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On a Deformation of Riemannian Structures
on Compact Manifolds

By Hidehiko YAMABE

1. The purpose of this paper is to prove that every compact C”-
Riemannian manifold with at least 3 dimensions can be deformed conform-
ally to a C™-Riemannian structure of constant scalar curvature.

Let S be a d-dimensional C™-Riemannian manifold with 4>=3, and
denote its fundamental positive definite tensor by g;;. Throughout this
paper we will use the definitions and notations of the book “Curvature
and Betti numbers” by K. Yano and S. Bochner, unless otherwise stated.
The volume element is written as dV. The total volume is assumed to
be 1.

Here we are going to present the outline of the proof. Consider a
conformal transformation of a Riemannian structure

(1.1) 8i; = € gi;.

Then the connection coefficients 1'j, corresponding to z;; are expres-
sed as”

1.2) ng = 11§k+Pk8§+pj81iz_pigjk »

where
9P

(1. 3) P Tk
From (1.2)

(1. 4) Ejkl = R;kl_ijag+Pj182"“gjkpg+gjlpz
where

(1.5) P = pj.k_Pjpk_I"%gmﬁpwagjk'
Hence

(1. 6) R, = Rje—(d—2)p1— g;uPs
and

1) see [5] page 78.
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1.7) R = e™(R—2(d—1)p3) .

Here R:,,, R s and R denote the curvature tensot, the Ricci tensor
and the scalar curvature, respectively, of the new structure.

Now let A denote the Laplace-Beltrami operator corresponding to
gi;» Then (1.7) can be written as

(1.8) R = ¢(R—2(d—1)p?)
= e (R-2(d—1)(8p+(§ —1)g*purs)

= g7 _M (—d/2+1p (d/2—1)P>
(AL ecarmaigarem).

Set
(1.9) = earroe
or
(1.9) (@)Y = ¢
and then
(1. 10) — Rayeoras — _ Ry 4+ HI=D ag

d—2

Conversely, we are going to prove

Theorem A. There exists a positive C™—function @ satisfying

(1.10) — (@, — —Ra+ M1 sy
where C, is a constant.
If such a function # be found, we have only to set g:;=(@)¥“ ®g;,
to obtain the desired structure.
On the other hand, if there exists a positive extremal ¢ minimiz-
ing a variational function (¢=2)

4(d—1) | vu| 2+Ru2>dV

(1. 11) FO(y) = S( d—2 e
(o)

to a value pu,,, then this function satisfies the corresponding Euler’s
equation

(1. 12) 4%:721) AP D Ryf® —= _M(q)(v(q))qﬂ .
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Here

@B _8“ du

(1. 13) lvul’ =g 528 4

In order to prove Theorem A, we shall prove the following two
theorems.

Theorem B. For any q< 2d/(d—2), there exists a positive function
v? satisfying (1.12).

Theorem C. As g tends to 2d/(d—2), a uniform Iimit @ of such
V9’ exists, is positive and satisfies (1.10) with Cy= poara-s-
Theorem A is an immediate consequence of Theorem C.

2. Let & be a positive number less than 4/(d—2). Set

2.1 b = (2d/(d—2)-¢),
2.1) bi = pe/(pe—1),
and
4d—1) 2 2
|vu|®+ Ry’ }dV
2.2) F#o(u) = Fy(u) = S< d—2 >

(umar)”

ES<4(d—1)/(d~2)fVuf2+Ru2>dV/|lu||§E :

(2.3) el = (frerav)”.

By L, we denote the Banach space of real functions with the norm
INIPS

Lemma 1. Let {u;} be a sequence of C™—functions with lleesl[p, =1 such
that

(2.4 lim; Fe(u;) = peo,, = C(€) = Min, Fe(u) .

Then the sequences {|u;|} possess a similar property except that
lu;| might not be differentiable at the zero points of u;.
Proof is almost evident if one notices that

(2.5) Ivu|* =|vy(lul)l?,

except at zero point of # with non-vanishing Ax. The measure of the
set of such points is zero. By the measure we understand the measure
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with respect to dV.

