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ABSTRACT. Koornwinder’s generalized Laguerre polynomials {LZ’N (x)};';O
are orthogonal on the interval [0, co) with respect to the weight function

ﬁxae-x + Nd(x), a > -1, N > 0. We show that these polynomials

for N > 0 satisfy a unique differential equation of the form
o0 .
N g,y () + xy" (%) + (a+ 1= x)y'(x) + my(x) = 0,
i=0
where {a;(x)}i2, are continuous functions on the real line and {q,(x)};, are

independent of the degree n. If N > 0, only in the case of nonnegative integer
values of o this differential equation is of finite order.

1. INTRODUCTION

In 1984, T. H. Koornwinder found the polynomials which are orthogonal with
respect to a weight function consisting of the classical Jacobi weight function
together with delta functions at the endpoints of the interval of orthogonality
[-1, 1]. (See [2].) As a limiting case, he found the generalized Laguerre poly-
nomials which are orthogonal on the interval [0, oo) with respect to the weight
function ﬁxae_x + NJ(x), a>—1 and N > 0. In this paper we consider

only Koornwinder’s generalized Laguerre polynomials {Lz’N (x)};,“;o defined
by

1 LV = [1 +N (Zf‘l’)] LYx)+N (” :") %ij’)(x),

where Lf,")(x) denotes the classical Laguerre polynomial given by

@,y _ [(n+a) (=n) x* B
(2) L, (x)-( " )gomF n=0,1,2,....

For details the reader is referred to [2, 1]. Note that Li'o(x) = Li‘”(x) .
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1046 J. KOEKOEK AND R. KOEKOEK

For the polynomials {L;",’N(x)}:’;o , a differential equation of the form

(3) ija,(x)ﬂ”(x) +xy"(x) + (& + 1= x)y'(x) + ny(x) =0,
i=0

where {a;(x)};-, are continuous functions on the real line and {a,(x)};o, are
independent of n, was found only for special nonnegative integer values of «.

For a =0, a=1,and a =2, H. L. Krall, A. M. Krall, and L. L. Littlejohn
obtained the following differential equations:

%Nxz +(3N+ l)x] (%)

1)N + l] y(x)=0,

2Nx 2y@ ) + N2 = 2x)p () + [—
(4)

+[1 =N+ Dxly'(x)+n [%(n +

—Nx3 © (x)+ N —lx3+2x2 y(s)(x)-i-N 1
6 2 2

1 3 2 3) 2 "
(5) +N X +4x" —10x )y 7/ (x) +[-Nx" + (6N + 1)x]y (x)

x> —5x% + 5x> y(4)(x)

+[2=(N+Dxly'(x) + [g(n+ )(n+2)N+1] y(x) =0

and
(6)1 1 4 3\ . 1 4 7 3 2\ _(6)
24ny (x)+N<6x -Xx )y (x)+N(—Zx +2x - Tx )y (x)
+N<éx4—g—x3+21x 14x> ¥ (x)
+N( 214 4+;x3—42—5x2+35x) Y(x)
+N (—%x +10x% - 30x> ¥ () + [—;-Nxz + (10N + l)x] ¥ (x)

+3=(N+ Dx'(x) +n Hz(n +1)(n+2)(n+ 3N+ 1] y(x) =0,

respectively, in a different notation. See [3-9]. Note that in these cases
{a,(x)}2, are polynomials and the differential equation is of order 2a + 4.

In this paper we give a differential equation of the form (3) for Koornwinder’s
generalized Laguerre polynomials {L;'l"N (x)}o2, forall o> —1. It will appear
that {a,.(x)}‘,.’:0 are polynomials for all a > —1, and that the differential equa-
tion is of order 2a + 4 for all nonnegative integer values of a if N > 0.
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2. THE DIFFERENTIAL EQUATION

Consider the differential equation (3), where {a,(x)};-, are continuous func-
tions on the real line, ay(x):=ay(n, a, x) and a;(x) :=a;(a, x) for i > 1.

We will try to define the functions {g;(x)};-, in such a way that the poly-
nomials {L;’ N(x)} neo satisfy a differential equation of the form (3) for all
a>-1and N>0.

Recall that the classical Laguerre polynomials {Lf,")(x)};";o satisfy the La-
guerre equation given by

(7 xp" (%) + (@ + 1= x)y'(x) + ny(x) =

We set y(x) = L:’N (x) in the differential equation (3) and use the definition
(1) and the Laguerre equation (7) to find

N [1 +N (”*")] Za (x)D'L (x) + N (”*") iai(x)Di“Lf,a)(x)

n °
i=0
nta) | d @ N 4 @
+N< " ) [xdx3L" (xX)+(a+1 x)dszn (x)+nden (x)| =0
Differentiation of the Laguerre equation (7) leads to

L¥(x) =

xdd—L“"(x)+(a+2 x) L‘“’(x)+(n 1)d

Hence
(a) n+a) d n+a\ d (a)
[Za x)D'L'(x) + ( " )de,, (x )—( )WL,, (x)]

+N? [(” +°‘) Za (x)D'L®(x) + (" :a) iai(x)Di“Lff‘)(x)] =0

i=0
forallreal x, a>—-1, N>0and n=0,1, 2,.... Since the expressions
between square brackets are independent of N this implies that

(a) n+a\ d () n+a\ d? (@)
(8) Za x)D'L ( " )EL,, (x)—( " )WL,, (x)=0

and
oo

(9) n Z 2,)D'LY(x) + (@ + 1) a,(x)D*' L (x) = 0
i=0
forallreal x and n=0,1,2,....

