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ON A DECOMPOSITION OF AN EXTENDED CONTRAVARIANT
ALMOST ANALYTIC VECTOR IN A COMPACT K-SPACE
WITH CONSTANT SCALAR CURVATURE

By KicHIRO TAKAMATSU

1. Introduction.

We have defined an another kind of an almost analytic vector in [5], which is
called an extended contravariant almost analytic vector, that is, in an almost com-
plex manifold we have called »* an extended contravariant almost analytic vector
if it satisfies

a1 £ Fp+aF, Nygwt=0

where £ is the operator of Lie derivation with respect to #%, F/* the almost com-
v
plex structure tensor, 4 a scalar function and N the Nijenhuis tensor:

N, =F; (0, F"—0:F")— F, (0. F j*—0,F").

When 2=0, (1.1) is the defining equation of usual contravariant almost analytic
vector [6] and when 1=-—1/2, (1.1) is Satd’s contravariant almost (¢, ®)-analytic
vector obtained by the cross-section of a tangent bundle [3].

On the other hand, we have proved that a contravariant almost analytic vector
v* in a compact K-space with constant scalar curvature can be decomposed into
the form
1.2 vi=p'+Fq’
where p* and ¢* are both Killing vectors [9]. This generalizes the well known
Matsushima’s theorem [2] and also results of Lichnerowicz [1] and Sawaki [4].

The purpose of the present paper is to prove that an extended contravariant
almost analytic vector for a constant 2 such that —3/4=2=0 in a compact K-space
with constant scalar curvature can be decomposed into the form (1. 2).

In §2 we shall give some definitions and identities. In §3 we shall give a
characterization of the extended contravariant almost analytic vector. In §4 we
shall prepare some lemmas on the extended contravariant almost analytic vector
in a K-space. The last section will be devoted to the proof of the main theorem.
Throughout this paper, indices run over the range 1,2, -, 2n.

2. Preliminaries.

Let M be a 2n-dimensional almost-Hermitian manifold which admits an almost
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DECOMPOSITION OF AN ALMOST ANALYTIC VECTOR 187

complex structure tensor F;* and a positive definite Riemannian metric tensor g;;
satisfying

2.1 FiF{=—g,

2.2) guF Rt =g
Then from (2.1) and (2.2), we have

2.3) Fu=—F,

where Fy=Fjgu.
In an almost Hermitian manifold, if it satisfies

2. 4) ViFin+ViFu=0,

where V, denotes the operator of covariant derivative with respect to the Rieman-
nian connection, the manifold is called a K-space or Tachibana space.
From (2.4) we have easily

(2.5) ViFii=0.
Generally, in an almost complex manifold, a tensor 7(7}%) is called pure in
j, i, if it satisfies
*ORTw=0  (*OFT.2=0)
and Tj(Ty) is called hybrid in 7,4, if it satisfies
ORTw=0 (0% T,»=0)
where
*Ogp= %(5;‘52—!—3“}?‘#’) and OF= %(5;’62—F]"Fi”).
For instance in an almost-Hermitian manifold, V;F;, is pure in 7,4 and gj is
hybrid in 7, 4.
We have easily the following
ProposiTiON 1. If Ty is pure (hybrid) in j, i, then we have
FiTt=F Ty  (FeT) =—F}Ty).
ProposiTiON 2. If S7 is pure (hybrid) in j, i, then we have
FySti=F3Sit  (FgSt=—FS%).

ProposiTION 3. If Ty is pure in j,i and Sy is pure (hybrid) in j,i, then
T,:S:" is pure (hybrid) in j, 1.

ProrosiTiON 4. If Ty is pure inm j,i and S’ is hybrid in j,i, then we have
T;:57=0.

ProposiTION 5.2 Ny is pure in j,i and hybrid in i, h.

1) See Yano [10].
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Now in a K-space, let Ry;* and R;=R.;' be Riemannian curvature tensor
and Ricci tensor respectively. Then we have the following identities:?

