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This paper studies a fractional differential inequality involving a new fractional derivative (Hilfer-
Hadamard type) with a polynomial source term. We obtain an exponent for which there does not
exist any global solution for the problem. We also provide an example to show the existence of
solutions in a wider space for some exponents.

1. Introduction

Fractional derivatives have proved to be very efficient and adequate to describe many
phenomena with memory and hereditary processes. These phenomena are abundant in
science, engineering (viscoelasticity, control, porousmedia, mechanics, electrical engineering,
electromagnetism, etc.) as well as in geology, rheology, finance, and biology. Unlike the
classical derivatives, fractional derivatives have the ability to characterize adequately
processes involving a past history. We are witnessing a huge development of fractional
calculus and methods in the theory of differential equations. Indeed, after the appearance
of the papers by Bagley and Torvik [1–3], researchers started to deal directly with differential
equations containing fractional derivatives instead of ignoring them as it used to be the case.
For analytical treatments, we may refer the reader to [4–36], and for some applications, one
can consult [1–3, 8, 25, 26, 26, 27, 27–31, 33, 34, 37–49] to cite but a few.

We will consider the problem:

(

D
α,β
a+ u

)

(t) = f[t, u(t)], 0 < α < 1, 0 ≤ β ≤ 1, t > a > 0,
(

D
(β−1)(1−α)
a+ u

)

(a) = u0 ≥ 0,
(1.1)
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where D
α,β
a+ u is a new type of fractional derivative we will define below and u0 is a given

constant. This new fractional derivative interpolates the Hadamard fractional derivative and
its Caputo counterpart [26, 34], in the same way the Hilfer fractional derivative interpolates
the Riemann-Liouville fractional derivative and the Caputo fractional derivative. That is why
we are naming it after Hilfer and Hadamard.

A nonexistence result for global solutions of the problem (1.1) will be proved when
f[t, u(t)] ≥ (log(t/a))µ|u(t)|m for some m > 1 and µ ∈ R. That is we consider the Cauchy
problem:

(

D
α,β
a+ u

)

(t) ≥

(

log
t

a

)µ

|u(t)|m, t > a > 0, m > 1, µ ∈ R,

(

D
γ−1
a+ u

)

(a) = u0 ≥ 0,

(1.2)

where γ = α+β−αβ and show that no solutions can exist for all time for certain values of µ and
m. Clearly, sufficient conditions for nonexistence provide necessary conditions for existence
of solutions. In addition, we construct an example for which there exist solutions for some
powers m and in some appropriate space.

The existence and uniqueness of solutions for problem (1.1) has been discussed in [50]

in the space C
α,β

δ;1−γ,µ
[a, b] defined by

C
α,β

δ;1−γ,µ[a, b] =
{

y ∈ C1−γ,log[a, b],D
α,β
a+ y ∈ Cµ,log[a, b]

}

, (1.3)

where

Cγ,log[a, b] =

{

g : (a, b] −→ R :
(

log
x

a

)γ
g(x) ∈ C[a, b]

}

(1.4)

for 0 ≤ µ < 1 and C0,log[a, b] = C[a, b].

We also point out here that the case where D
α,β
a+ is the usual Riemann-Liouville

fractional derivative has been studied in [26] (see also references therein). There are very
few papers [26, 29] dealing with the pure Hadamard case, that is, when β = 0.

The rest of the paper is divided into three sections. In Section 2, we present some
definitions, notations, and lemmas which will be needed later in our proof. Section 3 is
devoted to the nonexistence result and Section 4 contains an example of existence of solutions.

2. Preliminaries

In this section, we present some background material for the forthcoming analysis. For more
details, see [25, 26, 33, 42, 51, 52].
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Definition 2.1. The space X
p
c (a, b) (c ∈ R, 1 ≤ p ≤ ∞) consists of those real-valued Lebesgue

measurable functions g on (a, b) for which ‖g‖Xp
c
< ∞, where

∥

∥g
∥

∥

X
p
c
=

(

∫b

a

∣

∣tcg(t)
∣

∣

p dt

t

)1/p

, 1 ≤ p < ∞, c ∈ R,

∥

∥g
∥

∥

X∞
c
= ess sup

a≤x≤b

∣

∣xcg(x)
∣

∣, c ∈ R.

(2.1)

In particular, when c = 1/p, we see that X
p

1/p
(a, b) = Lp(a, b).

