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Abstract— In this paper, we consider the problem of active
sensing using mobile nodes as a sensor network to estimate
the state of a dynamic target. We propose a gradient-search-
based decentralized algorithm that demonstrates the benefits
of distributed sensing. We then examine the task of tracking
multiple targets, and address it via a simple extension to our
algorithm. Simulation results show that our simple decentral-
ized approach performs quite well and leads to interesting
cooperative behavior.

I. INTRODUCTION

In recent years, much focus has been devoted to the
theory and applications of sensor networks. Typical ad-
vantages of using sensor networks include relatively lower
costs, inherent robustness and greater coverage area, as well
as possibly heterogeneous sensing. These advantages are
further enhanced if sensors are mobile.

One of the basic questions that arises in (mobile) sensor
networks from an estimation perspective is: How should the
sensors move to attain the best estimates of the target(s)?
Robustness, communication complexity and performance
requirements demand that solutions to this question not
require a central computation node, especially as the num-
ber of nodes in the network increases. In this paper, we
are specifically concerned with the problem of optimal
positioning and motion of mobile sensors. This problem
arises when the quality of observations of some target(s)
varies with the location of the sensors. This can be due to
the fact, e.g., that the observation noise varies with distance
between target and sensor. Thus the objective is to plan the
sensors’ trajectories to obtain the best estimates of dynamic
targets.

The area of research addressing the control of actuated
or configurable sensors in the presence of uncertainty is
called active sensing [1], [2]. Many scenarios where active
sensing is useful, such as active vision [3], [4] and mobile
robot navigation [5], [6], are well-surveyed in [7]. Sensor
placement also has received considerable attention, for ap-
plications of vision [8], sensor coverage [9], and parameter
estimation [10], [11], [12].

Attempts have been made over the years to address the
problem of optimal motion control of sensors in various
contexts, including application-specific examples such as
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odor detection [13], collision avoidance [14], as well as esti-
mation and tracking [15], [16], [17]. Further, [18] provides a
general mathematical formulation of the problem, but notes
that computing the optimal solution is computationally
expensive.

However, many of these approaches are developed for
single-sensor situations, whereas the methods applicable
for multi-sensor teams, as in [15], require the optimization
to be done centrally in general. On the other hand, [16]
examines a distributed optimization algorithm along the
lines presented in [19], and suggests that computational
savings speak in favor of sub-optimal approaches. Further,
while the decentralized algorithm presented in [17] is most
relevant to the work discussed in this paper, the sensors
in that work are assumed to be able to measure multiple
targets simultaneously, and hence the problem of optimally
assigning sensors to targets is not addressed.

The main contribution of this paper is the demonstration
of how a simple decentralized algorithm can be used
for motion-planning of sensors in a network to achieve
significantly better estimates of the target state. The per-
formance of the algorithm has been demonstrated through
simulation examples where interesting cooperative behavior
such as splitting into sub-teams is observed, even though
no centralized optimizing command or signal is specifically
transmitted to the sensors. This points to a large number
of promising distributed sensing applications to which the
algorithm and the approach can be applied, where decisions
that affect the collective team performance need to be made
by “intelligent” agents in a decentralized fashion.

The paper is organized as follows. In the next section, we
set up the problem and define the conventions used. Then
we propose the algorithm. We begin with the case of a
single target for which certain analytical results can also be
derived. We then extend to the case of multiple targets. The
problem of multiple targets becomes more interesting if we
consider sensors that can observe only one target at a time.
In this case we have the additional problem of assigning
sensors to targets. We then demonstrate the performance
of the algorithm with a few simulation studies, concluding
finally with some encouraging and interesting avenues for
future work.

II. PROBLEM FORMULATION

In this section we formulate the problem of selecting
sensor positions to realize the best observations of targets
that move with time. For the purpose of this discussion, we
assume that the targets are being modeled by a constant
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position model while the sensors are capable of taking only
range measurements with the measurement noise depending
on the distance from the sensor to the target. In this we are
motivated by standard sonar models [20]. The discussion
can be easily generalized to more general target and sensor
models. Consider m targets doing a random walk in a plane.
The motion of the j-th target evolves according to

Xj [k + 1] = Xj [k] + wj [k], (1)

where X[k] ∈ R
2 is the state of the target at time k

consisting of the x and y positions. wj [k] ∈ R
2 represents

the process noise acting on j-th target that is assumed zero-
mean, Gaussian and white with covariance matrix Qj [k] ∈
R

