ON A DISTANCE FUNCTION BETWEEN DIFFERENTIABLE STRUCTURES*

YOSHIHIRO SHIKATA*

Introduction

In this note, we investigate a relation between the connected sum of manifolds and the distance of manifolds ([2]). Since the smoothing of a piecewise linear equivalence is given by connected sum of exotic spheres ([1]), we have a certain estimate of the smoothing obstruction using the distance of manifolds (Proposition 3). In § 3, an application is given to show the impossibility of the 0.64 -pinching of an exotic sphere.

1. Let M, N be smooth orientable manifolds with boundary so that the boundaries $\partial M, \partial N$ are diffeomorphic each other through a diffeomorphism f. Denote by $C(\partial M), C(\partial N)$ the collar neighbourhoods of $\partial M, \partial N$, respectively, and let

$$
\alpha: \partial M \times[0,1) \rightarrow C(\partial M), \quad \beta: \partial N \times[0,1) \rightarrow C(\partial N)
$$

be the diffeomorphisms. Then the map which sends $\alpha(x, t)(x \in \partial M, t$ $\in[0,1)$) into $\beta(f(x), 1-t)$ defines a diffeomorphism $F=F(f)$ between $C(\partial M), C(\partial N)$ and the identified space $M \bigcup_{F} N$ turns out to be a smooth manifold.

Lemma 1. Let $M_{i}, N_{i}(i=1,2)$ be smooth manifolds with boundary and let f_{1} be a diffeomorphism between ∂M_{1} and ∂N_{1}. If homeomorphisms $g_{1}: M_{1} \rightarrow M_{2}$ and $g_{2}: N_{1} \rightarrow N_{2}$ are diffeomorphic on some neighbourhoods of the closures of collar neighbourhoods $C\left(\partial M_{1}\right), C\left(\partial N_{1}\right)$, then there are collar neighbourhoods $C\left(\partial M_{2}\right), C\left(\partial N_{2}\right)$ and a diffeomorphism F_{2} of $C\left(\partial M_{2}\right)$ onto $C\left(\partial N_{2}\right)$ so that $M_{2} \bigcup_{F_{2}} N_{2}$ is homeomorphic to $M_{1} \bigcup_{F\left(f_{1}\right)} N_{1}$ by a homeomorphism $g_{1} \cup g_{2}$ defined by

[^0]\[

g_{1} \cup g_{2}(x)= $$
\begin{cases}g_{1}(x), & \text { if } x \in M_{1} \\ g_{2}(x), & \text { if } x \in N_{1}\end{cases}
$$
\]

Proposition 1. Let $M_{i}, N_{i}, g_{i}(i=1,2), f_{1}$, be as in Lemma 1. Suppose moreover that with respect to Riemannian metrics $\rho_{i}, \sigma_{i}(i=1,2)$ on M_{i}, N_{i} respectively, the homeomorphisms $g_{i}(i=1,2)$ satisfy that

$$
\begin{cases}\rho_{1}(x, y) / k_{1} \leq \rho_{2}\left(g_{1}(x), g_{1}(y)\right) \leq k_{1} \rho_{1}(x, y) & \text { for } x, y \in M_{1}, \\ \sigma_{1}(x, y) / k_{2} \leq \sigma_{2}\left(g_{2}(x), g_{2}(y)\right) \leq k_{2} \sigma_{1}(x, y) & \text { for } x, y \in N_{1},\end{cases}
$$

then there exist Riemannian metrics τ_{i} on $M_{i} \bigcup_{F_{i}} N_{i}(i=1,2)$ such that

$$
\tau_{1}(x, y) / \max \left(k_{1}, k_{2}\right) \leq \tau_{2}\left(g_{1} \cup g_{2}(x), g_{1} \cup g_{2}(y)\right) \leq \max \left(k_{1}, k_{2}\right)\left(\tau_{1}(x, y)\right)
$$