Definition 2.2. Let Ω = [a, b] (0 < a < b < ∞) be a finite interval and 0 ≤ γ < 1, we introduce
the weighted space Cγ,log[a, b] of continuous functions g on (a, b]:

Cγ,log[a, b] =

{

g ∈ C(a, b] :
(

log
x

a

)γ
g(x) ∈ C[a, b]

}

. (2.2)

In the space Cγ,log[a, b], we define the norm:

∥

∥g
∥

∥

Cγ,log
=

∥

∥

∥

∥

(

log
x

a

)γ
g(x)

∥

∥

∥

∥

C

,
∥

∥g
∥

∥

C0,log
=
∥

∥g
∥

∥

∞
. (2.3)

Definition 2.3. Let δ = x(d/dx) be the δ-derivative, for n ∈ N, we denote by Cn
δ,γ
[a, b] (0 ≤

γ < 1) the Banach space of functions g which have continuous δ-derivatives on [a, b] up to
order n − 1 and have the derivative δng of order n on (a, b] such that δng ∈ Cγ,log[a, b]:

Cn
δ,γ[a, b] =

{

g : (a, b] −→ R : δkg ∈ C[a, b], k = 0, . . . , n − 1, δng ∈ Cγ,log[a, b]
}

(2.4)

with the norm:

∥

∥g
∥

∥

Cn
δ,γ

=
n−1
∑

k=0

∥

∥

∥δkg
∥

∥

∥

C
+
∥

∥δng
∥

∥

Cγ,log
. (2.5)

When n = 0, we set

C0
δ,γ[a, b] = Cγ,log[a, b]. (2.6)

Definition 2.4. Let (a, b) (0 ≤ a < b ≤ ∞) be a finite or infinite interval of the half-axis R+ and
let α > 0. The Hadamard left-sided fractional integral Jα

a+f of order α > 0 is defined by

(

Jα
a+f

)

(x) :=
1

Γ(α)

∫x

a

(

log
x

t

)α−1 f(t)dt

t
, a < x < b (2.7)
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provided that the integral exists. When α = 0, we set

J0
a+f = f. (2.8)

Definition 2.5. Let (a, b) (0 ≤ a < b ≤ ∞) be a finite or infinite interval of the half-axis R+ and
let α > 0. The Hadamard right-sided fractional integral Jα

b−
f of order α > 0 is defined by

(

Jα
b−f

)

(x) :=
1

Γ(α)

∫b

x

(

log
t

x

)α−1 f(t)dt

t
, a < x < b, (2.9)

provided that the integral exists. When α = 0, we set

J0
b−f = f. (2.10)

Definition 2.6. The left-sided Hadamard fractional derivative of order 0 ≤ α < 1 on (a, b) is
defined by

(

Dα
a+f

)

(x) := δ
(

J1−α
a+ f

)

(x), (2.11)

that is,

(

Dα
a+f

)

(x) =

(

x
d

dx

)

1

Γ(1 − α)

∫x

a

(

log
x

t

)−α f(t)dt

t
, a < x < b. (2.12)

When α = 0, we set

D0
a+f = f. (2.13)

Definition 2.7. The right-sided Hadamard fractional derivative of order α (0 ≤ α < 1) on (a, b)
is defined by

(

Dα
b−f

)

(x) := −δ
(

J1−α
b− f

)

(x), (2.14)

that is,

(

Dα
b−f

)

(x) = −

(

x
d

dx

)

1

Γ(1 − α)

∫b

x

(

log
t

x

)−α f(t)dt

t
, a < x < b. (2.15)

When α = 0, we set

D0
b−f = f. (2.16)
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Lemma 2.8. If α > 0, β > 0 and 0 < a < b < ∞, then

(

Jα
a+

(

log
t

a

)β−1
)

(x) =
Γ
(

β
)

Γ
(

α + β
)

(

log
x

a

)β+α−1
,

(

Dα
a+

(

log
t

a

)β−1
)

(x) =
Γ
(

β
)

Γ
(

β − α
)

(

log
x

a

)β−α−1
.

(2.17)

In particular, if β = 1, then the Hadamard fractional derivative of a constant is not equal to zero:

(

Dα
a+1

)

(x) =
1

Γ(1 − α)

(

log
x

a

)−α
, (2.18)

when 0 < α < 1.

Lemma 2.9. Let 0 < a < b < ∞, α > 0, and 0 ≤ µ < 1.

(a) If µ > α > 0, then Jα
a+ is bounded from Cµ,log[a, b] into Cµ−α,log[a, b]. In particular, Jα

a+ is
bounded in Cµ,log[a, b].

(b) If µ ≤ α, then Jα
a+ is bounded from Cµ,log[a, b] into C[a, b]. In particular, Jα

a+ is bounded
in Cµ,log[a, b].

This lemma justifies the following one

Lemma 2.10 (the semigroup property of the fractional integration operator Jα
a+). Let α >

0, β > 0, and 0 ≤ µ < 1. If 0 < a < b < ∞, then, for f ∈ Cµ,log[a, b],

Jα
a+J

β
a+f = J

α+β
a+ f (2.19)

holds at any point x ∈ (a, b]. When f ∈ C[a, b], this relation is valid at any point x ∈ [a, b].

