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On a converse inequality for maximal functions in Orlicz spaces
by

H KITA (Oita)

Abstract. Let $(2) = f; a{s) ds and ¥(t) = f; b(s) ds, where a(s) is a positive contin-
uous function such that [ a{s)/sds = co and b(s) i3 quasi-increasing and lims—co b(s)
= o0, Then the following statements for the Hardy-Littlewood maximal function M f{z)
are equivalent:

(j) there exist positive constants ¢ and sp such that
n
j -ai%l dt > e1b{ers)  for all 3 > aq;
1
(i) there exist positive constants ez and c3 such that
2

f (Ifl |f(m){)dm<ca+caf (Ifl Mf(’c)) de  for all f € L*(T).

1. Introduction. Let T be the group of real numbers modulo 27 and
f(z) be a real-valued integrable function defined on T with period 2m. The
classical Hardy-Littlewood meaximal function M f(z) is defined by

1
(1.1 - Mf@=swg If £ ()ldy,

where the supremum is taken over all open intervals I CT with z € [.

The aim of this paper is to give a necessary and sufficient condition for
a function f(z) to be in an Orlicz space L¥ if the maximal function M f(z)
defined by (1.1) is in L%, Let us recall the definition of L7,

DerviTioN 1.1, Let @(t) be a nondecreasing continuous function such
that (0) = 0 and lim;e ¥(t) = co. Put

P
(1.2} L¥ == { f ¥ (=] f(2)]) dz < oo for some £ > 0}
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The space L¥ is called an Orlicz space (see Kita and Yoneda [3], Rao and
Ren [6], Zygmund {9}).
We note that if ¥(t) = t? (p > 1), then the Orlicz space L¥ defined by

(1.2) is the usual Lebesgue space.

Let a(s) be a positive continuous function defined on [0,00) with the
following property:

(3) J e
1

A function b(s) defined on [0, 0o) is said to be quasi-increasing on [0, co)
if there exists a positive constant ¢y > 1 such that

(1.4) 0 < b(s1) € cob{cpse) for all 0 < 8y < 50

Let b(s) be a continuous quasi-increasing function defined on [0, o) sat-
isfving
(1.5) lim b{s) =

8=
Put
t

(1.6) B(t) == f a{s)ds and W(t): fb gjds fort=0.

0
The detailed results on maximal functions in the class (L) = {f :
Jn ([ f(z)])de < oo} can be found in the book of KOkll&Sthll and
Krbec [4]. In this paper we consider the maximal functions of functions in an
Orlicz space L¥, where ¥(t) does not necessarily satisfy the Ag-condition,
that is, there exist positive constants ¢ and %y such that ¥(2t) < c¥(t) for
all ¢ > tg. The following result can be found in Kita {2].

- THROREM 1.2. Let a(s), b(s), $(t) and ¥(t) satisfy (1.3)~(1.6). Then
the following statements are equivalent:

(i) there exists a positive constant ¢; such that

(1.7) : : f E%l dt < erbens)  foralls 2 1;
_ 1

(i) there ewists a positive constant ¢ca such that
T 2
(1.8) f@(Mf(m)) dz < cg + g fszr(czu(m)\)dm for ol f € LM(T).

We consider a converse inequality to (1. 8) We say that a measurable
function f(z) is in Llog L(T) provided tha.t f |Jf‘5(:c):|‘lo-g"' |f(z)] dz < oo,
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where log™ ¢ = logt for £ > 1 and logT ¢t = 0 for 0 < £ < 1. Stein {7} proved
the following result (see Torchinsky [8], p. 93).

THEOREM 1.3. Let f € LY(T). If Mf e LYT), then f € Llog L(T).

2. Main theorem. In this section we give a generalization of Theorem
1.3 to functions in an Orlicz space LY, which is also a generalization of the
result of Moscariello [5].

THeorREM 2.1. Let a(s), b(s), $(t) end ¥(t) satisfy (1.3)-(1.6). Then
the following statemenis are equivalent:

(i) there ewist positive constants cs and 3p > 1 ‘such that
5
t .
(2.1) f i(fl dt > csb(egs)  for all s > sy
1

(ii) there exist positive constants ¢4 and cs such that

(2.2) fw(lfl )dm

27

1 .
1 & ———M d Il LY,
< cg+ Cs [;f (m'ﬂ’ f(m)) z  forall f € L°(T)

where |fly = & [ |f(z)| dz.

Proof. (j )=>(JJ) Without loss of generality, we may assume that |f|y
= 1, Put ¥ (t) = ¥(est) for £ > 0. Then it is easy to see that

ri= [ #lali@hda= [ HIF| > sHo(e)ds
0 0
- f 171> 8}eabless) do

(f +f)\{|f|>s}|cgb(c3s) s = Io+11

Since b(s) is quasi-increasing, it follows frm (1.4) that

(2.3) 0 < b(eas) £ cob(c;oce,go) for 0 <_3 < _sq. B
Fromm (2.3) we have | __ | | .
(2.4) - Iy € 2msgcocableocsse).
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By (2.1) we have

Ilﬁfl{lfbs}l(lfs*%- ) sf|{1f|>s}l(1fs—(r )

sp 1

- [ J 1071 sHas)

For any t > 0, put

fle) i |f(z) >
fil=) = {O(T) if ‘|f(z)\ < t.
Then it is easy to see that
(2.5) fl{m>s}|ds< [ If(@)|dz  forallt>0.