2×2. Further the process noises of different targets are
assumed independent of each other. Each target j is tracked
by n sensors with the i-th sensor making observations
Yij [k] ∈ R

2 described by

Yij [k] = Xj [k] + T (θij)vij [k]. (2)

T (θij) ∈ SO(2) is the rotation matrix that transforms
the noise from the local sensor coordinates to the global
coordinate system. The noise vij [k] ∈ R

2 is also assumed
zero-mean, Gaussian and white. The noises of various
sensors and targets are assumed mutually independent. The
covariance matrix of vij [k] is denoted by Rij [k] ∈ R

2×2

and in keeping with the usual sonar models (see, e.g., [20])
it is assumed to be a diagonal matrix of the form

Rij [k] =

⎡
⎢⎣

(
σij

range

)2

0

0
(
σij

bearing

)2

⎤
⎥⎦ . (3)

(
σij

range

)2

is the range measurement noise variance and is

represented by a function f(rij) of the distance rij from
sensor i to target j. A common model of f(rij) is as a
quadratic dependence on range, with the minimum value
being achieved at a particular distance from the target,
namely the “sweet spot” of the sensor. The bearing noise

variance
(
σij

bearing

)2

is often modeled (e.g. see [21]) as a
fixed multiple α of the range noise variance. Thus we obtain
that

Rij [k] =
[

f(rij) 0
0 αf(rij)

]
. (4)

The time index k will be implied in the remainder of this
paper, except where explicit indication is necessary.

To process the observations and generate an estimate, a
Kalman filter (KF) is used. However a centralized KF for all
the observations would be computationally very expensive.
Instead, every node has a local KF that produces an estimate
based only on local observations. Then these estimates and
their covariances are exchanged and combined to yield a
global estimate. The estimates are combined by assuming
that there is no cross-covariance between local estimates.

Thus we use the relations [22]

P−1
globalX̂global =

n∑
i

P−1
i,localX̂i,local (5)

P−1
global =

n∑
i

P−1
i,local. (6)

Note that the assumption of no cross-covariance between the
local estimates is not strictly true [23] and hence the global
estimate is sub-optimal. However, this algorithm is much
simpler than its alternatives and seems not to incur huge
performance penalties [24]. Note further that the sensor
fusion algorithm itself is stable in the sense that the global
error covariance matrix stays bounded. This is so since
under the usual observability constraints, each sensor’s local
estimate will converge to a steady state and hence the global
estimate will converge to a steady state whether or not cross-
covariance between the different local estimates is assumed.

Pglobal refers to the covariance of the error in the global
estimate and hence is an indicator of the quality of the
estimate. Since the sensor noise covariance matrix is a
function of the distance between the sensor and the target,
the quality of the estimate depends on the distances between
the various sensors and the targets. Thus by varying the
positions of the sensors, we can vary the error covariance.
The problem we pose is how to do so in a decentralized way.
As a cost function, we seek to minimize the determinant of
the error covariance matrix Pglobal. This is referred in the
literature [7] as the D-optimal design.

A key feature of this work is the decentralized nature
of the algorithm. Note that if the positions of all nodes at
time step k + 1 (and hence their respective Rij [k + 1]’s)
were known, Pglobal[k+1] could be computed by fusing the
results of the Riccati recursion of the local error covariance
matrices. Then the optimal positions of all nodes to mini-
mize the cost function can be calculated. This is the essence
of centralized methodologies, which is itself a challenging
problem. Instead, in the distributed case, the responsibility
of the fusion of estimates and the optimization of sensor
trajectories and assignments is given to each sensor, rather
than relying on a central computation node.

III. CASE I : SINGLE TARGET

To begin with, we assume that only a single target is
present and every sensor is observing it. As mentioned in
the previous section, at each time step, every sensor takes
measurements, communicates local estimates, and fuses
information from other sensors to obtain a global estimate
X̂global and a global error covariance matrix Pglobal.

The task that remains for each sensor is to identify its
optimal location for the next time step. However, obtaining
a solution for all sensors in closed form or even numerically
is challenging, in general. In many practical cases, the
number of active sensors may change, further complicating
the optimization problem. Thus we use a gradient descent
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algorithm which defines the optimal control action (i.e. di-
rection of movement) as that which will position the sensors
to minimize det(Pglobal) in the next time step. Recall that the
calculation of the gradient is intrinsically decentralized [25],
and thus is quite suitable for our purposes. The optimization
of sensor positions in the algorithm involves the following
steps:

1) Each sensor node assumes other nodes remain at their
present positions, allowing for calculation of their
local error covariances at the next time step.