Lemma 2.11. Let 0 ≤ α < 1 and 0 ≤ γ < 1. If f ∈ C1
γ,log

[a, b], then the fractional derivatives Dα
a+

and Dα
b−

exist on (a, b] and [a, b), respectively, (a > 0) and can be represented in the forms:

(

Dα
a+f

)

(x) =
f(a)

Γ(1 − α)

(

log
x

a

)−α
+

1

Γ(1 − α)

∫x

a

(

log
x

t

)−α
f ′(t)dt,

(

Dα
b−f

)

(x) =
f(b)

Γ(1 − α)

(

log
b

x

)−α

−
1

Γ(1 − α)

∫b

x

(

log
t

x

)−α

f ′(t)dt,

(2.20)

respectively.
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Lemma 2.12 (fractional integration by Parts). Let α > 0 and 1 ≤ p ≤ ∞. If ϕ ∈ Lp(R
+) and

ψ ∈ X
q

−1/p
, then

∫∞

0

ϕ(x)
(

Jα
+ψ

)

(x)
dx

x
=

∫∞

0

ψ(x)
(

Jα
−ϕ

)

(x)
dx

x
, (2.21)

where 1/p + 1/q = 1.

Definition 2.13. The fractional derivative cDα
a+f of order α (0 < α < 1) on (a, b) defined by

cDα
a+f = J1−α

a+ δf, (2.22)

where δ = x(d/dx), is called the Hadamard-Caputo fractional derivative of order α.

Now,motivated by the Hilfer fractional derivative introduced in [41, 42], we introduce
the new fractional derivative which we call Hilfer-Hadamard fractional derivative of order
0 < α < 1 and type 0 ≤ β ≤ 1:

(

D
α,β
a+ u

)

(t) = J
β(1−α)
a+

(

t
d

dt

)

(

J
(1−β)(1−α)
a+ u

)

(t). (2.23)

The Hilfer fractional derivative interpolates the Riemann-Liouville fractional derivative
and the Caputo fractional derivative. This new one interpolates the Hadamard fractional
derivative and its caputo counterpart. Indeed, for β = 0, we find the Hadamard fractional
derivative as defined in Definition 2.6 and, for β = 1, we find its Caputo type counterpart
(Definition 2.13).

Theorem 2.14 (Young’s inequality). If a and b are nonnegative real numbers and p and q are
positive real numbers such that 1/p + 1/q = 1, then one has

ab ≤
ap

p
+
bq

q
. (2.24)

Equality holds if and only if ap = bq.

3. Nonexistence Result

Before we state and prove our main result, we will start with the following lemma.

Lemma 3.1. If α > 0 and f ∈ C[a, b], then

(

Jα
a+f

)

(a) = lim
t→a

(

Jα
a+f

)

(t) = 0,
(

Jα
b−f

)

(b) = lim
t→ b

(

Jα
b−f

)

(t) = 0.
(3.1)
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Proof. Since f ∈ C[a, b], then on [a, b] we have |f(t)| < M for some positive constant M.
Therefore,

∣

∣

(

Jα
a+f

)

(t)
∣

∣ ≤
1

Γ(α)

∫ t

a

(

log
t

s

)α−1
∣

∣f(s)
∣

∣

ds

s
≤

M

Γ(α)

∫ t

a

(

log
t

s

)α−1ds

s

≤
M

Γ(α + 1)

(

log
t

a

)α

.

(3.2)

As α > 0, we see that

(

Jα
a+f

)

(a) = lim
t→a

(

Jα
a+f

)

(t) = 0. (3.3)

In a similar manner, we prove the second part of the lemma.

The proof of the next result is based on the test functionmethod developed byMitidieri
and Pokhozhaev in [52].

Theorem 3.2. Assume that µ ∈ R and m < (1 + µ)/(1 − γ). Then, Problem (1.2) does not admit
global nontrivial solutions in C

γ

1−γ,log
[a, b], where

C
γ

1−γ,log[a, b] =
{

y ∈ C1−γ,log[a, b] : D
γ
a+y ∈ C1−γ,log[a, b]

}

(3.4)

when u0 ≥ 0.

Proof. Assume that a nontrivial solution exists for all time t > a. Let ϕ(t) ∈ C1([a,∞)) be a
test function satisfying ϕ(t) ≥ 0, ϕ(t) is non-increasing and such that

ϕ(t) :=

{

1, a ≤ t ≤ θT,

0, t ≥ T,
(3.5)

for some T > a and some θ (θ < 1) such that a < θT < T . Multiplying the inequality in (1.2)
by ϕ(t)/t and integrating over [a, T], we get

∫T

a

ϕ(t)
(

D
α,β
a+ u

)

(t)
dt

t
≥

∫T

a

(

log
t

a

)µ

|u(t)|mϕ(t)
dt

t
. (3.6)

Observe that the integral in left-hand side exists and the one in the right-hand side exists for

m < (1 + µ)/(1 − γ) when u ∈ C
γ

1−γ,log
[a, b]. Moreover, from the definition of (D

α,β
a+ u)(t), we

can rewrite (3.6) as

∫T

a

ϕ(t)