(2. 6) *ORV oF3n=0,

2.7 FoilVV jF=R*;— Ry
where V'=g'F, and R*;;=(1/2)F®Ru:.F;".

(2.8) O%Rw=0,  O%R*;;=0,
(2.9 R*;=R*,,

(2. 10) ViFuV;F%)=R;— R*;;
where Fii=Fig%,

2.11) R— R*=constant

where R=¢7"R;; and R*=g/iR* .
In a Riemannian manifold, we have

2.12) %Vd%:WRﬂ

and in a K-space

(2.13) %ViR*=VfR*ﬁ.”
Therefore from (2.11), (2.12) and (2.13), we have

(2.14) Ve Ry— R*)= %Vi(R—R*)=O.
Moreover, for any vector »*, we have

(2.15) Vo(NG*P0)=0

and

(2.16) Nyt =AF /T Fi.

3. A characterization of an extended contravariant almost analytic vector.

Let M and T(M) be a 2rn-dimensional almost complex manifold with structure
tensor F and a tangent bundle of M respectively. We denote the natural projec-
tion T(M)—M by =. It is well known that a differentiable cross-section f* defines
a contravariant almost analytic vector if it satisfies that
3.1) dfpeFp=®@spyodf, for  peM

where @ is an almost complex structure on T'(M).

2) See Tachibana [7], [8].
3) See Sawaki [4].
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Let z* be local coordinates in a neighborhood U of a fixed point p of M and
y* be the components of a tangent vector » with respect to the natural frame
d/oxt. Then (x* y%) is a local coordinate in a neighborhood z=*(U) of T(M).

If we put

(3.2)

O =0,F iy +AF$Nyy', — O7=Fj,

where j=2n-j and 2 is a scalar function, then we have a tensor field @ of type
(1,1) on T(M) whose component are @;7 with respect to the coordinate neighbor-
hood =% U)(x*, ¥%), and it is easily verified that @ is an almost complex structure
on T(M) by virtue of Proposition 5 where I, /=1, 2, ---*4n.

Now, since cross-section f can be locally expressed:by

’.1,‘7’=.TC7',
3.3) _
l.?)1'=y1’($1, xZ’ ey xzn)
in terms of the local coordinate system (z* %% on T'(M), (3.1) can be written
F) o, xt=0,%9,' 2"+ 070, ",
3.4 o o
Fio,/ 2*=0,%," "+ 0%, z".

The first equation in (3.4) is an identity and from the second equation in (3. 4)
we have

3.5) Fjraryi=?-/raeri'i"zFJerrli?/l+Friaj?/r~
If we denote the components of vector field » by 27, (3.5) can be written as
£ Fp4-2F" Ny v'=0

which is nothing but the formula which defines our extended contravariant almost
analytic vector.

4. Some lemmas.

In this section, we assume that we are in a K-space. In a K-space, by (2.16),
(1. 1) turns to

4.1 V'V Fj— Fy 7 0+ Fi0 97 =0
or
4. 2) VT Fyi— F T 0+ Fol 90 =0

where c=1-}44.
Now, we need following lemmas to prove the main theorem,
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LemMa 4. 1.2 In an almost-Hermitian space, if tensor Sj, is skew-symmetric,
then we have

VinSj¢i=O.

LemMA 4. 2.5  In a compact K-space with constant scalar curvature, if Vpi+Vip;
is pure in j,i and v, 1S a vector such that r.=Vxr for a certain scalar r, then we have

S PrR A V=0
M

where dV means the volume element of the space M.

LEMMA 4.3. In a K-space, if v* is an extended contravaviant almost analytic
vector for a constant A, then following relation holds good:

(4 3) U(Rri'_R*ri)vr"l‘ —%—N]n.VM)T:O.

Proof. Operating P’ to (4.1) and taking account of (2.5), we have
4. 4) VIV F )+ ooV IV Fr— FV I pr -V IE W pt)+ FV 7 j00=0.

In this place, for the second term of the left hand side of (4.4), by (2.7) and
(2.9), we have

thijtFji:0'1)5(—R*za'Fa1'+Rtsti)

where R*/=¢""R*;,, and for the third term, we have
F iy pr= %—Fﬁ(V V=W w7
1 pary
Thus (4.4) turns to
(=1 Fi (V30 )+ 0Fo' R 0" — 6 F ' R*,*0" — %F I"Ryrsv° + F IV 0" =0.

Transvecting this equation with Fy, and using (2.16), we have

(6—1)
4

(4. 5) ViV or+oR 0" —(6—1)R* 0" — N, V10" =0.