2) For each possible control action it can take, the node
calculates its own error covariance at the next time
step and generates the fused global error covariance
matrix for each possible action.

3) It chooses the action that minimizes the cost.

The set of possible control actions is discrete and finite, and
in this way the gradient descent algorithm is reduced to a
discrete gradient search algorithm.

Thus the optimization procedure is decentralized, requir-
ing only the communication of local information between
nodes for data fusion. Note that when each sensor receives
the local estimates from other nodes, it will also have
implicitly received position information of the other sensor
nodes. Further, if another node stops communicating, the
sensor can simply disregard it in the sensor fusion step.

Investigation of Minima

Given the properties of descent algorithms, under the
usual constraints of observability (for the Kalman filter), the
error estimates will reach a steady state. Further, the sensor
configuration will be such that the cost function reaches a
minimum (provided the step size is small enough [25]).

However, as is the nature of gradient methods, a local,
rather than global, minimum may be encountered. To exam-
ine the nature of minima, we take a closer look at the nature
of the cost function. Assuming the system has reached
the steady state described above, observe that the local
error covariance matrices are independent of time. Only
changes in sensor positions (through the measurement noise
covariance matrices) have any further effect on the error.
Thus, all other things being equal, we can relate changes
in error covariance with changes in measurement noise
covariance for the purposes of examining the qualitative
behavior of the cost expression [10].

Note that, for a particular minimizing sensor configura-
tion, an infinite number of equivalent minima can be found
by planar rotation about the target. We choose to study the
one that has sensor 1 on the x-axis, without any loss of
generality. The location of other sensors i = 2, . . . , n are
given by (ri cos(θi), ri sin(θi)). The cost function to be
minimized has the form given by (6). This is equivalent
to maximizing the expression det

(∑
i P−1

i,local

)
. Denoting

f(rij) as fi (i.e. single-target case), the i-th sensor’s error
estimate covariance matrix, Pi,local, is related, as per the
previous discussion, to the measurement noise covariance,

T (θij)RijT (θij)T :[
αfi sin2(θi)+fi cos2(θi) (1−α)fi cos(θi) sin(θi)
(1−α)fi cos(θi) sin(θi) αfi cos2(θi)+fi sin2(θi)

]
.

It follows that the overall expression to be maximized
has the form AD − B2, where

A =
[

1
f1

+
1
α

∑ [
α

fi
+

(1 − α) sin2(θi)
fi

]]

D =
[

1
αf1

+
1
α

∑ [
α

fi
+

(1 − α) cos2(θi)
fi

]]

B =
1 − α

α

[∑ cos(θi) sin(θi)
fi

]
where the summation index i runs from 2 through n.
Algebraic manipulation yields the following form:

1
α

[
n∑

i=1

1
fi

]2

+
(1 − α)2

α2f1

[
n∑

i=2

sin2(θi)
fi

]

+
(1 − α)2

α2

⎡
⎣ ∑

2≤i<j≤n

sin2(θi − θj)
fifj

⎤
⎦ , (7)

from which the following conclusions can be readily drawn:

1) There are, in general, many local maxima.
2) Since all the terms are positive and fi appear only

in the denominator, maxima are achieved when the
fi’s (which depend only on the range between sensor
and target) are minimized. Thus, all sensors end up
at their respective optimal distances from the target,
regardless of angles θi.

3) For the special case of only two sensors, we see
that θ2 must either be π/2 or 3π/2, independent of
the minimum values of f1 and f2. This agrees with
our intuition of having the two sensors pointing in
orthogonal directions.

4) For more than 2 sensors, assuming that the minimum
values of fi are equal, the different local maxima are
found by solving for the angles θi, i = 2, . . . , n that
maximize the expression

n∑
i=2

sin2(θi) +
∑

2≤i<j≤n

sin2(θi − θj).

5) Further, in this case, all local maxima have the same
value of the cost expression.

We conclude from this investigation that we need not worry
about distinguishing between local and global minima of
the original cost function, at least for this simplified case.
Simulation examples suggest that even in more general
cases, nearly optimal performance is usually obtained.