(

J
β(1−α)
a+ t

d

dt
J

1−γ
a+ u

)

(t)
dt

t
≥

∫T

a

(

log
t

a

)µ

|u(t)|mϕ(t)
dt

t
. (3.7)
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By virtue of Lemma 2.12 (after extending by zero outside [a, T]), we may deduce from (3.7)
that

∫T

a

d

dt

(

J
1−γ
a+ u

)

(t)
(

J
β(1−α)

T− ϕ(t)
)

(t)dt ≥

∫T

a

(

log
t

a

)µ

|u(t)|mϕ(t)
dt

t
. (3.8)

Notice that Lemma 2.12 is valid in our case since ((log(t/a))(1−γ)(D
γ
a+u) ∈ C[a, T] implies that

|(log(t/a))(1−γ)(D
γ
a+u)(t)| ≤ M on [a, T] for some positive constant M)

∫T

a

∣

∣

∣t−1/p
(

D
γ
a+u

)

(t)
∣

∣

∣

p′ dt

t
≤ M

∫T

a

t1−p
′

(

log
t

a

)−p′(1−γ)dt

t

≤ M

∫∞

a

t1−p
′

(

log
t

a

)−p′(1−γ)dt

t
.

(3.9)

Let s = (p′ − 1)(log(t/a)), then by the definition of the Gamma function,

∫T

a

∣

∣

∣t−1/p
(

D
γ
a+u

)

(t)
∣

∣

∣

p′ dt

t
≤

Ma1−p′

(

p′ − 1
)1−p′(1−γ)

∫∞

0

s−p
′(1−γ)e−sds

≤
Ma1−p′

(

p′ − 1
)1−p′(1−γ)

Γ
(

1 − p′
(

1 − γ
))

< ∞.

(3.10)

Hence, t(d/dt)(J
1−γ
a+ u)t = (D

γ
a+u)(t) ∈ X

p′

−1/p
(and ϕ ∈ Lp) for some p > 1/γ .

An integration by parts in (3.8) yields

[(

J
1−γ
a+ u

)

(t)
(

J
β(1−α)

T− ϕ
)

(t)
]T

t=a
−

∫T

a

(

J
1−γ
a+ u

)

(t)
d

dt

(

J
β(1−α)

T− ϕ
)

(t)dt

≥

∫T

a

(

log
t

a

)µ

|u(t)|mϕ(t)
dt

t
,

(3.11)

or

− u0

(

J
β(1−α)

T− ϕ
)

(a+) −

∫T

a

(

J
1−γ
a+ u

)

(t)
d

dt

(

J
β(1−α)

T− ϕ
)

(t)dt

≥

∫T

a

(

log
t

a

)µ

|u(t)|mϕ(t)
dt

t

(3.12)

because (J
β(1−α)

T− ϕ)(T) = 0 (see Lemma 3.1) and

(

J
1−γ
a+ u

)

(a+) =
(

D
γ−1
a+ u

)

(a+) = u0. (3.13)
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Multiplying by t/t inside the integral in the left hand side of (3.12), we see that

L :=

∫T

a

(

J
1−γ
a+ u

)

(t)

(

−t
d

dt

)

(

J
β(1−α)

T− ϕ
)

(t)
dt

t

≥

∫T

a

(

log
t

a

)µ

|u(t)|mϕ(t)
dt

t
.

(3.14)

It appears from Definition 2.7 that

L =

∫T

a

(

J
1−γ
a+ u

)

(t)
(

D
1−β(1−α)

T− ϕ
)

(t)
dt

t
, (3.15)

and from Lemma 2.11, we see that

L =

∫T

a

(

J
1−γ
a+ u

)

(t)

[

ϕ(T)

Γ
(

β(1 − α)
)

(

log
T

t

)β(1−α)−1

−
1

Γ
(

β(1 − α)
)

∫T

t

(

log
s

t

)β(1−α)−1
ϕ′(s)ds

]

dt

t
.

(3.16)

Since ϕ(T) = 0 and

1

Γ
(

β(1 − α)
)

∫T

t

(

log
s

t

)β(1−α)−1
ϕ′(s)ds =

(

J
β(1−α)

T− δϕ
)

(t), (3.17)

the last equality becomes

L = −

∫T

a

(

J
1−γ
a+ u

)

(t)
(

J
β(1−α)

T− δϕ
)

(t)
dt

t

≥

∫T

a

(

log
t

a

)µ

|u(t)|mϕ(t)
dt

t
.

(3.18)

Note that δϕ ∈ Lp and by the same argument as the one used at the beginning of the proof

we may show that J
1−γ
a+ u ∈ X

p′

−1/p
since J

1−γ
a+ u ∈ C1−γ,log[a, T].