Lemma 2.2 There exists a positive comstant C, such that for p.=
2d/(d—2)

(2.6) infc llu—cll,, = Ci Il |v#el iz

where ¢ is an arbitrary constant and u is assumed to be a smooth function.

This lemma is similar to Sobolev’s lemma. The proof is omitted
because a minor modification of the proof of Lemma 4 is sufficient for
this lemma. However, it should be noted that even when &=0, the
lemma is valid but this is not necessary for the present paper.

Corollary.

4d—1) 1
-2 C,

(2.8) Flu) = —suppes| R(P)[—1.

Let 4r(x) be a function over the unit square E¢={r; —1=x"=1,
m=1,2,---,d} in a d-dimensional Euclidean space with the property :

2.9 il = ({ 1w 1%ax) " < oo

where 2< g< oo,
Consider the multiple Fourier (trigonometrical) series of yr(x);
(2. 10) Y(x) = 2@, iy €OS w6 X+ -+ igx?)
F0i, i SID (X o 4 1gx)
=3Wa;cosw{L, x> +b;sinw I, x>).

Here I denote a “vector” (i, -+, i,) with integer components and
I, x> an inner product of I and another “vector” (x', ---, x%). Define
|I| by
(2.11) | = (324 i)
Lemma 3.
(2.12) Irllle <= (1ol '+ Xin=alla |7+ 16,17

where ¢ =q/(qg—1).
ReEmArRk. This is the Hausdorff-Young inequality for multiple Fourier

series.

2) see [4]
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Proof. Let E’ be the discrete space of lattice points in a d-dimen-
sional space. Define a one to one operator T onto a functional space
over E from another functional space over E'XE’ by

(2.13) (TNUL, ) = (ag, b))

at a point (I, J) in E'XE’. The space E is given the ordinary Lebesgue
measure while in E’XE’ a weight 1 is assigned to each point. The
norm is defined by

(2. 14) T Ylly = (la) ¥ +inz.lal? +16,1N .

Then T becomes simultaneously of the type (2.2) and (1, ), to
which we can apply the Calderon-Zygmund’s generalization® of M.
Riesz’s convexity theorem. Hence for any ¢ between 2 and infinity,

(2. 15) INllle =< 1Tl
where ¢'=¢q/(g—1). This proves the lemma.

3. It is well known that there are countably many non-positive eigen-
4(d—1)
d—-2
them in non-increasing order, —X,, —A,, .-, —X,_,---. To each A, is
attached an eigenfunction ¢,, with ||¢,l,=1. These ¢,’s are mutually
orthogonal in the sense of L,. The first eigenvalue A,=0 and the corre-
sponding function ¢,=1. Then every square integrable function w«(P)
can be expanded into the Fourier series with respect to {¢,}. In
particular

3.1) U; = 2%110;,-43; .

Lemma 4. Suppose that ry's are smooth functions on S with {\Nrulls,
< oo, such that for integer j between 1 and N,

values of the elliptic operator A diverging to —oo. We write

(3.2) Ssxpwjdv ~0.

More generally, if ¥n/liNralls, is weakly close to O, then for any given
small 6<0, there exists an integer N, such that if N>=N,, then

3.3) inf, [Wry—cllp, < 8ll [Ayrnl |l -

Proof. Without loss of generality we may assume that [[yull, is
uniformly bounded as N tends to infinity.

3) See Theorem D in page 117 in “On the theorem of Hausdorff and Young” in [2].
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Firstly, we consider the case when the carrier of +y is contained
in a coordinate neighborhood E. In this case we can consider the trigo-
nometrical expansion of «ry. Take a sufficiently large integer M, so
that for a preassigned small & >0,

3.3) Cinzpl ] 722/ P D) e D00 &
This is possible whenever & is positive because
d(ﬁé—e) +(d—-1)¢
£, >d.
d—2

3.5 2b./(De—2) =

We set c=a, (and b, is always assumed to be zero). By virtue of
Lemma 3,

(3. 6) Iewllls, < il a2 + || 24y 8¢
= Qin<mllasl 2 |01 pel))llpa/
+ inzwlla, |2 + (b 27))/2¢

where
3.7) pi= P2,
De—1
Set
(3.8) q. = 2/ps
and
3.9 g: = ¢e/(g.—1).
By a simple calculation
3. 10) 2d: = 2pe/(Pe—2) .

