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ON A DISTRIBUTION PROBLEM IN FINITE SETS
by

H. G. Meijer and H. Niederreiter

1.

In [2] the following problem emerged which deserves some interest
of its own. Let X = {x;, - - -, x,} be a nonvoid finite set and let u be a
measure on X with u(x;) =4, >0for 1 <i<kand i 4 =1

Without loss of generality we may suppose that the x; are arranged in
such a way that 4, < 4, < --- £ A,. For an infinite sequence w in X,
let A(i; N; o) denote the number of occurrences of the element x;
among the first N terms of w and let D(w) = sup;, 5|4(i; N; @)—A;N|
(the supremum is taken over i = 1,2, -, k; N =1,2,---). We pose
the problem: how small can D(w) be?

Similarly, define A(M; N; ) for a subset M of X to be the number of
occurrences of elements from M among the first N terms of @ and
put C(w) = supy,y|4(M; N; )—pu(M)N| (the supremum is taken over
all subsets M < X and N = 1,2, - - -). Then we may ask: how small can
C(w) be?

These problems are similar to the well-known problem of constructing
a sequence with small discrepancy in the unit interval [0,1] (see e.g. v.d.
Corput [1]).

It was shown in [2] that a ‘very well’ distributed sequence w in X can
be found with

D) < k-1, C() < (k—1) [f;-] .

Those values, however, are far from being optimal. In section 2 of this
paper we shall construct a sequence w in X with

1) D(w) = 12—+s}-ki21 and C(w) < 3(k-1) fork = 2.
n=1Hh

If k = 1 then, trivially, C(w) = D(w) = 0.

For some special measures p on X better results can be obtained.
If eg. Ay =--- = A = l/k then one easily verifies that the sequence
® = (y,)s=, defined by y, = x; if n = i (mod. k) satisfies D(w) = 1—1/k.
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154 H. G. Meijer and H. Niederreiter [2]

In section 3 we construct a sequence # in X which gives a better result
than (1) if 4, is sufficiently small and k¥ = 3. In fact we prove

D(n) < { 1+34, (k=2) %fk %s even
3+34, (k—1) if k is odd
= D(n) for k = 2,3
) < max (D(n), 3) fork =4
< max (D(n), %% fork =75
< max (D(n), #(k—2)) fork = 6.

We remark that always 4, = 1/k.

Added in proof: Recently Tijdeman [3] found by an entirely different
method: if D, = sup, inf,, D(w), then it holds
_ 1
2(k—1)
Moreover he generalized the results to countable sets.
A refinement of this method gives

=D, =1

_ 1
2(k—1)

e =

(see [4]).

2.

By using some refinements of the method employed in [2], we can prove
the following result.

THEOREM 1. For any nonvoid finite set X = {x;, -, x,} and every
measure pon X with u(x;) = 2, >0 =1,""", k), A, S, - =4
and Zf=1 A; = 1, there is a sequence w in X such that

k—i
|A(i; N; 0)—24;N| £ 3+31 3 1 if 225i<k
n=1Nn
(2) k-1 1
|[A(1; N;w)—A, N £1> =,
n=1Nn
therefore
D(w) =0 ifk =1,
k—21
D(w) <3+3Y - if k22
n=1H
moreover

C() < 3(k—1).
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Proor. We proceed by induction on k. Obviously the case k = 1 is
trivial. Assuming the proposition to be true for an integer k = 1, we
shall prove that it also holds for k+1.

We consider the set X = {x,," ", X,+,} and a measure yu on X with

k+1
px) =24>0, A A S Sk, pAh=1
i=1
On the subset ¥ = {x,, : - -, x,} of X, introduce a measure v by
W) = — = a.
21+ A +A«k

Since 4, £ 1, £ -+ - £ 4, it follows that

(3) o < for 1<i<k

k—i+1

By induction hypothesis, there exists a sequence © = (¥,)r=; in ¥ with

k=i
|A(i; N;t)—o; Nl £ 3+1 ) L sisk
n=11N1
“) - 1

[A(L; N;o)—oy NI £ 3 =
n=1R

for all N = 1, and with
) C(r) < 3(k-1).