Therefore, Lemma 2.12 again allows us to write

L = −

∫T

a

δϕ(t)
(

J
β(1−α)
a+ J

1−γ
a+ u

)

(t)
dt

t
, (3.19)

and by the semigroup property Lemma 2.10

L = −

∫T

a

δϕ(t)
(

J1−α
a+ u

)

(t)
dt

t
. (3.20)
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On the other hand,

∫T

a

δϕ(t)
(

J1−α
a+ u

)

(t)
dt

t
=

1

Γ(1 − α)

∫T

a

δϕ(t)

∫ t

a

(

log
t

s

)−αu(s)

s
ds

dt

t

≤
1

Γ(1 − α)

∫T

a

∣

∣δϕ(t)
∣

∣

∫ t

a

(

log
t

s

)−α |u(s)|

s
ds

dt

t
.

(3.21)

As ϕ is nonincreasing, we have ϕ(s) ≥ ϕ(t) for all t ≥ s and 1/ϕ1/m(s) ≤ 1/ϕ1/m(t), m > 1.
Also, it is clear that

ϕ′(t) = 0, t ∈ [a, θT]. (3.22)

Therefore,

L ≤
1

Γ(1 − α)

∫T

a

∣

∣δϕ(t)
∣

∣

∫ t

a

(

log
t

s

)−α |u(s)|ϕ1/m(s)

sϕ1/m(s)
ds

dt

t

≤
1

Γ(1 − α)

∫T

θT

∣

∣δϕ(t)
∣

∣

ϕ1/m(t)

∫ t

a

(

log
t

s

)−α |u(s)|ϕ1/m(s)

s
ds

dt

t
.

(3.23)

Definition 2.4 allows us to write

L ≤

∫T

θT

∣

∣δϕ(t)
∣

∣

ϕ1/m(t)

(

J1−α
a+ |u|ϕ1/m

)

(t)
dt

t
. (3.24)

By the same argument as the one used at the beginning of the proof, we may show that

|u(t)|ϕ1/m(t) ∈ X
p′

−1/p
(|u(t)|ϕ1/m(t) ≤ |u(t)|). Moreover, it is easy to see that δϕ(t)/ϕ1/m(t) ∈

Lp (for, otherwise, we consider ϕλ(t) with some sufficiently large λ). Thus, we can apply
Lemma 2.12 to get

L ≤

∫T

θT

|u(t)|ϕ1/m(t)

(

J1−α
T−

∣

∣δϕ
∣

∣

ϕ1/m

)

(t)
dt

t
. (3.25)

Next, we multiply by (log(t/a))µ/m.(log(t/a))−µ/m inside the integral in the right-hand side
of (3.25):

L ≤

∫T

θT

(

J1−α
T−

∣

∣δϕ
∣

∣

ϕ1/m

)

(t)|u(t)|ϕ1/m(t)

(

log(t/a)
)µ/m

(

log(t/a)
)µ/m

dt

t
. (3.26)

For µ ≥ 0, we have (log(t/a))−µ/m ≤ (log(θT/a))−µ/m (because −µ/m < 0 and t > θT). It
follows that

L ≤

(

log
θT

a

)−µ/m ∫T

θT

(

J1−α
T−

∣

∣δϕ
∣

∣

ϕ1/m

)

(t)

(

log
t

a

)µ/m

|u(t)|ϕ1/m(t)
dt

t
. (3.27)
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By using the Young inequality (see Theorem 2.14), with m and m′ such that 1/m + 1/m′ = 1,
in the right-hand side of (3.27), we find

L ≤
1

m

∫T

θT

(

log
t

a

)µ

ϕ(t)|u(t)|m
dt

t
+

(

log(θT/a)
)−µm′/m

m′

∫T

θT

(

J1−α
T−

∣

∣δϕ
∣

∣

ϕ1/m

)m′

(t)
dt

t

≤
1

m

∫T

a

(

log
t

a

)µ

ϕ(t)|u(t)|m
dt

t
+

(

log(θT/a)
)−µm′/m

m′

∫T

θT

(

J1−α
T−

∣

∣δϕ
∣

∣

ϕ1/m

)m′

(t)
dt

t
.

(3.28)

Clearly, from (3.14) and (3.28), we see that

(

log(θT/a)
)−µm′/m

m′

∫T

θT

(

J1−α
T−

∣

∣δϕ
∣

∣

ϕ1/m

)m′

(t)
dt

t

≥

(

1 −
1

m

)∫T

a

(

log
t

a

)µ

ϕ(t)|u(t)|m
dt

t
,

(3.29)

or

1

m′

∫T

a

(

log
t

a

)µ

ϕ(t)|u(t)|m
dt

t
≤

(

log(θT/a)
)−µm′/m

m′

∫T

θT

(

J1−α
T−

∣

∣δϕ
∣

∣

ϕ1/m

)m′

(t)
dt

t
. (3.30)

Therefore, by Definition 2.5, we have

∫T

a

(

log
t

a

)µ

ϕ(t)|u(t)|m
dt

t

≤

(

log(θT/a)
)−µm′/m

Γm
′
(1 − α)

∫T

θT

(

∫T

t

(

log
s

t

)−α
∣

∣δϕ(s)
∣

∣

ϕ1/m(s)

ds

s

)m′

dt

t
.