The second term of the right hand side of (3.6) will be dominated by
3.1  Cinzadlar e + 10,12y 12¢

= (Zm ;M( | aﬂ”! i )”8/4— < l bIl|I| |1 )pe’)w’e/

= Clinzmllarl 111+ (16,0 |11}/
c QinzmlI| 729 yeded < 3’<S |grad «Jerzdx)l/z

where

(3.13) Igrad vyl = ( fnzl(a‘l’N)Z)l’z.

ox™
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On account of the uniform ellipticity of g/, there exists a constant
C, such that

(3. 14) G, = [Irlls, = Colllplls,
and

(3.15) CHI| lgrad | |l = Il [v¥| Il = C.lIl Igrad ¥ |[l..
Combining (3.11) and (3.15), we have

(3. 16) inzmllar|?e+ 10, 22)) 2 < FC| [ vpul Il

Remarg. If we set M=1, we have Lemma 2 for the case when the
carrier of +ry is within a coordinate neighborhood. Namely if @,=0,

IWrllp, = Cill 9] 1L, -

As for the first term of (3.6), a,/]l«}erlpg’s and b,/lf«,erHpg’s can be
taken arbitrarily close to zero if N, is sufficiently large, because these
coefficients are linear functionals over L, . By virtue of (3.14), a,/||[ynll,

and b//|l¥yll’s are also small, say less than %M‘dS’. Hence

(3.17) (inemllar 2+ 1571272 < &' [l -
However, by virtue of Lemma 2 (see the remark above),
(3.18) (Sinenlar|# + 1,127 < §C| | vl Il -
Combining (3.6), (3.16), and (3.18),
3. 19) Wrwlloy = 8CI Wi 1l2)
if a,=0. Here
(3. 20) 8 = &(c,+c,).

This concludes the proof for the case when the carrier of 5 is in
a coordinate neighborhood.

As for the general case, we decompose the manifold S into a union
of finitely many, say /s closures of coordinate neighborhood U,, ---, U,,
such that U, is a cubic neighborhood of a point in U,, and any two of
these U,’s intersect only at the boundary. The restriction of +y over U,
is denoted by +ry.;. The mean of ., over U, with respect to dx will
be denoted by

(3. 21) CN,; — SU w,bN,,dx .
4
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Then
(3.22) o — S0l = SN0 W — vl -

However, the trigonometrical Fourier coefficients of a function + in
L, over the coordinate systems of U,’s are also linear functionals over
L,,. Hence, if N, is sufficiently large, we can apply the result of the
previous case so that for each / and a preassigned 6”=/[;6

(3.23) . —ewall = 87( I v, o)
From this it follows that
(B-24)  [ows— S luewall = 48 (supy [| [Vl 1) = 801 [l 11
This completes the proof of Lemma 4.
REMarRk (I). If M=1, Lemma 2 follows.

ReMARK (II). This 6=6(N,) depends upon N, and goes to zero as N,
tends to infinity.

4. Consider the Fourier expansion (3.1) of u;’s in (2.4) with [[u,]|s,
=1. It is easily seen that all F.(u;)’s are bounded by a positive constant
C,. From this fact, it follows that the convex closure of the set {«;} in
L,, and more generally in L, , is compact strongly. This will be for-
mulated in

Lemma 5. The convex closure of {u;} compact; and a limit v?¢ of
a convergent subsequence is not zero.

Proof. The latter half is an immediate consequence of the former
half because for each 7, [[ull,,=1.

Now without loss of generality we may assume that {«;} converges
weakly to v*?2. Consider the Fourier expansion with respect to ¢/’s.