[f]>t
Indeed,

24 o0
f lf(:c)Idfc=f fo(@) de = [ [{|f] > s}!ds
[fl>2 0

[==]

f!{lfal>s}|ds—f 1{1#] > s} ds.

t

o

Therefore it follows from (2.5) that

11<f t)(f £(w)|dz) dt.

[f1>t

By the converse inequality for the maximal function (see Guzmén [1], Tor-
chinsky [8], p. 93), it follows from |f|r = 1 that

o0 27
e ns [0 Logursgias [ o)
1 0

Therefore it follows from (2.4) and (2.6) that
27

f @ (sl f () dw<27r30c(]C3b(c00330 +- f (M f(x)) de,

which is nothing but (2 2)

(i1)=>(). Let (jj) hold and assume that (;]) does not hold. 'I‘hen there
exists a sequence {sy : k£ > 0} of numbers such that

@7 l=sp<s <. Too as kToo;

icm
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¥ a(s)
(2.8) if — (-2—k> for all k > 1;
(2.9) b(zk) >k2¢ forall k> 1;
(2.10) Sk1 > degsy forall k > 0,

where ¢p is the constant appearing in (1.4).

We choose a collection {I} : k > 1}, Iy € T, of disjoint open intervals
guch that
1
2.11 Iy = ———rr———r
(211 = e

From (2.7), (2.9) and (2.10) it follows that

fork > 1.

Sl < 3 e < S S <
k=1 k=1 (en/2°)k2 -1 % km
Put
(2.12) 1= Z —-x.rk for z € T,

k=1

where 7, is the characteristic function of Iy and the positive constant og
will be defined later. It is easy to see that f € LY(T). Indeed, by (2.9), (2.11)
and (2.12) we have

f\fﬁxﬂdw—aoz 5% ElL| = aozb(sk/Z’“

h=al

§002F=a0 < 0.
k=1

Put cg = 201/ (Cpeey k/0(85/2F)). Then |f[-ﬁ-':- 1. We i'\wqill pr_éve that for each
0<exl,
an
(2.13) [ #(elf(@))de = o
J
From (2.11) and (2.12) it follows that
_ 2"1? : iz = °°g/ gogksy 1
(214) S welr@ds =2 I\ = )

The formula (16) implies that = -

E‘Q‘gksh /(cczh)

ks gaokay /2" .
u_p(mo k) . f bs)ds = f

. eoblegt) di.
2 5 E :
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We can choose a positive integer ko sufficiently large so that eapk/co 2 2
for all k = kg. Then we get

k
ankSk 202
(2.15) v~ ) 2 [ cobleot)dt
0
. 23k/2k
> [ cobleot)dt forall k= ko
sy /2%

Since b(s) is quasi-increasing, it follows from (2.15) that

(2.16) W(E"‘gfs’“) > g!gb(g«{-) for all k > ko.

From (2.14) and (2.16) we get

Frariana> 3 (3 cmmparms - 2, 1=

P(M f(z)) dz < oo. Put
F(z ) (M f (@) )xpps13{)-

Thus (2.13) holds.
- Now we prove that f

Then

= [ @(Mf )d:c_-fF z)dm—f I{F > A} dA

MF>1

< 2 d(1) -+ f {F > A} dA = 208(1) + f {B(MF) > A} dA
' &(1) #(1)

= 27 d(1 +f {Mf > ™A} dA

[ss)

=2m8(1)+ [ [{Mf > t}Ha(t)dt,

1

Since the operator M is simultaneously of weak-type (1,1) and of type
(00,00), it follows by the well known result (see Torchinsky [8], p. 92) that
there exist posltwe constants ¢7 and cg such that :

(2.17) |{Mf>t}| <& f {17 >3}|ds for all ¢ > 0.

t/ca
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Therefore .
J1 < 27@8(1) + cr f [ e ( f|{|f|>s}’ds)

t/cg

¥ alt)
= 2md(1 +07f|{ fl > s} —=

1/ca ( 'if t )
1= 20 P(1) + er s,

It remains to estimate Jy. By (2.10) we have

(2.18) 0<992fl<... "02”23’% .Too ask?oo;
L 8piy
(2.19) 0< zk <= 2kjl for all k& > 1.
Since b{s) is quasi-increasing, xt follows from (2.19) that
Sk k1
(2.20) b(-z—,J ob(zm) for all k > 1.
Therefore, by (2.10) and (2.20), it follows that
1 ool ‘
J = <
e Skly (8641} T Skl —]'-b Sk
Qk+1 2k+1 k41 cq 2
1 1 -1 1
< =S = C L.
— degsy 1b Sk 2 —S—’ib Sk Z\kl
ok+l Ea ok ok \ 9k | -
Hence _ o -
1 .
(2.21) 1Ik+1| < -2-‘1;;[ forall k > 1.