Proof. Take a real valued smooth function φ such that

$$
\begin{aligned}
& 0 \leq \varphi(t) \leq 1, \quad \varphi(t)=0 \text { for } t \leq 0, \varphi(t)=1 \quad \text { for } t \geq 1 \\
& 0 \leq \varphi^{\prime}(t), \quad \varphi^{\prime}(t)=0 \text { for } t \leq 0 \text { or } t \geq 1 \\
& \varphi(1-t)=1-\varphi(t)
\end{aligned}
$$

and let

$$
\alpha_{1}: M_{1} \times[0,1) \rightarrow C\left(\partial M_{1}\right), \quad \beta_{1}: N_{1} \times[0,1) \rightarrow C\left(\partial N_{1}\right)
$$

be diffeomorphisms onto the collar neighbourhoods. Then

$$
\alpha_{2}=g_{1} \circ \alpha_{1}\left(\left(\left.g_{1}^{-1}\right|_{\partial M_{2}}\right), \mathrm{id}\right), \quad \beta_{2}=g_{2} \circ \beta_{1}\left(\left(\left.g_{2}^{-1}\right|_{\partial N_{2}}\right), \mathrm{id}\right)
$$

also are diffeomorphism of $\partial M_{2} \times[0,1), \partial N_{2} \times[0,1)$ onto collar neighbourhoods $C\left(\partial M_{2}\right), C\left(\partial N_{2}\right)$, respectively, moreover the identification map F_{2} obtained from α_{2}, β_{2}, and $\left(\left.g_{2}\right|_{\partial N_{1}}\right) \circ f_{1} \circ\left(\left.g_{1}^{-1}\right|_{\partial M_{2}}\right)$ satisfies that

$$
g_{2} \circ F_{1}=F_{2} \circ g_{1} \quad \text { on } C\left(\partial M_{1}\right) .
$$

Define quadratic forms $\tilde{\tau}_{i}$ on $M_{i} \bigcup_{F_{i}} N_{i}(i=1,2)$ by

$$
\left(\tilde{\tau}_{i}\right)_{x}= \begin{cases}\left(\tilde{\rho}_{i}\right) & , \\ \varphi \in M_{i}-C\left(\partial M_{i}\right), \\ (t(x))\left(\tilde{\rho}_{i}\right)_{x}+(1-\varphi(t(x)))\left(F_{i}^{* \tilde{\sigma}_{i}}\right)_{x}, & x \in C\left(\partial M_{i}\right), \\ \left(\tilde{\sigma}_{i}\right)_{x} & , \\ x \in N_{i}-C\left(\partial N_{i}\right) .\end{cases}
$$

where $t(x)$ denotes the t-coordinate of x in the collor neighbourhood and $\left(^{\sim}\right)$ indicates the quadratic form of a metric (). Then it is easy to see that the well defined quadratic forms $\tilde{\tau}_{i}(i=1,2)$ give Riemannian metrics τ_{i} on $M_{i} \bigcup_{F_{i}} N_{i}$. Since

$$
\begin{aligned}
& \rho_{1}(x, y) / k_{1} \leq \rho_{2}\left(g_{1}(x), g_{1}(y)\right) \leq k_{1} \rho_{1}(x, y) \\
& \sigma_{1}\left(F_{1}(x), F_{1}(y)\right) / k_{2} \leq \sigma_{2}\left(g_{2} F_{1}(x), g_{2} F_{1}(y)\right) \leq k_{2} \sigma_{1}\left(F_{1}(x), F_{1}(y)\right),
\end{aligned}
$$

it holds that

$$
\begin{aligned}
& \tilde{\rho}_{1} / k_{1} \prec g_{1}^{*} \tilde{\rho}_{2} \prec k_{1} \tilde{\rho}_{1}, \\
& \left.F_{1}^{*} \tilde{\sigma}_{1} / k_{2} \prec g_{1}^{*}\left(F_{2}^{*} \tilde{\sigma}_{2}\right)=\left(g_{2} F_{1}\right)\right)^{*} \tilde{\sigma}_{2} \prec k_{2} F_{1}^{*} \tilde{\sigma}_{1} .
\end{aligned}
$$