We introduce the following notation: for a real number a let [|a]| =
[a+1], i.e. the integer nearest to a. For n = 1, put R(n) = n—||A4n||.
We define a sequence w = (z,),~, in X by setting

Zy = Xguq Af | Agsqnll > |Mk+1(n—1)”’ (n =1.2. - )
Zy = YR®m) if ||&sonll = |Mk+1(”’—1)“'
We get then

A(k+1; N; 0) = || 4+ N|| = 4411 N+e
with |e|] < 1, and therefore
(6) [A(k+1; N; )= 2+ N|< 4.
For 1 £i <k, we have A(i; N; w) = A(i; R(N); t) for all N =1

(if R(N) = 0, we had to read A(i; R(N); 7) = 0). Now we write
(7) 14(G; N; 0)— 4, N|S|4(i; RIV); 1)— ;RN )| + |, RN )= A, .
Using the definitions of R(N) of «; and (3), we obtain

(8) 14R(N) =4 N| = |a(N Ay sy N—&)— 4 N| = loge] < ——

2k—i+1)
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Hence by (7), (4) and (8) we get

k—i+1 1 .
|[A(i; N;o)- 4N < 3+3 Y - if2<5i<k,
=1

n

S

k
IA(L; N; )=, N < 3Y 2
n=1HNh

Moreover (6) implies that the first inequality also holds for i = k+1.
Therefore the relations (2) have been proved for k+1.

Furthermore we have to show that w satisfies C(w) < k/2. If M is
a subset of X and M€ denotes its complement in X, then

) |A(M€; N; 0)—p(M)N| = |A(M; N; 0)—p(M)N|.

Consequently, it suffices to consider subsets M of Y. Using (5) and the

same type of arguments as above, we arrive at

A(M; N; )~ (M)N | SIA(M; R(N); )~y (M)R(N)
+(M)R(N)—p(M)N| £ 3(k—1)+v(M)e| < 3k.

3.

In this section we exhibit another construction principle which gives
better results than the sequence of section 2 if 4, = max 4, is small and
k = 3. Since the case k = 1 is trivial we restrict ourselves to k = 2. For

a real number g we denote as above ||a|| = [a+3]; moreover we define
(10) {{a}} = a—|lall.

Hence

(11) -1 = {{a}} <4

We consider the following scheme consisting of an infinite number of
rows and k columns.

X1 X2 e Xk
A Az . y
{12211 [|22]] e 1124 1* row
11224]] l122]] . 12| 20 row
IZAl [|mA2|| e [|nA|| n't row
The i column consists of |[|4;][<|[24,]|< -+ Z||nAl| £ - -, where
(r+ DA = |Indll or ||[(n+1)4,]] = ||n,1||+1 Now we change this

column in the following way.
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If ||((n+1DAll = [InA]] (n=0,1,2,---) we omit ||(n+1)A;]| such
that we get a void place in the scheme.

If on the other hand ||(n+1)A;| = ||nd;||+1 (n =0,1,2,--) we
replace ||(n+1)A;|| by x;. We remark that in the last case
(12) {{nii}} =z -4,

(13) {m+DA}} < =344,

The i column now consists of places with x; and void places. Up till
the n™® row there are exactly ||n4;]| places with x;. We do so for i = 1,
2, -+, k. The sequence n = (1,);% is the sequence which we get if we
read the consecutive rows from the left to the right. After we have passed
through the n'" row we have had ||{n4;|| times the element x; and altogether
T(n) = Y*_,||nA;|| elements of 5. For this sequence # we will prove the
following result.

THEOREM 2. For the sequence n we have
(14) |4(i; N3 m)— AN |S3+34(k—d),
where d = 1 if k is odd and d = 2 if k is even. Therefore
D(n) £ 3+3h(k—ad).

Moreover
= D(n) fork =2,3
) < max (D(n), %) fork =4
< max (D(n), 23 fork =35

< max (D(n), (k—2)/2) fork = 6.