On the other hand, operating F*/V; to (4.1), we have
G FW "W F 00" FRIV o Ft— FR o)W 00— FEIF T 7 o

(4. 6)
+FHI o F) 0"+ FFAT 7 07 =0,

4), 5) See Takamatsu [9].
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In the left hand side of this equation, for the first term and the fifth term,
by (2.16), we have
oF IV "W F i+ FeI o 0" = —(o+1)F, Vo FAV 0"
(o+

- 4 1) N],"var,

for the second term, by (2.9), we have
Friy W, Fp=— —;—F’”(V WV i F—T iV Fy)

= %ij(RkjsiFrs_Rk.ﬂsF*i)

= — R¥ - R%,=0).

For the third term F*FPiF,”, F* being hybrid in &,j and ViF,” pure in &, j,
then this term vanishes by virtue of Proposition 4. For the last term we have

FF W o = %FT"F’Cf(VijvT-—Vijv’)

= % FAF¥ Ry 0"
= R¥".

Hence, (4.6) becomes

“.7) P77 o+ R* 0" — ("ZD N, 25" =0.

Thus, subtracting (4.7) from (4.5), we get (4.3).

LemmMmA 4. 4. In a compact K-space, if v* is an extended contrvavariant almost
analytic vector for a constant 2x—1/4 and v* is a vector such that r*=Vir for a
certain scalar v, then we have

. 8) S P10 Rij— R )d V=0
M

Proof. From
Vj{f’i)h(th—R*hj)} =1’]Z)h(an—R*hj)—l‘?’V]Uh(Rh,j—R*hj)—l-i’Z/‘th(th—R*/,,j),

by Green’s theorem, we have
4.9 S [PoM(Rpy— R*n3)+1V 10" Rpj— R*n) 70"V I(Rpj— R*)]d V=0. -
M
On the other hand, operating I* to (4.3), we have

TRy R+ (Rri RET 0+ - PN, 107)=0.
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In this place, since 14+41=0¢=0, taking account of (2.14) and (2.15), we have
(4. 10) Vivr(.Rri—‘R*n):0~
Consequently, from (4.9), we have (4. 8).

LEMMA 4.5. In a compact K-space, an extended contravarviant almost analytic
vector v* for a constant 2 such that —3/4=2=0, 2x—1/4, can be decomposed into
the form

4. 11) Vi=p"+7"

where V,p*=0 and r* is a vector such that v*=V'r for a certain scalar v and
(4.12) *O (7 pr+-Pep*) =0,

(4. 13) 'V Fy=0.

Proof. By the theory of harmonic integrals, (4.11) is the result that holds
good for any vector ¢* in a compact orientable Riemannian space. Next putting

Ty=V ips+ V. p;+F,"FPV a oo+ o)

and writing out the square of 7};, we get

—Z]i—TiiTji=(Vjpi+Vzpf)V‘lpl+FJaFiijpi(Vapb+pra)-

Now, operating F? to piTy, we have
PPITy0 = 5 TuT o7y

- % TuT34p VT iV o)+ F, L) (Vo pp Vo pa)

(4. 14)
—I—(ViF]a)Fib(Vapb-l-Vbl)a,)+F]a’FibVi(Vapb+pra)}

— % Ty TH4-p (PAF, it Ta o)+ F S FOT T oV )}

because ViF;?=0 and since (V:F,")F?=FF*)F; is skew-symmetric with respect to
a and b, PF,*)F?(V o po+Vspa) vanishes.

On the other hand, interchanging j and i in (4.2) and subtracting the equation
thus obtained from (4.2), we get

(4. 15) 200 F j;— F (Vi —V 0)+ Fu(V ' —V'v;)=0.
Substituting (4.11) into (4.15) and taking account of V;7,=F;»,, we have
200V Fji—F,' Vi pi—Vp0)+Fu(V ,p*—V'p3)=0.
Since V;F;*=0 and 7,p*=0, this equation can be easily written as
FiWpotVipo)—FV 04V e b)