Therefore the metrics τ_{i} satisfy that

$$
\tilde{\tau}_{1} / \max \left(k_{1}, k_{2}\right) \prec g_{1}^{*} \tilde{\tau}_{2} \prec \max \left(k_{1}, k_{2}\right) \tilde{\tau}_{1}
$$

on $C\left(\partial M_{i}\right)$, thus from the construction of $g_{1} \cup g_{2}$ we may conclude that

$$
\tau_{1}(x, y) / \max \left(k_{1}, k_{2}\right) \leq \tau_{2}\left(\left(g_{1} \cup g_{2}\right)(x),\left(g_{1} \cup g_{2}\right)(y)\right) \leq\left(\max \left(k_{1}, k_{2}\right)\right)\left(\tau_{1}(x, y)\right) .
$$

Let $M_{i}(i=1,2)$ be smooth manifolds with metrics $\rho_{i}(i=1,2)$ and f be a map of M_{1} into M_{2}, then we define $\ell\left(f: \rho_{1}, \rho_{2}\right)$ by

$$
\begin{aligned}
& \ell\left(f: \rho_{1}, \rho_{2}\right)=\inf \left\{k \geq 1 / \rho_{1}(x, y) / k \leq \rho_{2}(f(x), f(y)) \leq k \rho_{1}(x, y)\right. \\
&\text { for any } x, y \in M\}
\end{aligned}
$$

Definition. Let $\Sigma_{i}(i=1,2)$ be differential structures on a combinatorial manifold X represented by smooth manifolds $M_{i}(i=1,2)$ with Riemannian metrics $\rho_{i}(i=1,2)$. The distance $d\left(\Sigma_{1}, \Sigma_{2}\right)$ between the differential structures is defined to be

$$
d\left(\Sigma_{1}, \Sigma_{2}\right)=\log \left(\inf \ell\left(f: \rho_{1}, \rho_{2}\right)\right),
$$

where the infimum is taken over all the piecewise linear equivalences f of M_{1} onto M_{2} and all the Riemannian metrics ρ_{1}, ρ_{2}. It is known ([2]) that d is actually a distance function.

Theorem 1. Let $\Sigma_{i, j}(i, j=1,2, j=1,2)$ be differential structures on cominatorial manifolds $X_{i}(i=1,2)$, respectively, then it holds that

$$
d\left(\Sigma_{1,1} \# \Sigma_{2,1}, \Sigma_{1,2} \# \Sigma_{2,2}\right) \leq \max \left(d\left(\Sigma_{1,1}, \Sigma_{1,2}\right), d\left(\Sigma_{2,1}, \Sigma_{2,2}\right)\right)
$$

where $\Sigma_{i, 1} \# \Sigma_{i, 2}$ denotes the differential structure obtained by the connected sum.

Proof. Represent $\Sigma_{i, j}$ by smooth manifolds $M_{i, j}$, and for $\varepsilon>0$ take piecewise diffeomorphisms g_{i} of $M_{i, 1}$ into $M_{i, 2}$ and Riemannian metrics $\rho_{i, j}$ on $M_{i, j}$ so that

$$
\log \ell\left(g_{i} ; \rho_{i, 1}, \rho_{i, 2}\right) \leq d\left(\Sigma_{i, 1}, \Sigma_{i, 2}\right)+\varepsilon
$$

Assume that g_{i} are diffeomorphic on neighbourhoods of points $p_{i} \in M_{i, 1}$. Let $M_{i, 1}^{\prime}$ (resp. $M_{i, 2}^{\prime}$) be the manifold obtained by cutting out a small imbedded disk around p_{i} (resp. $g_{i}\left(p_{i}\right)$). Then $M_{i, j}^{\prime}$ and g_{i} turns out to satisfy the assumption of Proposition 1 with $k_{i}=\ell\left(g_{i} ; \rho_{i, 1}, \rho_{i, 2}\right)$. Since identified manifolds $M_{1, j}^{\prime} \cup M_{2, j}^{\prime}$ represent the connected sum $\Sigma_{i, j}$ $\# \Sigma_{2, j}$, we have that

$$
d\left(\Sigma_{1,1} \# \Sigma_{2,1}, \Sigma_{1,2} \# \Sigma_{2,2}\right) \leq \max \left(\log k_{1}, \log k_{2}\right)
$$