First of all we show that (8) and (9) have at most one solution for {a;(x)};o, -
This means that we have to show that

(10) Y ax)D'LY(x)=0, n=0,1,2,...,
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1048 J. KOEKOEK AND R. KOEKOEK

and

(1 1)

nZa(x)DL(a(x)+ (a+1 Za(xD'“La)( )=0, n=0,1,2,...,
i=0 i=0

kave only the trivial solution. Note that (10) and (11) imply, for all real x,

that

(12) ay(n, @, )LY(x)+ Y aa, x)D'LP(x) =0, n=0,1,2,...,
i=1

and

(13)

ay(n, a, x)dd ) (x) +Za(a DMLY %) =0, n=0,1,2,.
i=1

Substitution of n =0 and n =1 in (12) and (13) gives us
ay(0,a,x)=0, ayl,a,x)=0, and a(a,x)=0
for all real x. Now we set n =2 in (13) to obtain

ay(2,a,x)=0 forallreal x except possibly for x =a+2,

being the zero of j‘;—ch“)(x) . Now we use the continuity of a,(x) to conclude
that qy(2, o, x) = 0 for all real x. Then, by setting n = 2, we obtain from
(12)
a,(a, x) =0 forall real x .
Repeating this process, we finally find
{ ay(x) =ay(n,a,x)=0 ferallrealx and n=0,1,2,.
a,(x)=a;(a,x)=0 forallrealx and i=1,2,3,....

This proves that (10) and (11) have only the trivial solution. Hence (8) and (9)
have at most one solution.

As in (4), (5), and (6) we try to find polynomial solutions for the functions
{a;(x)};2, . We may expect that

n+a+l

(14) ay(x) = ( ) .

n-—1

Since the functions {a,(x)};2, are not allowed to depend on 7, we can compute
some of them by substituting small values of » in (8). We find

a,(x)=-x,
a,(x) = %(a + l)x + ;(a +2)(a+3)x
ay(x) = —% (a+1)x° —6—(a +1)(a+2)(a+3)x°

- iz( +1)(a+2)(a+3)(a+4)x
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So we may guess that
(15)

i o
ai(x)=%z:(—l)'+’+l(?t:)<C:+2)(+3) . i=1,2,3,....
2

We will prove that the polynomials {L;’ N (x)},e, satisfy the differential equa-
tion given by (3), (14), and (15).

3. PROOF OF THE DIFFERENTIAL EQUATION

We have to show that the polynomials {ai(x)}}’:o defined by (14) and (15)
satisfy (8) and (9). We start with

f:a,.(x)D‘Lﬁf')(x)

i=1
1 i+j+1 L
_ZZ( ) 0_‘"'1 a+2 (a+3),, jDIL(a)(x)’
i! J—1 "
i=1 j=1
where x is real and »n is a nonnegative integer. Changing the order of summa-

tion twice, we obtain

iai(x)DiLﬁ,"’(x)
i=1
=§:(—l)j+l( )xji i<a+2)( +3), Difoa)(x)
j=1 i=j
(16) =§(_1)j+l( i-ll)x]g 1)l+1 (a-!—Z)(a+3)iDi+ijla)(x)
_ _g(_l)i (a-}-2) (a+3), Z <a+l> . -’x.fj)' '“L (x).

Now we use the definition of the classical Laguerre polynomials (2) to find

2 (51) mae e
J=

Jj+k

© & (gt 1)  (“M)X
(17) (n+a> (a+ ) i+j+ ‘ ‘
;2 J=1) (a+1), >+ )k!
(”*")Zcmx , i=0,1,2,...,
m=1
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1050 J. KOEKOEK AND R. KOEKOEK

where
- 1 (=n),
C = a+ ) i+m
" ,2:1<J—1 (a+ 1), (i + ) (m = j)!
M CTT ( j )(i+j+l)!(m—l—-j)!’ m=1,2,3,....

i+m j=0

Since (i+j+1)!= (i + )i +2);,

a+1 _ j(_a;l)j 1 o j(‘m+l)j
< j )‘( V=7 o Gy~ o
we obtain
o - Mim 1 mAl, a1 1)
m=Tatl),, m-DIG+ D2 ! iv2 1)
m=1,2,3,

Now we use the summation formula
(18)

a,b. )\ _T(c—a-b)I(c) o L
2F1( c ’l)_l‘(c—a)l“(c—b)’ c—a-b>0, c#£0,-1,-2,...,

tofind for m=1,2,3,...,

c (=1) i1 m 1 Fm+a+i+2)I(i+2)
m=la+1),, m=-DIG+)IT(m+i+ DI(a+i+3)
(=) lati+d),
T e+ D), ,m=-Dii+m)’