4.1) Ve = ZT=1bj¢j .
Then
4.2) l[oe; — 22l . << 3@, —0)P,11,

+ I IZ.O;;N(aij - bJ)¢J| IP: )

By virtue of the previous lemma, there exists a sequence of constants
c;(N) such that for N=N,,

(4.3) I225-n(@:;—0)b;—ci(N)lls,
§3(M)222‘<}7vj(61i,-—b,-)2 é B(M)an .
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It is easily seen that these c;(N)’s tend uniformly to zero as N goes
to infinity. Now, ¢ tends to infinity. Then the first term of (4.2)
vanishes and

(4. 4) lim, [[ot; — c(N) — 22|, =< 2C,8(N,).
However this 6(V,) can be made arbitrarily small. Hence
(4.5) lim,y lim; Hui_ci(N)_v(pE)”Pe =0.

By making use of the fact that lim |lw;—¢%?||, is independent of
N, we can easily obtain the relation that

lim ||u‘__vcpg>”ﬁe = I-‘HN liTTli c;(N)=0.
Thus the lemma has been proved.

Notice. The function *#¢, being a limit of non-negative #,’s, is
non-negative.

Lemma 6. If °?2, a non-negative C° function satisfies the equation
(1.12) for q=p., €=0, then v"*=v"" is positive.

Proof. For simplicity, we shall use v*? instead of v*#?9. Suppose that
¢ vanishes at a point P. Take the polar coordinates r, 0", m=1, 2, ---,
d—1 of a normal geodesic coordinates around P. The volume element
and the Laplace-Beltrami operator with respect to the induced and nor-
malized (total volume 1) Riemannian structure on the concentric sphere
Q(r) of the radius » around P will be denoted by Vo(r) and Ay,
respectively. Then

4.6) Av P = ((3/orY -+ (B/ar)log/ o )37 +7 2Ry, )P .

By integrating (4.6) over Q(r) with the volume element /o df
r“’“(a/ar)rd“g BV /3r)\/ o dO + r’ZS ApO/ 5 do
Q(r> Q7>
— (RO — g0y v/ 500

When » ranges over a small interval (0, »,), there exists a positive
constant K, such that

| (R~ ooy | < K foon/ o a0

4) see [1]
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because ¢ >2. Hence

yd-ls (0P or) /o do < Srpd‘lKlg #O\/ & dbdp
Qr> 0 Qlrd>
or

S (U o)/ 7 d0 < r‘d“SrKl pd‘ISv(‘” o dddp.
Q(r) 0

Integrating both sides from O to s,
4.7) S v<q>\/7;(s)d9—ssg (3 log/ o [r)(r)\/ & o(r)dbdr
Qs) 0v QC

7)

gssrdﬂfl{lpd—lg ¥9\/ 5 (p)dbdpdr .
i) Qp)

4]

Now set
Xt) = Sg( EOV ()0,

and take positive constants K, and K, such that both

[(@log /o [or)(r)| < Ky
[P = K,

hold for 0r<»,.
Then, from (4.7) it follows that
(4.8) X(s) < KZS:X(r)rdr+ KIS:r“"“S:pd‘IX(p)dpdr
< K,K,(s*/2) + K,K,(s*/ 2d).
In general, it can be shown that
4. 9) X(s) < K(K,+K,)"27"s™"n!.

The proof can be given by induction on z. If (4.9) holds up to
n=N-—1. Then by subtituting X(r) in the right hand side of (4.8) by
(4.9),

X(s) =< K,[(K,+ KNV 27V (N= DK N/ 2N) +
+ K s*N/(2(N—1)+d)2N]
=< K(K,+K,)N2"Vs’N/N'!

Since N can be taken arbitrarily large, X(s)=0 for all s. From this
we can conclude that »=0 around P. This means the zero points of
v*” is open. Therefore ¥ must be identically zero, This contradiction
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proves that #? is positive everywhere.

Lemma 7. The ¥ is a weak solution of (4.8). Here A is under-
stood as the extension of Laplace-Beltrami operator over L,.