(4. 16)
= =200 F ;2D F i+ 2V (Fy ps+ Frs p5+ Foy o).
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Operating V¢ to (4.16) and using (4.11) and Vi*(V.F;;)=0, we have
ViFJt(VLPt“l“Vtﬁi)"’FJtVi(Vzpt‘]‘thi)_FttVi(V]pL‘l‘thj)
=—20—1) PWYW Fji— 20— 1YWV W Fj;— 20 VW F j; 42V WS4
where Sj;¢=Fj¢p1;+F;¢pj—l—pr;.
In (4.17), since P*F,! is skew-symmetric with respect to 7 and ¢, ViF,}(V.p.+V p:)
=0 and by Lemma 4.1, F/F‘S;;=0.
Hence, (4.17) turns to
EV pot+-Vip)— VAV ooV epy)
=—2W ,Fj;— 20 —1)W 0"V F ) — 20— 1)V W Fjs.
Transvecting this equation with p"F37 and taking account of (2.7) and (2.16), we
have

4.17)

PV on+Vn )+ Fo/ VAV 3 ootV 1)}
(4.18)

= 20" (R*in— Run)+ % (6 =D Ny (V" )p"+2(a— 1)p"0" (R*in— Rin).
Substituting (4. 3) into (4.18), we get
PV or+V i)+ Fd VAV , e+ V i 05)}
=2p""(R¥* in— Rin)+(0—1) (6+2)p"v"(R*tn— Ren).

Thus, substituting (4.19) into (4.14) and making use of Green’s theorem, we
have

4. 19)

(4. 20) SMH T3 TH4-257(R¥— R+ (o—1) (0+2)Ph0t(R*th—Rm)—|d 0.

Substituting p*=v"—#* into (4.20) and taking account of Lemma 4.4, (4.20)
becomes

(4. 21) SM[% Ty T+ 2r'r"(Rin— R*n)+(0—1) (o + 2)vhv‘(R*m—Rm)]d V=0,

or by (2.10),

4. 22) S [% TﬁTJ'i—l—Zr"VhFﬂ(r%Fﬁ)—(a——l)(a-l—2)v"VhFﬁ(v”V,Fﬁ)]dV=O.
M

Thus, if —2=¢=1, thatis, —3/4=<2=0 and 1= —1/4, then we can deduce T;;=0
and ™V, F;=0.

LemMma 4. 6. If —3/4<2<0, 1= —1/4, we have
(4 23) thhFji=0, 7’h7);,Fji=O.
Proof. This follows from (4. 22).

LemMa 4.7. In a compact K-space, if v* is an extended contravariant almost
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analytic vector for a constant A such that —3J/4=2=0, 2= —1/4, then it satisfies
(4. 24) Vw4 Rt =0.

Proof. When —3/4<2<0, 2=x—1/4, multiplying (4.23) by Fx[77* and taking
account of (2.10), we have

(Rag— R*i)v'=0,

and hence, from (4. 3), Nu#*0'=0. Consequently by (4.7), we get (4.24).
When 2=—3/4 or 2=0, forming (4.5)X(64+1)—(4.7)X(6—1), we have

(4. 25) 2V we+o(c+1)Riv"—(0—1) (6+2)R* 0" =0.

In this place, if 2=—3/4 or A=0, that is, if 6=1 or ¢=—2, then from (4. 25) we
have (4. 24).

LEMmMA 4.8. In a compact K-space, an extended coniravariant almost analytic
vector v* for a constant A such that A=—1/4, can be decomposed into the form

(4. 26) v=p*+r
where V,p=0 and r* is a vector such that r*=V'r for a certain scalar v and
@ 20) 0BT +725)=0,
(4. 28) PV F5=0.
Proof. In (4.2) if 2z=—1/4, i.e. =0, we have
(4. 29) V j0i—F,*F;PV a0 =0.

Interchanging j and i in (4.29) and subtracting the equation thus obtained
from (4.29) and substituting v*=p*+7*, we have

(4. 30) W108—V.05)—Fy*F?(V o po—V 5 pa) =0.

Transvecting (4.30) with Fy’ and taking account of V/F;=0 and F,p*=0, we
have

(4. 31) F W oAV api)—F2V 1 oo+ Vo D) =20 o F s+ 2V *San

where Skaz=Fkapi+Fazpk+Fikpa-
Operating F? to (4.31), taking account of that FF,* is skew-symmetric in ¢, @
and FViF?=0, by Lemma 4.1, we have