(3.31)

The change of variable σT = t yields

∫T

a

(

log
t

a

)µ

ϕ(t)|u(t)|m
dt

t

≤

(

log(θT/a)
)−µm′/m

Γm
′
(1 − α)

∫1

θ

(

∫T

σT

(

log
s

σT

)−α
∣

∣ϕ′(s)
∣

∣

ϕ(s)1/m
ds

)m′

dσ

σ
.

(3.32)

Another change of variable r = s/T gives

∫T

a

(

log
t

a

)µ

ϕ(t)|u(t)|m
dt

t

≤

(

log(θT/a)
)−µm′/m

Γm
′
(1 − α)

∫1

θ

(

∫1

σ

(

log
r

σ

)−α
∣

∣ϕ′(r)
∣

∣

ϕ(r)1/m
dr

)m′

dσ

σ
.

(3.33)
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We may assume that the integral term in the right-hand side of (3.33) is convergent, that is,

1

Γm
′
(1 − α)

∫1

θ

(

∫1

σ

(

ln
r

σ

)−α
∣

∣ϕ′(r)
∣

∣

ϕ(r)1/m
dr

)m′

dσ ≤ C, (3.34)

for some positive constant C, for otherwise we consider ϕλ(r) with some sufficiently large λ.
Therefore

∫T

a

(

log
t

a

)µ

ϕ(t)|u(t)|m
dt

t
≤ C

(

log
θT

a

)−µm′/m

. (3.35)

If µ > 0, then

(

log
θT

a

)−µm′/m

−→ 0, (3.36)

as T → ∞. Finally, from (3.35), we obtain

lim
T →∞

∫T

a

(

log
t

a

)µ

ϕ(t)|u(t)|m
dt

t
= 0. (3.37)

We reach a contradiction since the solution is not supposed to be trivial.
In the case µ = 0 we have −µm′/m = 0 and the relation (3.35) ensures that

lim
T →∞

∫T

a

(

log
t

a

)µ

ϕ(t)|u(t)|m
dt

t
≤ C. (3.38)

Moreover, it is clear that

(

log
θT

a

)−µ/m ∫T

θT

(

J1−α
T−

∣

∣δϕ
∣

∣

ϕ1/m

)

(t)

(

log
t

a

)µ/m

|u(t)|ϕ1/m(t)
dt

t

≤

(

log
θT

a

)−µ/m
⎡

⎣

∫T

θT

(

J1−α
T−

∣

∣δϕ
∣

∣

ϕ1/m

)m′

(t)
dt

t

⎤

⎦

1/m′
[

∫T

θT

(

log
t

a

)µ

|u(t)|mϕ(t)
dt

t

]1/m

.

(3.39)

This relation, together with (3.27) (relations (3.28) and (3.31) also are usedwithout θ), implies
that

∫T

a

(

log
t

a

)µ

ϕ(t)|u(t)|m
dt

t
≤ K

[

∫ t

θT

(

log
t

a

)µ

|u(t)|mϕ(t)
dt

t

]1/m

(3.40)
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for some positive constant K, with

lim
T →∞

∫T

θT

(

log
t

a

)µ

|u(t)|mϕ(t)
dt

t
= 0 (3.41)

due to the convergence of the integral in (3.38). This is again a contradiction.

If µ < 0, we have (log(t/a))−µ/m ≤ (log(T/a))−µ/m (because −µ/m > 0 and t < T).
Then, the change of variables t = (T/a)σ and s = (T/a)r in (3.27) yields

∫T

a

(

log
t

a

)µ

ϕ(t)|u(t)|m
dt

t

≤

(

log(T/a)
)1−µm′/m

Γm
′
(1 − α)

∫ ln T/ln(T/a)

ln θT/ln(T/a)

(

∫ ln T/ ln(T/a)

σ

(

ln
(T/a)r

(T/a)σ

)−α
∣

∣ϕ′(r)
∣

∣

ϕ1/m(r)
dr

)m′

dσ,

(3.42)

or

∫T

a

(

log
t

a

)µ

ϕ(t)|u(t)|m
dt

t

≤

(

log(T/a)
)1−αm′−µm′/m

Γm
′
(1 − α)

∫ ln T/ln(T/a)

ln θT/ln(T/a)

(

∫ ln T/ ln(T/a)

σ

(r − σ)−α
∣

∣ϕ′(r)
∣

∣

ϕ1/m(r)
dr

)m′

dσ.

(3.43)

The expression |ϕ′(r)|/ϕ1/m(r) may be assumed bounded (or else we use ϕλ(r) with a large
value of λ). Hence,

∫T

a

(

log
t

a

)µ

ϕ(t)|u(t)|m
dt

t
≤ C

(

log
T

a

)−m′−µm′/m

(3.44)

for some positive constant C.