Proof. Take a C” function » on S with

(4. 10) sup pes| (P) =1,
and a small positive real 5. Define a subset S, of S by
(4.11) S, = {P; v*(P) > 7}
and
4.12) S, = 8-5,, where S’ = {P; v*?(P) >0} .
Set
(4. 13) o :SSQ‘W'

It is easily seen that ' goes to zero as % goes to zero. Take a
function

(4. 14) w, = " +qv.
Then
(4. 15) lwlle= ([, twnl%av)”|
1

= - (S (Zn)“dV> +71~777"+0(972)
S2 q
2797y + % 77+ 0(7%).

Y

However the quantity <g lw,,l”dV)l/q is a C* function in % and
Sy
1/q i/q (/a-1
(4. 16) (g lw,,l"dV> —([ (v‘”)”dV) —6 (v‘”)"dV) :
St S1 S1
| worwav < cor,

where C, is a positive constant.
On the other hand

@ |(f worav)”- (Ll(vm)qu)”q =ty

(4. 18) 'Ss(zfﬂ)qdv—j'sl(vm)qdvf —
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and

(4.19) ‘ Ss(v<q))q‘lvdv_ SS (W) wdV | = 97 .

These are all obtained in the same manner as (4.15). Combining
(4.15), (4.16), (4.17) (4.18) and (4.19) we have

(4. 20) lim,,, % (l20,]l0 — 1°l,)

= lim,y £ (lyll— D) = | @)0av.
7 s
Now set
(4 21) He(u) = Fe(u)”ung
and let » be a real number with small absolute value. Then
(4.22) Fy(v'®) = H(v*”) = lim; Fo(u;) = lim; Ho(u;) = min, Fe(#) = pep.

Hence

(4.23) 0= % (Fo(w,)— Fo(t) = % (Fo(t0,) — cas)

1 1
N H, TP n§

[7] llw,,||q( (W) — prellw,|12)
_sgnfn) { Ad—1) A cor porca o
_Wui,uz'( 25( g5 AV RUC+ pp(v®) >vdV>+<I>w,

where P, tends to zero as # goes to zero.
In order for this inequality to hold for a positive » as well as a
negative g,

(4.24) { (4—(‘?”21) Ay — Ry + ,b(,,)(vm)q“)vdv ~0.
s\ d—

Since » can range over all C” functions with supp|o(P)| <1,
v*? must satisfy

4(d—1)

(4. 25) 75 AYD — Ry = — (0P

in the sense of weak solution. This is the same equation as (4.8) and
(1.12).
This completes the proof.

REMARK . ¢ has only to be larger than 2.
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5. In this paragraph we shall prove that a weak solution o of
(4.25) which gives the minimal value of F.(x) for g=p., is actually a
C” function solution, and thus the gap between Lemma 6 and Lemma
7 will be closed.

Lemma 8. The non-negative function v'°, =2, satisfying (4.25) in
the sense of a weak solution, is C* everywhere and C except at zero points
of V0.

REMARK . By virtue of Lemma 6, there is no zero point of %,

Proof. Firstly, the boundedness of v will be proved.

By G(P, ) we denote the Green’s function® for 4(5__21) A, The
Sobolev’s lemma will be formulated in the following form. If

(5.1) u(P) = (6P, Qu@av(@,
where # belongs to Ly, then u, belongs to L, where
(5.2) (P =) -2/,
and
(5.3) sl = Cillully -

Here C, is an absolute constant if ()"'—(¢’) "'+ (2/d) is larger than
a fixed constant. Applying this to (4.25),

(5.4) VP =— SG(P, N — ppe (V' PY  + R)dV(Q) + Sv"”dV(Q)
=-[6P, @ 4@av@)+ [rravi@)
where the function A(Q) belongs to L, with
_ (2 \d+2 )\
m = (2 8><dT2 &)