(4. 32) Fo Vil patVapi)— F ViV & PatV o) =20 pa(V Fir) + 20V o Fo.
Transvecting (4.32) with F3* and making use of (2.7), we have
Vil ont-Va b))+ o BV kpatV a )= —2F3 V' pa)V * Fies— 20" Fr* VW o F e
(4. 33) =—FW¥VOF) Vo po—V o i) —2p"(R*pa— Rpa)
=2p"(Rna— R*1a)
because, since P®F;* is pure in a,i and by (4.30), V.po—Vap; is hybrid in e, i,
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F VYV pu—V o pi) vanishes by virtue of Proposition 4.
Next substituting (4. 33) into (4.14) in which A=y, we have

4. 34) Pi(6 T = TTin+ 200" (Ran— R¥ar)
and by Green’s theorem, we have
S [% TﬂhTm+2php“<Ran—R*ah>]dv=o.
M

Thus, we get T;,=0 and p"V.F;;=0.

LEMMA 4.9. In a compact K-space, if v* is an extended contravaviant almost
analytic vector for a constant A such that A=—1/4, then it satisfies

(4. 35) 7w w+ R* ' =0.
Proof. (4.35) follows from (4. 25).

5. Proof of the main theorem.

THEOREM. In a compact K-space with constant scalar curvature, an extended
contravariant almost analytic vector v* for a constant 2 such that —3/4=2=0 is
decomposed into the form

v'=p+Fq
where p* and q* are both Killing vectors.

Proof. First of all, we shall prove that p* is a Killing vector. When —3/4=1=0
and Ax—1/4, we put

Up=V 04V, 0;.
Operating F* to p/U;; and making use of p;=v;—7, we have
Vz(p]sz): ‘%— UjiUji+pj(ViVﬂ)q;+ViV',;Z)j——ZVtVﬂ’Z)
5.1)
= % UjiUji"}"p](Vdi;Z)j‘I—ViVﬂ),;—VjVil)i+Vj7il)i-27i7j1’1;+2‘7j‘7in"'2‘7,'7"'7’,).

In this place, by the Ricci’s identity and (4.24), we have

. 2) ViVin—FViVﬂ)i_VjVivg‘,:ViVin‘l‘Rﬂvz:0
and
(5. 3) 7y wi—V Vir,=v'R.

Hence, making use of (5.2) and (5. 3), from (5.1) by Green’s theorem we find

. 4) SM[% U Us— 237 Ryt pI7 ja]d V=0
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where a=V;—2V,.
From V j(ap?)=pV ja+aV ,p?=pV ;a, we have

(5. 5) S 57 ;ad V=0.
M
Thus taking account of (4.12) and Lemma 4.2, (5.4) becomes
S M% UnU#d V=0

from which it follows that
(5. 6) Uji:VJZbH‘Vzpj:Oy

that is, p* is a Killing vector.
Next, when A=-—1/4, again we consider (5.1). In this place, by the Ricci’s
identity and Lemma 4.9, we have

ViVil)j—f—ViVj?)i—VjVii)i:ViVin'f‘Rjivl

(5.7
= —R*jivl—i—Rﬂvl.
Hence, making use of (5.3) and (5.7), from (5.1) by Green’s theorem, we find
(5.8) SM[% Uy Uﬁ—l—pfzﬂ'(Rji—R*,-i)—prriRﬁ—l—prja:ld V=0

where a=Vi;—2Vr,.
Multiplying (4.28) by V,E7¢ and using (2.10), we have

PH(Rji— R*;)=0.
Thus taking account of (4.27), by Lemma 4.2 and (5.5), (5.8) becomes

S S UpU#dV=0
M

from which it follows that
U=V ,p:+V.p;=0.

If we put
5. 9) q¢=—F, or r=rq'
then, v*=p*-}7* can be written as
(6. 10) v=prt Fygt.

Lastly, we shall prove that ¢* is a Killing vector. From (5.9), we have ¢;=F'7,
from which it follows
(5.11) Vagi+Vign=F o Ff -V F Y4 (FLV w1+ FuiV sre).

Interchanging j and 7 in (4.2) and adding the equation thus obtained to (4.2),
we get
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th(VjUrl‘Vzvj)‘Fth(ViUH—Vzvi):0.

Substituting v;=p;+7, into this equation and using (5.6) and V,r,=VF;r,, we have

(5.12)

FV 1+ F 7 r,=0.

Thus, by (2.4) and (5. 12), the right hand side of (5.11) vanishes. Consequently
we find ¢ is a Killing vector. qg.e.d.
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