finishing the proof.
Corollary 1. Let Γ_{k} be the group of k-dimensional homotopy spheres, then it holds that

$$
d\left(\Sigma_{1}+\Sigma_{3}, \Sigma_{2}+\Sigma_{3}\right)=d\left(\Sigma_{1}, \Sigma_{2}\right)
$$

for any $\Sigma_{i} \in \Gamma_{k}(i=1,2,3)$.
Corollary 2. The subset $\Gamma_{k}(a)$ of Γ_{k} given by

$$
\Gamma_{k}(a)=\left\{\Sigma \in \Gamma_{k} / d\left(S^{k}, \Sigma\right) \leq a\right\}
$$

turns out to be a subgroup of Γ_{k}, where S^{k} denotes the standard k sphere.

Corollary 3. Let $M_{i}(i=1,2)$ be k-dimensional manifolds such that $M_{2} \approx M_{1} \# \Sigma$ (diffeomorphic) with $\Sigma \in \Gamma_{k}(\alpha)$, then

$$
d\left(M_{1}, M_{2}\right) \leq a
$$

Corollary 4. Let Diff S^{k-1} denote the set of orientation preserving diffeomorphisms onto itself and let π denote the projection of Diff S^{k-1} onto Γ_{k}, then taking the usual metric $\left|\mid\right.$ on S^{k-1} induced from that of $R^{k} \supset S^{k-1}$, it holds that

$$
d\left(S^{k}, \pi(f)\right) \leq \log \ell(f ;|\quad|,|\quad|)
$$

Proof. Extend f radially to a homeomorphism g of disk D^{k} onto itself which bounds the sphere S^{k-1} and apply Lemma 1 to disks D^{k}, g, id and f :

to obtain a homeomorphism $g \cup$ id and a diffeomorphism F_{2} of ∂D^{k} onto itself which can be chosen to be identity. Since it is obvious that

$$
\ell(f ;||,|\quad|)=\ell(g ;||,| |)
$$

Proposition 1 yields that

$$
d\left(S^{k-1} \bigcup_{F_{2}} S^{k-1}, \pi(f)\right) \leq \log \ell(f ;|\quad|,| |)
$$

2. The partial converse to Corollary 3 holds as in the following:

Proposition 2. Let f be a homeomorphism between k-dimensional manifolds $M_{i},(i=1,2)$ with Riemannian metrics $\rho_{i}(i=1,2)$ and assume that f is diffeomorphic except finite number of points $P_{1}, \cdots P_{m} \in M_{1}$ then $M_{2} \approx M_{1} \# \Sigma$ (diffeomorphic) with $\Sigma \in \Gamma_{k}\left(\log \ell\left(f ; \rho_{1}, \rho_{2}\right)\right)$.

Proof. Imbed small k-disks D_{i} around P_{i}, then the images $f\left(D_{i}\right)$ turn out to be submanifolds in M_{2}. Apply Lemma 1 to manifolds $D_{i}, f\left(D_{i}\right)$, diffeomorphism $f l_{\partial D_{i}}$ and homeomorphisms id, f^{-1}

to obtain homotopy sheres $\Sigma_{i}=D_{i} \bigcup_{F_{1}} f\left(D_{i}\right)$ and a homeomorphism id $\cup f^{-1}$ between the homotopy sphere and the sphere S_{i}. Because of Proposition 1 there are Riemannian metrics $\sigma_{1}^{i}, \sigma_{2}^{i}$ on Σ_{i}, S_{i}, respectively, so that

$$
\ell\left(\operatorname{id} \cup f ; \sigma_{1}^{i}, \sigma_{2}^{i}\right) \leq \ell\left(f: \rho_{1}, \rho_{2}\right)
$$

Therefore we have that

$$
\Sigma_{i} \in \Gamma_{k}\left(\log \ell\left(f ; \rho_{1}, \rho_{2}\right)\right)
$$

On the other, since it is easy to see that

$$
M_{2} \approx M_{1} \# \Sigma_{1} \# \Sigma_{2} \cdots \# \Sigma_{m},
$$

this finishes the proof.
In general, concerning the first obstruction of Munkres ([1]) to smoothing f, we obtain the following:

Proposition 3. Let $M_{i}(i=1,2)$ be smoothly triangulated manifolds with Remannian metrics $\rho_{i}(i=1,2)$ and let L be an m-dimensional subcomplex of M_{1}. If a homeomorphism f of M_{1} onto M_{2} is diffeomorphic mod. L, and if $\ell\left(f: \rho_{1}, \rho_{2}\right)<\ell_{0} \doteqdot 1.32$ for the positive root ℓ_{0} of $x^{3}-x-1=0$, then the first obstruction chain $\lambda(f)$ of Munkres to smoothing f lies in

$$
\Gamma_{k-m}\left(\log \ell(f)\left(1-\left(\ell^{3}(f)-\ell(f)\right)^{2}\right)^{-1 / 4}\right)
$$

where $\ell(f)=\ell\left(f ; \rho_{1}, \rho_{2}\right)$
Proof. Munkres obstruction is obtained as follows: Take an m simplex $\sigma \in L$ and take trivializations of normal bundles as coordinate systems around σ and $f(\sigma)$ so that the tubular neighbourhoods of $\sigma, f(\sigma)$ are diffeomorphic to $\sigma \times R^{k-m}, f(\sigma) \times R^{k-m}$, respectively, then if $\varepsilon>0$ is sufficiently small, $\pi \circ f \circ i_{p}$ is a homeomorphism of the ε-disk D_{e} around 0 into R^{k-m} for the inclusion $i_{p}: R^{k-m} \rightarrow p \times R^{k-m}$ and for the projection $\pi: f(\sigma) \times R^{k-m}$. Thus the obstruction $\lambda(f)(\sigma)$ is defined to be homotopy sphere obtained by glueing the boundaries of D_{6} and $\pi \circ f \circ i_{p}\left(D_{\varepsilon}\right)$ through $\pi \circ f \circ i_{p}$. Hence it is sufficient for the proof of Proposition 3 to compute $\ell\left(\pi \circ f \circ i_{p} ; \rho_{1}, \rho_{2}\right)$ (see Proposition 1) and because of the regularity of f at L ([1] p. 526 (4)) the computation is reduced to the following Assertion;

Assertion. Let g be a map between manifolds $N_{i}(i=1,2)$ with Riemannian metrics $\sigma_{i}(i=1,2)$ satisfying that

$$
\ell\left(g: \sigma_{1}, \sigma_{2}\right)<\kappa<\ell_{0}
$$

then if g is differentiable along any vector of an m dimensional vector space $V \subset T_{p}\left(N_{1}\right)$, the angle θ between the vector $\overrightarrow{\exp _{2}^{-1} \circ g \circ \exp _{1}(y), 0}$ and the plane $\mathrm{dg}(V)$ is not too small, in fact θ satisfies that

$$
\cos \theta<\kappa^{3}-\kappa<1
$$

for any y in orthogonal linear subspace W to V, provided $|y|$ is sufficiently small.

Proof of Assertion. Taking an ε-disk D_{ε} of 0 in $T_{p}\left(N_{1}\right)$, we may assume that $\tilde{g}=\exp _{2}^{-1} \circ g \circ \exp _{1}$ also satisfies that

$$
\ell(\tilde{g}:|\quad|,|\quad|)<\kappa<\ell_{0}
$$

on D_{ε}. Let $x \in V$ be such that $|x|=|y|$, then it holds that

$$
\begin{aligned}
2\langle\tilde{g}(x), f(y)\rangle & =|\tilde{g}(x)|^{2}+|f(y)|^{2}-|\tilde{g}(x)-f(y)|^{2} \\
& <\kappa\left(|x|^{2}+|y|^{2}\right)-|x-y|^{2} / \kappa \\
& =2|x|^{2}(\kappa-1 / \kappa)
\end{aligned}
$$

also it holds that

$$
2\langle\tilde{g}(x), f(y)\rangle>2|x|^{2}(1 / \kappa-\kappa),
$$

therefore we have that

$$
\mid \cos \overrightarrow{(\vec{g}(x) 0}, \overrightarrow{f(y) 0}) \mid<\kappa^{3}-\kappa
$$

