_{1}^{c_8 \alpha_0 k s_k/2^k} \frac{a(t)}{t} dt$$
$$\leq \int_{1}^{s_k} \frac{a(t)}{t} dt < \frac{1}{2^k} b \left(\frac{s_k}{2^k} \right) \quad \text{for } k \geq k_1.$$

From (2.22) and (2.23) we get

$$\int_{\alpha_{0}(k_{1}-1)s_{k_{1}-1}/2^{k_{1}-1}}^{\infty} |\{|f| > s\}| \left(\int_{1}^{c_{8}s} \frac{a(t)}{t} dt\right) ds$$

$$= \sum_{k=k_{1}}^{\infty} \int_{\alpha_{0}(k-1)s_{k-1}/2^{k-1}}^{\alpha_{0}ks_{k}/2^{k}} |\{|f| > s\}| \left(\int_{1}^{c_{8}s} \frac{a(t)}{t} dt\right) ds$$

$$\leq \sum_{k=k_{1}}^{\infty} \int_{\alpha_{0}(k-1)s_{k-1}/2^{k-1}}^{\alpha_{0}ks_{k}/2^{k}} 2|I_{k}| \cdot \frac{1}{s_{k}|I_{k}|} ds$$

$$\leq \sum_{k=k_{1}}^{\infty} \frac{2}{s_{k}} \cdot \frac{\alpha_{0}ks_{k}}{2^{k}} = \sum_{k=k_{1}}^{\infty} \frac{2\alpha_{0}k}{2^{k}} < \infty,$$

which implies that $\int_0^{2\pi} \Phi(Mf(x)) dx < \infty$. We arrive at a contradiction and the theorem is proved.

COROLLARY 2.2. Let a(s), b(s), $\Phi(t)$ and $\Psi(t)$ satisfy (1.3)-(1.6). Then the following statements are equivalent:

(j) there exist positive constants c_3 and $s_0 > 1$ such that

$$\int_{1}^{s} \frac{a(t)}{t} dt \ge c_3 b(c_3 s) \quad \text{for all } s \ge s_0;$$

(jjj) if $Mf \in L^{\Phi}$ for $f \in L^1(\mathbb{T})$, then $f \in L^{\Psi}$.

Proof. (j) \Rightarrow (jjj). Let $f \in L^1(\mathbb{T})$. We can choose s_0 such that $s_0 > |f|_{\mathbb{T}}$. As in the proof of Theorem 2.1, we get

(2.24)
$$\int_{0}^{2\pi} \Psi(c_{3}|f(x)|) dx \leq c(|f|_{\mathbb{T}}) + \frac{1}{c_{6}} \int_{0}^{2\pi} \Phi(Mf(x)) dx,$$

where $c(|f|_{\mathbb{T}})$ is a constant depending on $|f|_{\mathbb{T}}$.

Now suppose that $f \in L^1(\mathbb{T})$ and $Mf \in L^{\varPhi}$. Then there exists $0 < \varepsilon_1 < 1$ such that $\int_0^{2\pi} \varPhi(\varepsilon_1 M f(x)) dx < \infty$. Therefore it follows from (2.24) that $\int_0^{2\pi} \varPsi(c_3 \varepsilon_1 | f(x)|) dx < \infty$, which implies that $f \in L^{\varPsi}$.

 $(jjj)\Rightarrow (j)$. Let (jjj) hold and assume that (j) does not hold. In the proof of Theorem 2.1, we constructed a function $f\in L^1(\mathbb{T})$ such that

$$\int\limits_0^{2\pi} \varPhi(Mf(x))\,dx < \infty \quad \text{and} \quad \int\limits_0^{2\pi} \varPsi(\varepsilon|f(x)|)\,dx = \infty \quad \text{for each } 0 < \varepsilon < 1,$$

which contradicts our assumption.

COROLLARY 2.3. Let a(s), b(s), $\Phi(t)$ and $\Psi(t)$ satisfy (1.3)-(1.6). Then the following statements are equivalent:

(1) there exist positive constants c_1, c_2 and $s_0 > 1$ such that

$$c_2 b(c_2 s) \le \int_1^s \frac{a(t)}{t} dt \le c_1 b(c_1 s) \quad \text{ for all } s \ge s_0 > 1;$$

(2) suppose $f \in L^1(\mathbb{T})$; then $Mf \in L^{\Phi}$ if and only if $f \in L^{\Psi}$.

Proof. This is an easy consequence of Theorem 1.2 and Corollary 2.2.

3. Examples. In this section, some examples of functions $\Phi(t)$, $\Psi(t)$, a(t) and b(t) will be given. Let $\varphi(t)$ and $\psi(t)$ be functions defined on $[0, \infty)$. We write $\varphi(t) \sim \psi(t)$ if there exist positive constants c_1, c_2 and t_0 such that $c_1\psi(t) \leq \varphi(t) \leq c_2\psi(t)$ for all $t \geq t_0$.