Although we are concerend here about nonexistence of solutions, using standard
techniques, one may show the existence of local solutions of Problem (1.1) with 1 < m <
(1 + µ)/(1 − γ). However, according to Theorem 3.2, such a solution cannot be continued for
all time inC

γ

1−γ,log
[a, b]. This is a phenomenon which occurs often in parabolic and hyperbolic

problemswith sources of polynomial type. In the absence of strong dissipations, these sources
are the cause of blowup in finite time (of local solutions). For this reason, they are called
blowup terms.

4. Example

For our example, we need the following lemma.
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Lemma 4.1. The following result holds for the fractional derivative operator D
α,β
a+ :

(

D
α,β
a+

[

(

log
s

a

)γ−1
])

(t) =
Γ
(

γ
)

Γ
(

γ − α
)

(

log
t

a

)γ−α−1

, t > a; γ > 0, (4.1)

where 0 < α < 1 and 0 ≤ β ≤ 1.

Proof. We observe from Lemma 2.8 that

(

J
(1−α)(1−β)
a+

(

log
s

a

)γ−1
)

(t) =
Γ
(

γ
)

Γ
(

(1 − α)
(

1 − β
)

+ γ
)

(

log
t

a

)γ+(1−α)(1−β)−1

. (4.2)

Therefore,

(

t
d

dt

)(

J
(1−α)(1−β)
a+

(

log
s

a

)γ−1
)

(t)

=

[

γ + (1 − α)
(

1 − β
)

− 1
]

Γ
(

γ
)

Γ
(

(1 − α)
(

1 − β
)

+ γ
)

(

log
t

a

)γ+(1−α)(1−β)−2

,

(4.3)

which, in light of the definition of D
α,β
a+ , yields

(

D
α,β
a+

[

(

log
s

a

)γ−1
])

(t)

=
Γ
(

γ
)

Γ
(

(1 − α)
(

1 − β
)

+ γ − 1
)

(

J
β(1−α)
a+

(

log
s

a

)γ+(1−α)(1−β)−2
)

(t).

(4.4)

From Lemma 2.8 again, we have

(

D
α,β
a+

[

(

log
s

a

)γ−1
])

(t)

=
Γ
(

γ
)

Γ
(

β(1 − α) + γ + (1 − α)
(

1 − β
)

− 1
)

(

log
t

a

)β(1−α)+γ+(1−α)(1−β)−2

=
Γ
(

γ
)

Γ
(

γ − α
)

(

log
t

a

)γ−α−1

.

(4.5)

The proof is complete.

Example 4.2. Consider the following differential equation of Hilfer-Hadamard-type fractional
derivative of order 0 < α < 1 and type 0 ≤ β ≤ 1:

(

D
α,β
a+ y

)

(t) = λ

(

log
t

a

)µ
[

y(t)
]m

(t > a > 0;m > 1) (4.6)
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with real λ, µ ∈ R+ (λ/= 0). Suppose that the solution has the following form:

y(t) = c

(

log
t

a

)ν

. (4.7)

Our aim next is to find the values of c and ν. By using Lemma 4.1 we have

(

D
α,β
a+

[

c
(

log
s

a

)ν
])

(t) =
cΓ(ν + 1)

Γ(ν − α + 1)

(

log
t

a

)ν−α

. (4.8)

Therefore,

cΓ(ν + 1)

Γ(ν − α + 1)

(

log
t

a

)ν−α

= λ

(

log
t

a

)µ[

c

(

log
t

a

)ν]m

. (4.9)

It can be directly shown that ν = (α+µ)/(1−m) and c = [Γ((α + µ)/(1 −m) + 1)/λΓ((mα + µ)/

(1 −m) + 1)]1/(m−1). If (mα + µ)/(1 −m) > −1, that is, m > (1 + µ)/(1 − α), then (4.6) has the
exact solution:

y(t) =

[

Γ
((

α + µ
)

/(1 −m) + 1
)

λΓ
((

mα + µ
)

/(1 −m) + 1
)

]1/(m−1)
(

log
t

a

)(α+µ)/(1−m)

. (4.10)

This solution satisfies the initial condition when (α + µ)/(1 −m) ≥ γ − 1 > −1. Note that there
is an overlap of the interval of existence in this example and the interval of nonexistence in
the previous theorem. This may be explained by the fact that this solution is in C1−γ,log[a, b]
but not in C

γ

1−γ,log
[a, b].
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Mathematics and Stochastic Analysis, vol. 16, no. 2, pp. 97–119, 2003.

[9] B. de Andrade, C. Cuevas, and J. P. C. dos Santos, “Existence results for a fractional equation with
state-dependent delay,” Advances in Difference Equations, vol. 2011, Article ID 642013, 15 pages, 2011.

[10] M. Benchohra, S. Hamani, and S. K. Ntouyas, “Boundary value problems for differential equations
with fractional order,” Surveys in Mathematics and its Applications, vol. 3, pp. 1–12, 2008.