IV. CASE II : MULTIPLE TARGETS

The algorithm proposed above can readily be extended
for the tracking of multiple targets. This situation arises
frequently in surveillance, computer vision, signal process-
ing, etc. where a number of targets, features, or signals
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appear and disappear from the field. The sensors aim to
cooperatively obtain the best possible estimate of all these
targets.

With sensors capable of taking measurements of all
targets simultaneously, the tracking of multiple targets is
exactly the case considered in the previous section, if we
simply redefine the new target state to be a stacked vector
of all the individual target states. We assume the ability
to handle the data association issues [26]. The tracking
problem is significantly more interesting (and realistic) if
the sensor can observe only one target at a time, with
access to a low-resolution observation (e.g. from overhead
UAV’s [27]) to indicate the presence of other targets on
the field. In this case, it is clear that target assignment
at each time step also affects the estimates of the target
locations. This reflects an underlying problem of optimally
forming sub-teams of sensors, which will be discussed in
this section. As before, we seek a decentralized solution
where this optimization is done efficiently at the nodal level.

To begin addressing this problem, we note that mini-
mization of the cost function involves not only determining
sensor motions but also assigning which (and how many)
sensors observe each target at each time step. This addition
of new assignment variables to optimize over, however, only
augments the set of possible control actions, due to, in
part, the structure of the discrete gradient search method. In
other words, we can extend our algorithm in a simple way.
In the optimization step, each node assumes both position
and current sensing assignments of other sensors are fixed
for the next time step, and optimizes its own position and
assignment to minimize the next time step’s global cost.
Moreover the algorithm remains decentralized, as before,
since communication only occurs during data fusion, and
the optimization is done locally. The algorithm, as executed
by each sensor, is represented in Table I.

V. EXAMPLES

In this section, we illustrate the proposed simple algo-
rithm with the help of some demonstrative examples.

A. Single Target Tracking Problem

The first example compares the tracking performance of
the decentralized method proposed in this paper against a
fully centralized algorithm in which the optimization is done
by a central node. We seek to show that the performance
loss due to the decentralized approach is not substantial and
well-worth the tremendous savings in computation.

Our test case is constructed as follows. A single target
must be localized and tracked by three sensing agents. The
target is subject to random walk in a plane, described by (1),
with process noise covariance matrix given by

Q[k] =
[

0.01 0
0 0.01

]
The i-th sensor observes the target according to (2). The
measurement noise covariance matrix is given by (4), with

TABLE I

DECENTRALIZED ALGORITHM PSEUDO-CODE FOR EACH SENSOR IN

MULTI-TARGET TRACKING SCENARIOS

For k=1:sim time

% —– Local Observation —–
Take local measurement;
Update local estimate X̂local and error covariance matrix Plocal;

% —– Sensor Fusion —–
Transmit local information to other sensors;
Receive information from other sensors;
Fuse all local estimates to get global estimate X̂global;

% — Optimization of target assignment and sensor position —
Assume other sensors do not move;
Assume other sensors do not change target assignment;
Propagate Plocal of other sensors by one time step;
For all own target assignments

For all own allowable motion actions
Propagate own Plocal;
Fuse with propagated Plocal of other sensors;
Obtain cost function estimate;

end
end
Identify cost-minimizing position and target assignment;

% —– Update position and assignment —–
Update position for next time step;
Update target assignment;

end

α = 5 and the range-dependent quadratic function is the
same for all three sensors, given by f(ri) = 0.0008r2

i −
0.0250ri + 0.3481.

For this setup, the resulting sensor configuration is illus-
trated in Fig. 1. As predicted by our analysis of (7) as well
as intuition, we see the three sensors at their “sweet spot”
range from the target and also 120◦ apart from each other.

Fig. 1. Optimal sensor configuration

Moreover, even though our decentralized algorithm is
sub-optimal, we see (Fig. 2) that in comparison to the
completely centralized exhaustive search method over all
possible control actions for all sensors, the performance loss
is very little (< 2%). In fact at steady state, the decentralized
algorithm effectively attains the minimal cost as found by
the centralized method.

We see an initial drop in performance, which indicates
that the convergence of the decentralized method to the opti-
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Fig. 2. Performance comparison between exhaustive search optimization
and proposed decentralized method.

mal sensor locations (and thus, the target position estimate)
is somewhat slower than that of the centralized algorithm.
Nevertheless, the steady-state performance is generally most
relevant to the problem of optimal estimation of the target
state. Thus, we see that the proposed decentralized algo-
rithm offers not only the benefit of distributed-ness, but also
of performance in cost minimization and in computation.