Example 1. Let 1 and

$$\Phi(t) = \frac{1}{p}t^p, \quad a(t) = t^{p-1} \quad \text{for } t \ge 0;$$

$$\Psi(t) = \frac{1}{p}t^p, \quad b(t) = t^{p-1} \quad \text{for } t \ge 0.$$

EXAMPLE 2. Let $0 < \alpha \le 1$ and

$$egin{aligned} arPhi(t) &\sim rac{t}{(\log t)^{1-lpha}}, & a(t) &\sim rac{1}{(\log t)^{1-lpha}}; \ arPsi(t) &\sim t (\log t)^lpha, & b(t) &\sim (\log t)^lpha. \end{aligned}$$

EXAMPLE 3. Let

$$\Phi(t) \sim \frac{t}{\log t}, \qquad a(t) \sim \frac{1}{\log t};$$

$$\Psi(t) \sim t(\log \log t), \quad b(t) \sim \log \log t.$$

EXAMPLE 4. Put $L_1(t) = \log^+ t$, $L_n(t) = \log^+ L_{n-1}(t)$ for $n \ge 2$, and

$$\Phi(t) \sim \frac{t}{L_1(t)L_2(t)\dots L_{n-1}(t)}, \quad a(t) \sim \frac{1}{L_1(t)L_2(t)\dots L_{n-1}(t)};$$

$$\Psi(t) \sim tL_n(t), \qquad b(t) \sim L_n(t).$$

References

[2] H. Kita, On maximal functions in Orlicz spaces, submitted.

M. de Guzmán, Differentiation of Integrals in Rⁿ, Lecture Notes in Math. 481, Springer, Berlin, 1975.

^[3] H. Kita and K. Yoneda, A treatment of Orlicz spaces as a ranked space, Math. Japon. 37 (1992), 775-802.

- [4] V. Kokilashvili and M. Krbec, Weighted Inequalities in Lorentz and Orlicz Spaces, World Sci., 1991.
- [5] G. Moscariello, On the integrability of the Jacobian in Orlicz spaces, Math. Japon. 40 (1994), 323-329.
- [6] M. M. Rao and Z. D. Ren, Theory of Orlicz Spaces, Marcel Dekker, 1991.
- [7] E. M. Stein, Note on the class L log L, Studia Math. 31 (1969), 305-310.
- [8] A. Torchinsky, Real-Variable Methods in Harmonic Analysis, Academic Press, New York, 1985.
- [9] A. Zygmund, Trigonometric Series, Cambridge Univ. Press, Cambridge, 1959.

DEPARTMENT OF MATHEMATICS
FACULTY OF EDUCATION
OITA UNIVERSITY
700 DANNOHARU OITA 870-11, JAPAN
E-mail: HKITA@OITA-CC.CC.OITA-U.AC.JP

Received December 28, 1998 (3215) Revised version July 15, 1994

STUDIA MATHEMATICA 118 (1) (1996)

RNP and KMP are equivalent for some Banach spaces with shrinking basis

D

GINÉS LÓPEZ and JUAN F. MENA (Granada)

Abstract. We get a characterization of PCP in Banach spaces with shrinking basis. Also, we prove that the Radon-Nikodym and Krein-Milman properties are equivalent for closed, convex and bounded subsets of some Banach spaces with shrinking basis.

Introduction. We begin by recalling some geometrical properties in Banach spaces (see [3]-[5]).

Let X be a Banach space and let C be a closed, bounded, convex and nonempty subset of X.

C is said to have the *point of continuity property* (PCP) if for every closed, bounded and nonempty subset F of C, the identity map from (F, weak) into $(F, \|\ \|)$ has some point of continuity.

C is said to have the *convex point of continuity property* (CPCP) if for every closed, bounded, convex and nonempty subset F of C, the identity map from (F, weak) into $(F, \| \|)$ has some point of continuity.

C is said to have the $Radon-Nikodym\ property\ (RNP)$ if for every measure space (Ω, Σ, μ) and for every μ -continuous vector measure $F: \Sigma \to X$ such that

$$F(A)/\mu(A) \in C \quad \forall A \in \Sigma, \ \mu(A) > 0,$$

there is $f: \Omega \to X$ Bochner integrable with

$$F(A) = \int\limits_A f \, d\mu \quad \forall A \in \Sigma.$$

C is said to have the Krein-Milman property (KMP) if for every closed bounded, convex and nonempty subset F of C, we have

$$F = \overline{\operatorname{co}}(\operatorname{Ext} F),$$

¹⁹⁹¹ Mathematics Subject Classification: Primary 46B20.
Partially supported by DGIOYT PB 93-1142 and PB 92-0968.