[11] S. Bhalekar, V. Daftardar-Gejji, D. Baleanu, and R. Magin, “Fractional Bloch equation with delay,”
Computers & Mathematics with Applications, vol. 61, no. 5, pp. 1355–1365, 2011.

[12] K. Diethelm and N. J. Ford, “Analysis of fractional differential equations,” Journal of Mathematical
Analysis and Applications, vol. 265, no. 2, pp. 229–248, 2002.

[13] A. M. A. El-Sayed, “Fractional differential equations,” Kyungpook Mathematical Journal, vol. 28, no. 2,
pp. 119–122, 1988.

[14] A. M. A. El-Sayed, “On the fractional differential equations,” Applied Mathematics and Computation,
vol. 49, no. 2-3, pp. 205–213, 1992.

[15] A. M. A. El-Sayed, “Fractional order evolution equations,” Journal of Fractional Calculus, vol. 7, pp.
89–100, 1995.

[16] A. M. A. El-Sayed and S. A. Abd El-Salam, “Weighted Cauchy-type problem of a functional differ-
integral equation,” Electronic Journal of Qualitative Theory of Differential Equations, vol. 30, pp. 1–9, 2007.

[17] A.M. A. El-Sayed and S. A. Abd El-Salam, “Lp-solution of weighted Cauchy-type problem of a diffre-
integral functional equation,” International Journal of Nonlinear Science, vol. 5, no. 3, pp. 281–288, 2008.

[18] K. M. Furati and N.-E. Tatar, “Power-type estimates for a nonlinear fractional differential equation,”
Nonlinear Analysis. Theory, Methods & Applications, vol. 62, no. 6, pp. 1025–1036, 2005.

[19] K. M. Furati and N.-E. Tatar, “An existence result for a nonlocal fractional differential problem,”
Journal of Fractional Calculus, vol. 26, pp. 43–51, 2004.

[20] K. M. Furati and N.-E. Tatar, “Behavior of solutions for a weighted Cauchy-type fractional differential
problem,” Journal of Fractional Calculus, vol. 28, pp. 23–42, 2005.

[21] K. M. Furati and N.-E. Tatar, “Long time behavior for a nonlinear fractional model,” Journal of
Mathematical Analysis and Applications, vol. 332, no. 1, pp. 441–454, 2007.

[22] A. A. Kilbas, B. Bonilla, and J. J. Trujillo, “Existence and uniqueness theorems for nonlinear fractional
differential equations,” Demonstratio Mathematica, vol. 33, no. 3, pp. 583–602, 2000.

[23] A. A. Kilbas, B. Bonilla, J. J. Trujillo et al., “Fractional integrals and derivatives and differential
equations of fractional order in weighted spaces of continuous functions,” Doklady Natsionalnoy
Akademii Nauk Belarusi, vol. 44, no. 6, 2000 (Russian).

[24] A. A. Kilbas and S. A. Marzan, “Cauchy problem for differential equation with Caputo derivative,”
Fractional Calculus & Applied Analysis, vol. 7, no. 3, pp. 297–321, 2004.

[25] A. A. Kilbas and S. A.Marzan, “Nonlinear differential equations with the Caputo fractional derivative
in the space of continuously differentiable functions,” Differential Equations, vol. 41, no. 1, pp. 84–89,
2005.

[26] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equa-
tions, vol. 204 of North-Holland Mathematics Studies, Elsevier Science, Amsterdam, The Netherlands,
2006, Edited by Jan van Mill.

[27] A. A. Kilbas and A. A. Titioura, “Nonlinear differential equations with Marchaud-Hadamard-type
fractional derivative in the weighted space of summable functions,” Mathematical Modelling and
Analysis, vol. 12, no. 3, pp. 343–356, 2007.

[28] N. Kosmatov, “Integral equations and initial value problems for nonlinear differential equations of
fractional order,”Nonlinear Analysis. Theory, Methods & Applications, vol. 70, no. 7, pp. 2521–2529, 2009.

[29] C. Kou, J. Liu, and Y. Ye, “Existence and uniqueness of solutions for the Cauchy-type problems of
fractional differential equations,” Discrete Dynamics in Nature and Society, vol. 2010, Article ID 142175,
15 pages, 2010.

[30] V. Lakshmikantham, “Theory of fractional functional differential equations,” Nonlinear Analysis.
Theory, Methods & Applications, vol. 69, no. 10, pp. 3337–3343, 2008.

[31] W. Lin, “Global existence theory and chaos control of fractional differential equations,” Journal of
Mathematical Analysis and Applications, vol. 332, no. 1, pp. 709–726, 2007.



Abstract and Applied Analysis 17
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[52] È. Mitidieri and S. I. Pokhozhaev, “A priori estimates and the absence of solutions of nonlinear partial
differential equations and inequalities,” Proceedings of the Steklov Institute of Mathematics, vol. 234, pp.
1–383, 2001.



Submit your manuscripts at

http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