If ap(k — 1)sp-1/25"1 < s < opksy/2", then it follows from {2.18) and
(2.21) that

(2.22) If) > &} = i <ol forall k> 1,
jazk

We choose a positive integer k1 such that cgapk/2¥ < 1 for all k > ky. If
aplk — 1)sp-1 /284 < 5 < aphse /27, then it follows from (2. 8) that

s caciphsy /2% alt
(2.28) fﬁ%—dts J —th
o1

1 . . [
<f a(t) dt<-—b( ) for k> ky.
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From (2.22) and (2.23) we get

[s o]

I foPa)a

eeo(k1~1)ag, —1/2%17"

cphay /2R

- T s s}!( [ ) s
k=k

1 ao(k—l)akm1/2k =1

aghsg /2%

> 1

k=ky ag(k—1)sk-~ 1/2lu t

which implies that J-Ozm S(M f(z)) de < oo. We arrive at a contradiction and
the thecrem is proved.

CoroLLARY 2.2. Let a(s), b(s), B(t) and ¥(t) satisfy (1.3)~(1.6). Then
the following statements are equivalent:

(j) there exist positive constants cy and 3¢ > 1 such that

f a(t) dt > cgb(egs)  for all 3 2 so;
o

(iij) if Mf € L® for f € LY(T), then f e L¥.

Proof. (i)=-(jjj). Let f € L*(T). We can choose sg such that sq > |f|r.
As in the proof of Theorem 2.1, we get

. 27 2“;
(224) [ Wleslf(@)) da < of flr) + fﬂ- [ 9 f(@)) da,
0 0

where c(} f|r) is a constant depending on |f|r.

Now suppose that f € LYT) and M f € L#. Then there exists 0 < g3 < 1
such that fozw P(e1M f(z))dz < oo, Therefore it follows from (2.24) that
fo ¥ (cgea|f(z)]) dz < oo, which implies that f € LY,

(i15)=>0)- Let (jjj} hold and assume that (j) does not hold. In the proof
of Theorem 2.1, we constructed a function f € L*(T) such that

deMfm))da:<oo and fsp(slf )|)dmﬂoo for each 0 < & < 1,
0

Whlch contradicts our a.ssumptlon
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COROLLARY 2.3. Let a(s), b(s), B(t) and ¥(t) satisfy (1.3)~(1.6). Then
the following statements are equivalent:

(1) there emist positive constants ci, ¢y and 8¢ > 1 such that
a8

1
coblegs) < f %,). dt < e1b(eys)  forall s> s > 1;
1

(2) suppose f & LY(T); then Mf € L® if and only if f e LY.
Proof. This is an easy consequence of Theorem 1.2 and Corollary 2.2.

3. Examples. In this section, some examples of functions &(t), ¥ (t), a(t)
and b(t) will be given. Let ¢(t) and 1)(%) be functions defined on [0, c0). We
write @(t) ~ (f) if there exist positive constants ci,cz and to such that
e1p(t) < (t) < egip(t) for all ¢ > tp.

ExaMmMprLi 1. Let L < p < 00 and

o(t) = %t”, a(t) =tP~1 fort >0,

¥(t) = %t?, b{t) =t*~1 fort >0.
Examrns 2. Let 0 < oo € 1 and

B(t) ~ -

t
W= O Togp=
w(t) ~ t(logt)™, b(t) ~ (logt)*.
ExAMPLE 3. Let

B(t) ~ —

Eg—ii ( ) logt
w(t) ~ t(loglogt), b(t) ~ loglogt.

ExAMPLE 4. Put Ly(2) = log™ ¢, Ln(t) = log" Ly_1(f) for n > 2, and

. t 1 _
O~ T LG Im® O LR L)
B () ~ LLa (), b(t) ~ Ln(2).
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RNP and KMP are equivalent for some
Banach. spaces with shrinking basis

by

GINES LOPEZ and JUAN F. MENA (Granada)

Abstract. We get a characterization of PCP in Banach spaces with shrinking basis.
Also, we prove that the Radon—Nikodym and Krein-Milman properties are eguivalent for
closed, convex and hounded subsets of some Bénach spaces with shrinking basis.

Introduction. We begin by recalling some geometrical properties in
Banach spaces (see [3]-[5]).

Let X be a Banach space and let C be a closed, bounded convex and
nonempty subset of X. _

C is said to have the point of continuity property (PCP) if for every
closed, bounded and nonempty subset F of C, the 1dent1ty map from (F
weak) into (F, || ||) has some point of continuity.

' is sald to have the convez point of continuity property (CPCP) if for
every closed, bounded, convex and nonempty subset F' of C, the identity
map from (F, weak) into (F,| ||) has some point of continuity.

C is said to have the Radon-Nikodym property (RNP) if for every mea-
sure space (2, X, 1) and for every H- -continuous vector measure F : 2 — X
guch that

F(A)/u(d) € O VA€ D, u(d) >0,
there is f: £2 — X Bochner integrable with

ffd;,a VA € L.

C' is said 1o have the Krein-Milman property (KMP) if for every closed,
hounded, convex and nonempty subset F' of C, we have

= To(Ext F),
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