PROOF. Since there is no risk of ambiguity we omit the # in 4A(i; N; n)
and A(M, N; n).
First we remark that by (10)

S (0} = n= 3l

which implies that X{{n4,}} has to be an integer. If we exclude the case
k even, ({{nA;}}, -, {{nk}}) = (—%--+, —%) we may conclude
from (11)

k
(19) |3 () S 3,
where d = 1 if k is odd, d = 2 if k is even. Using again (10) we get

(1) AG TO)~AT6) = A=, Y I

~((nag) + 43 (),
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Let N be an integer with T(n) < N < T(n+1). Then A(i; N) = A(i; T(n))
or A(i; N) = A(i; T(n))+ 1. In the first case we have by (16), (11) and (15)

A N)= AN S AGS TOD)=AT() = — (A} +4 3, ()

< 3+30(k—d).
In the second case x; is an element of the (n+ 1) row. Then by (12)
(17) {{nii}} =2 3—12,.
Moreover N = T(n)+ 1. Therefore using (16), (17) and (15) we arrive at
A(i; N)=A4N < A(i; T(n))— A4 T(n)+1-4

(AT A=A S —h A1

= 1+14(k—d).

This upper bound trivially holds as well with d = 2 in the exceptional
case excluded above.
In order to get a lower bound we proceed in a similar way. We have

A(i; N) = A(i; T(n+1)) or A(i; N) = A(i; T(n+1))—1.
For the calculations we first exclude the case k even,

({e+ DA} s {{+ DAY = (=5, -+, =),

Then we obtain in the first case

A(i; N)= 4N 2 A(i; T(n+1))— 4 T(n+1)
= {0+ DA+, (o DAY} 2 —3-bak—d).

In the second case we have N < T(n+1)— 1. Moreover x; occurs in the
(n+1)®™ row and (13) gives

{n+ DA} < —3+4;.
Therefore

A(i; N)=4N = A(Gi; T(n+1))— 4 T(n+1)—1+ 4
= (D) +A S, (e DAY =14,
Z2 3-A4—3M(k—d)—1+4 = —3—$A(k—ad).

One easily verifies that these lower bounds also hold with d = 2 for the
case k even,

({E+D23} - O+ DAY = (=30, —3)
Hence (14) has been proved.
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In order to get an estimate for C(#) we consider a nonvoid subset M
of X. Put

M={xi1’..‘3xl‘j}’ /"M=A’i1+..‘+lij=/1$

X\M = {xij+1 5" xik}'
Then

A(M; T(n))—AT(n) =é:1||nlivll —Ahélllni,,ll

- 5 U+ T (k)
U= F (A 3 (i),

Let N be an integer with T(n) < N < T(n+1) and suppose
AM; N) = A(M; T(n))+t with0 < ¢t < j.
Then N = T(n)+t and

A(M; N)—AN £ A(M; T(n))— AT(N)+1t— At

- ~U-AF (N4 S () -

Suppose that x,,, - - - x,, are the elements of the (n+ 1)™ row which are
counted in 4(M; N) and not in A(M; T(n)).
Then by (12)

{{nlm}} 2 %—/1“,. (T =1 t)

Therefore

j

Y {3} 2 3 -(h+ - +A)-10-0) 2 1= -4

v=1
Hence

AM; N)—AN £ —(1—-A)t—%j—A)+3A(k—j)+t—At
=J 14 ('—‘ —j+1) — A2
2 2

In a similar way we find a lower bound for A(M; N)— AN which has the

same absolute value.
Hence

|A(M; N)—AN| < % +4 (%‘ —j+1) — A2,

Since for k = 2, trivially, C() = D(n), we suppose k = 3. We observe
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that we can restrict ourselves to 3k < j < k—1 (compare (9)). If j = k—1,
the complement of M is a singleton which was dealt with in D(#). In
particular this implies C() = D(n) for k = 3. If 3k+1 <j < k-2,
then clearly

J k_. )
= 4+A(-—j+1 < 3(k-2
5 (2 j * £ 3(k-2).

If tk £ j < 1k+1, then

J k . 2 k 2k
—+A(——+1) —A l(—+l)+A—A =- +1
2 2 ! BV 4 E

For k =2 6, we have ;k+3 < (k—2)/2 and so C(n) = max (D(n),
(k— 2)/2) For k = 4, 5 one finds by separate discussion of the permissible
values for j : C() < max (D(n), 3) for k = 4, C(n) < max (D(n), 32
for k£ = 5. This completes the proof.
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