B. Patrolling Problem

The second example illustrates the use of our algorithm
in a distributed surveillance application (e.g. RoboFlag [28],
[29]), and demonstrates the assignment methods of match-
ing sensors with targets. The sensor motions in this sim-
ulated experiment are governed by our decentralized algo-
rithm, by optimizing over possible local control actions and
assignments for each sensor.

The initial setup is illustrated in Fig. 3(a). We assume
sensors can observe only one target at a time. Multiple such
sensors (depicted by the circles) are initially assigned to a
target (represented by the lower square), much like vehicles
assigned to patrol a defensive zone. Another target (e.g.
an opponent vehicle) enters the playing field (Fig. 3(b)),
and is observed by a UAV or an arbiter [29] which alerts
the mobile sensors. A sub-team of sensors is automatically
formed to track this second target. The remaining sensors
around the first target maneuver themselves to optimally
cover the first target. When the second target disappears,
these sensors readjust to accommodate the returning sub-
team so that all the sensors are again covering only the first
target, as shown in Fig. 3(c).

Thus we observe several interesting behaviors exhibited
by the system, some surprisingly complex given the sim-
plicity of the algorithm. Firstly, we find that the division
of the sensing task over multiple targets is a consequence
of the distributed nature of our algorithm, rather than any
prescribed method or heuristic approach. The sensors are
able to optimally split into sub-teams without needing to
explicitly address the issues of consensus, communication

(a) (b)

(c)

Fig. 3. (a) Initial optimal sensor configuration. (b) Sub-team forms and
observes second target, while remaining sensors adjust formation. (c) Sub-
team rejoins original group. The dotted lines represent the tracks made by
the sensors.

(except during the data exchange step), and coordination of
motion for formation control.

Additionally, each member of a sensor sub-team maneu-
vers optimally with respect to other members, modifying the
formation dynamically with the addition/removal of sensing
agents. Again, what makes this behavior interesting is that
it is simply due to the decentralized optimization of the
cost function done in our algorithm. In other words, a
priori designation of formations types, division of sensing
tasks, and optimal estimation trajectories is not an input to
the decentralized algorithm. Nevertheless, the behaviors and
benefits of such a designation emerge.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we studied the problem of active sensing us-
ing multiple cooperative sensor nodes. The objective of the
sensor team is to jointly estimate the state of some dynamic
targets. We first investigated the single-target scenario, and
examined some properties of the cost function in terms of
its minima.

We then proposed a simple and intuitive algorithm that is
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decentralized in nature, with the ultimate goal of applying
it to the case of observing multiple targets. This distributed
sensing task additionally introduced the problem of sensor-
target assignment which was addressed by a simple exten-
sion to the algorithm. After identifying some illustrative
examples, we showed by simulation that the sub-optimal
approach is nearly optimal at steady state. Finally, we
sought to apply the decentralized algorithm to tracking
multiple targets, and discovered that the algorithm exhibits
several interesting and promising behaviors for distributed
sensing objectives.

Although most of the work presented here so far has
largely been of an exploratory nature, the results point to a
number of interesting avenues for future work. The problem
of distributed sensing is of significant interest due to the
resulting complexity, yet this decentralized algorithm allows
us, in a fairly simple manner, to address and observe some
of the pertinent issues, such as the split/rejoin maneuvers
for formations. An immediate extension of our work is to
formulate further analysis of these issues and to understand
the role they play in mobile sensor networks in general.

Additionally, we can begin to investigate the relaxation of
assumptions such as perfect localization of the sensors [30],
which will reflect the existence of a more realistic, albeit
noisy, world. Also, we hope to examine the behavior of
our algorithm under network constraints such as network
connectedness [31] and other issues pertaining to commu-
nication in sensor networks. Another assumption that might
be relaxed is perfect data association in the case of multiple
target tracking.

Further, we are interested in understanding the role of
distributed sensing in “intelligent team” scenarios, where a
collection of sensing agents may observe, classify, and/or
even learn the strategies and behavior of opponents. Consid-
ering pursuit-evasion applications such as discussed in [27],
the distributed sensing algorithm presented in this paper
may be extended to address scenarios where targets now
move to counter the motion of sensors, thereby attempting
to increase the uncertainty in the sensor measurements.
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