Hence, with (16) and (17) we have

ia,.(x)p"Lf;”(x)
i=1

n+a) — ifa+2 (-n)iy (a+i+3), m
--("; )§<-‘>( i) @+, Z:(ox+1>+,+,,.(m—1)'<z+m)'

n+a) o= (—a=2),(=n); . (a+3), 1 m
='< )EZ e+ 1) m—l)!(i+m)!1x

i+m(
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Now we use the facts that (-n),,, = (-n), (-n+m);, (i+m)! =m!(m+1),,

i+m
and
(@+3)imy _atitm+1
(@+ 1), (a+ D(a+2)
to find
w .
3 a,0)D' L (x)
i=1

(n+a> (=M ( 2),( )
n o~ _(on —a—2),(-n+m), ,
=‘(a+1)(a+2)mz=l(m_1).m.2 (m+ 1) 1 (a+i+m+1).

We split the last sum into two parts and use the summation formula (18),
obtaining

© (—a—2).(- .

i=0
= (a+m+1),F, (_a —i’_l__ln"'m; 1)
(a+2)(n—m) —a-1,-n+m+1
m+1) 25( m+2 ’Q
I'h+a+3)I'(m+1)
I'm+a+3)'(n+1)
(a+2)(n—-m)I'(n+a+2)'(m+2)
(m+1) TI(m+a+3)I'(n+1)

n+a+l m!
=(a+1)( n )(a+l)m+2

+

=(a+m+1)

[(m+2a+3)n+ (a+ 1)(a+2)].

Hence
3 a,(x)D' L (x)
i=1

(19) i =_G£35(n:a)(n+:+l)

E (a+ l)m [(m+2a+3)n+(a+1)(a+ 2)](__1—)7

m+2

for all real x and »n a nonnegative integer.
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To complete the proof of (8), we use (14) and (2) to find

(20)
a0+ ("5 ) A - (M) L pe
(S et ) s U ) s

_ (n+a> (=n)1s :|x_k
n (@+ 1), | k!
CEIEl

n +a) (_n)k+] x_k
( %

+(n+a+1)( " ot )y,
+

=ﬁ(n:a) <n+z+1>

kz k+2[n k+2a+3)+ (a+1)(a+2)](k il

for all real x and n a nonnegative integer. With (19) and (20) we have proved
(8). To show (9), we observe that (compare with (16))

[e o] i+1

3 a,(x)D™' L (x)

i=1

_ _i (=1)’ (a+2> (a+3)~i (a+l> x’ Di+j+1L(a)(x)
i \j-1) G+ "

for all real x and n a nonnegative integer. In the same way as before, we find
~[a+1 x’ i+j+1 5 (a)
> (550w e

=(”+") D x",  i=0,1,2,...,

m
m=1

_y(e+! (=M)isme
Dn =2, (551 @ Do + )0 =)
(=M imer(@+i+3),
@t 1), (m—Di+m)l’
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Hence
3 a,(x)D™' LY (x)
i=1
_ n+a) o= — (—a—2)i(—n)i m 1(0""3)[ m—1.m
“( n )mg; i!(a+1)i+m+lfm+-1)!(i++m)! .
B (") (=) s X™ —a—-2,-n+m+1
@ =G+ a+2)21(m—1)1' mt2 ( m+ 1 ’ 1)

B (") (1) X" T(n+a+2)I(m + 1)
T {a+1) a+2)z(m—l)'m' I'(m+a+3)[(n)

() () S ey

With (19) and (21), we have found that

nZa (x)D'LY (x) + a+1)za ()DL (x)

()

(22) xz(a+l) - [(m+2a+3)n+(a+1)(a+2)
+(a+l)(m—n)](mx—_1)—!
n+a) (n+a+l\ = (=n), x™
=_(n+a+l)( n )( n-1 )’;(a+l)m+l(m_l)!

for all real x and » a nonnegative integer. To complete the proof of (9), we
use (14) and (2) to see that for all real x and »n a nonnegative integer

(23)

nao(x)Lf,a)(x)+(a+ )ao(x)—L(a)( )

+a+l ‘
=(":a) <nnfl )Z(a+l)k+1 rerkr D= ”+k)(a+l)]£ck—!
n+a\ (n+a+l (=n) x*
=(n+a+1)( n )( n-1 >g(a+1)l,z+1(k—l)!’

With (22) and (23) we have proved (9).
This shows that Koornwinder’s generalized Laguerre polynomials
{Li’N (x)}oo, satisfy the differential equation defined by (3), (14), and (15).
From (15), we easily see that, for a #0, 1,2, ...,

degree[a,(x)] =i, i=1,2,3,....
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This implies that if N > 0 the differential equation is of infinite order in that
case.
For nonnegative integer values of a, we have

degree[a,(x)] = i, i=1,2,...,a+2,
degree[a;(x)] = a + 2, i=a+3,a+4,...,2a+4,
a,(x)=0, i>2a+4.

This implies that for nonnegative integer values of o and N > 0 the differential
equation is of order 2a + 4.
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