finishing the proof of Assertion.
Thus taking the regularity of f into consideration, we may conclude that by an application of Assertion to $g=f \circ i_{p}$,

$$
\kappa^{-1}\left(1-\left(\kappa^{3}-\kappa\right)^{2}\right)^{1 / 2} \leq \rho_{2}\left(\pi \circ f \circ i_{p}(x), \pi \circ f \circ i_{p}(y)\right) / \rho_{1}(x, y) \leq \kappa
$$

on a small disk around 0 , completing the proof of Proposition 3.
3. The method in $\S 1,2$ applies to obtain a weak estimation of the pinching of an exotic sphere. Let M_{1}, M_{2} be combinatorially equivalent compact manifolds, then according to the construction of Hirch-Munkres ([1]), we may have a sequence of compact manifolds $L_{i}(i=1 \cdots k)$ such that
i) L_{i} are combinatorially equivalent to M_{1}, M_{2}.
ii) $\quad L_{1}=M_{1}, I_{k}=M_{2}$ (diffeomorphic).
iii) L_{i+1} is obtained by attaching of $\Sigma^{j} \times I^{n-j}$ to L_{i} through a certain attaching map, $\left(\Sigma^{j} \in \Gamma^{j}\right)$.

Now suppose M_{1}, M_{2} have different (integral) Pontrjagin class, then for some i, L_{i}, L_{i+1} have also different Pontrjagin classes. Since we know that manifolds having different Pontrjagin classes are of distance $\geqq 1 / 2 \log 3 / 2$ ([3]), we have that

$$
\begin{align*}
1 / 2 \log 3 / 2 & \leqq d\left(L_{i}, L_{i+1}\right) \\
& \leqq \max \left(d\left(L_{i}, L_{i}\right), d\left(S^{j} \times I^{n-j}, \Sigma^{j} \times I^{n-j}\right)\right) \tag{1}\\
& \leqq d\left(S^{j}, \Sigma^{j}\right)
\end{align*}
$$

Here the last inequality follows from an easily proved Lemma below:
LEMMA 2. If M_{i}, N_{i} denote a pair of combinatorially equivalent compact manifolds ($i=1,2$) then

$$
d\left(M_{1} \times M_{2}, N_{1} \times N_{2}\right) \leqq \max \left(d\left(M_{1}, N_{1}\right), d\left(M_{2}, N_{2}\right)\right)
$$

On the other as is improved by Karcher (unpublished, see also ([4])) δ-pinched Riemannian manifold $M_{\delta}(\delta \geqq 9 / 16)$ has distance $\leq 4(1-\sqrt{\delta})$ from the standard sphere S, therefore if the exotic sphere Σ^{j} in (1) is expressed as a δ-pinched manifold $M_{\boldsymbol{j}}, \delta$ must satisfy that

$$
1 / 2 \log 3 / 2 \leqq 4(1-\sqrt{\delta}) .
$$

hence

$$
\delta \leqq 0.64,
$$

thus we may conclude that a certain exotic sphere of dimension $\leqq 16$ which appears in the obstruction chain to smoothing a combinatorial equivalence can not be pinched by 0.64 , because we know that there are compact 16 manifolds having different Pontrjagin classes.

References

[1] J. Munkres: Obstructions to the smoothing of piecewise-differentiable homeomorphisms, Ann. of Math., Vol. 72 (1960) 521-554.
[2] Y. Shikata: On a distance function on the set of differentiable structure, Osaka J. Math., Vol. 3 (1966) 293-301.
[3] Y. Shikata: On Pontriagin classes, I, J. of Math. Osaka City Univ., Vol. 13 (1963) 73-86.
[4] Y. Shikata: On the differentiable pinching problem, Osaka J. Math., Vol. 4 (1967) 279-287.

Nagoya University

[^0]: Received March 12, 1974.

 * During this work, the author is supported by SFB at Bonn University, also he wishes to express his hearty thanks to Prof. Klingenberg for his constant encouragement.