Hence *? belongs to L., where

(5.5) (g)7" = (m)'—(2/d)

d—2/, d—2 d—2 )
=2 <1_T s><1+72d e>+0(s)
_d-2(, d-2 )
S

5) see [3]
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where & is small. Hence we can find a ¢, such that
_ 2d 2d
(5. 6) Q1—d__-‘2‘+§>d’__—2

where ¢ is a positive real number.
Now, notice that the quantity A(Q) belongs to L,,, where

e (0

Then, again by virtue of Sobolev’s lemma, * belongs to L, with

5.8)  (gh)' = (m) —(2/d) = 42

2d+(d—2)¢ d
_d(d+2)—-4d—-2(d—-2); _ d— 2( >< d—2 §>—1
(2d+(d—-2)¢)d 2d )
Therefore ¢, can be taken as
2d 2 .\ d—-2
(5.9 q, = 677772<1— d C) <1‘|‘—23" §>
or in particular
2d  d-+2
“= g3 d—2

By repeating these procedures, we can easily show that ¢+ belongs
to L,,, with

_2d (d+2>” !
(5.10) =75 +d 5 z.
Take an integer # large enough so that
d+2-~_d d+2
6.11) q.= (L+e)ii2> 2942,

Here &, is a positive real number. Then,
(5.12) supp v*P(P) < supp [[(P, Q)llgpcan-oll0*?llq,+ finite number.

The right hand side is bounded because the part involving the
Green’s function is finite.

Once the essential boundedness is established, apply G(P, @), and we
have the proof immediately®.

6. Proofs of Theorems B and C.

6) See Appendix.
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Theorem B follows immediately from Lemmas 6, 7, and 8. We shall
proceed to prove Theorem C.

Lemma 9. The family of functions {v‘®} are uniformly bounded for

2<q¢<2d[(d—-2).

Proof. Take a positive fixed &, >1. TUsing the procedure in the
proof of Lemma 8, starting at ¢,=2d/(d—2)+¢,, we can see that at each ¢
d+ 2) 2 1 &3 > 8 .2

61 @)@ ()5 = 1 (22 2t

d—2
and if
_{d d+2
g, = (7"‘ §1>d———2 s
then
(6.2) [[0°°]g, = CE7H [0, .

Here C; is defined in (5.3). From this it follows that

(6.3) Ag) =< supp||G(P, Qlgnrian-C2 1P llq,
= Cl[v?|lq,
where
(6.4) A(g) = suppv*°(P)
and C, is an absolute constant.
However
(6.5) (14, ) = A(@) (1|0 ]])*

= A(g)"? = A(g)%*".
Hence for small &,

(6.6) 125211, = A(g)4=+/
= A(q)%.

Notice that A(g) may be assumed to be =1.
Combining this with (6.3), we can see that

(6.7) Ag) = CAg)é,
or

Mgy =G,
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This proves the uniformly boundedness of »*%’s,

Proof of Theorem C. Since ¢‘“’s are uniformly bounded,

(6. 11) limqm,w-ﬂLG(P, QURY® — e (0 ) ) dV(Q)
+| #7QaVQ) =

converges uniformly to a C' function when we take a suitable sequence
of ¢’s. This limit # must satisfy
(6.14) A=) A= R = — a2/

weakly. From this we can easily obtain the C® property for # because
of the boundedness of #. Again, Lemma 6 is available and # can be
proved to be C” because it is bounded C? function without zero points,
satisfying (6.14). This is nothing but the equation (1.10). Thus Theorem
C has been proved.

A direct consequnce of Therem A is that if R is everywhere non
negative, then R, the scalar curvature of the new structure, is a non-
negative constant and is zero just in case R is everywhere zero. If R
is everywhere non-positive and not identically zero, then R is negative
because it is less than F@#/«@-(1)<0.
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Appendix

Supplement to the proof of Lemma 8.
Once the essential boundedness of #? is established, it immediately
follows that v* is C*. Hence v*?, being a solution of an equation

AVD = RSP — p (v P)

is a C® solution except at zero point of . Repeating this kind of
procedures, we can see that »® is C” except at zero point of 9.
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REMARK . As is seen very easily, if the original structure is C* k=3,

and o, then @ itself is also C* k=1 and o.

ReMmarRk . Prof. J. Serrin notified the author that Lemma 6 can be

proved by using E. Hopf’s maximum principle (cf. [5]).
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