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Abstract� This paper deals with the weak formulation of a free �moving� boundary problem
arising in theoretical glaciology� Considering shallow ice sheet �ow we present the mathematical
analysis and the numerical resolution of the second order� nonlinear� degenerate parabolic equation
modelling� in the isothermal case� the ice sheet non�newtoniandynamics� An obstacle problem is then
deduced and analysed� The existence of a free boundary generated by the support of the solution is
proved and its location and evolution are qualitatively described by using a comparison principle and
an energy method� Then the solutions are numerically computed with a method of characteristics
and a duality algorithm to cope with the resulting variational inequalities� The weak framework we
introduce and its analysis �both qualitative and numerical� are not restricted to the simple physics
of the ice sheet model we consider nor to the model dimension� They can be applied succesfully to
more realistic and sophisticated models related to other geophysical settings�
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�� Introduction� Modelling ice sheet dynamics has been a challenging problem
since the beginning of the century� but nowadays the scienti�c community is showing a
renewed� growing interest toward this problem� In fact� our understanding of climate
system dynamics depends on the comprehension and predictability of the ice sheet
dynamics because large ice sheets in�uence� and are in�uenced by� climate� The
Antarctic and Greenland ice sheets are the two mayor present day examples of ice
sheets but during the last age �terminating about ������ years ago	 ice sheets existed
in North America �the Laurentide	 and northen Europe �the Fennoscandian	� the
ice extending into Southern England and Northen Europe� These ice sheets interact
with climate� and their oscillations may be responsible for sudden shifts in climate
in the recent geological past �see Fowler 
��
� chapter �� and references therein for a
more detailed introduction to the problem	� Moreover is well known that large ice
sheets re�ect a �great	 part of the solar energy received by the Earth so governing its
energy balance� Their extension or retreat are considered as good indicators of the
climate system future behaviour and modifying the values of the albedo function they
contribute to determine �nally the distribution of the Earth temperature�

The study of the Ice Sheet Models �ISM	 is then fundamental to the construction
and comprehension of the global Energy Balance Models �EBM	 and of the General
Circulation Models �GCM	 �see� for example Tarasov and Peltier 
��
 for a coupled
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ISM�EBM model	� Solving ice sheets problems has also a multi disciplinary approach
and in fact glaciology spreads on continuum mechanics� �uid dynamics� geology� geo�
physic� material science� hydrology and applied mathematics� As a consequence of
this e�ort� various physically based theories have appeared during the last decades
in order to explain the �ow of these large ice masses� Nowadays more and more
sophisticated models can be tackled thanks to the new technologies �interferometric
radar observations� satellite or aerial photographs� geodetic global positioning system
�GPS	 methods� chemical analysis of �rn cores� etc�	 which provide a great amount of
�eld data as well as a basis for more realistic modelling� Processing such quantities of
data is also possible due to the increasing computing power and the parallel comput�
ing techniques now availables� More sophisticated numerical methods can be applied�
In a parallel way new mathematical techniques have been developed in the last years
to deal with complicated nonlinear dynamics and this introduce and justify the basic
aim of this paper which is to provide an example of how such powerful mathematical
methods �multivalued equations� variational inequalities� renormalization solutions�
energy methods� �nite elements� duality methods	 can be applied to the resolution of
the shallow ice sheet �ow problem� Our proposal is also a constructive one� whereas
a numerical method is proposed and succesfully implemented�

This paper is organized as follows� after a brief description of the model equation
and its strong formulation �section �	� we introduce in section � some weak formu�
lations that we shall use later� The well�posedness of the model is also considered�
Section � is devoted to the �qualitative	 study of the free �moving	 boundary de�
�ned by the model� The quantitative analysis is done in section � where we solve�
numerically� the problem�

Some comparison tests are then performed� Finally� in section �� we discuss our
results and their scope�

�� Model equation and strong formulation� The model equation is that of
Fowler 
��
� describing the evolution of the ice thickness h�t� x	 for a two�dimensional
plane ice sheets �the coordinates are �x� z		 where z � h�t� x	 is the top surface of
the ice sheet	� For three�dimensional geometries the equations are analogous �just re�
placing �x with r or r� as appropiate	� For more general introductions to glaciology
see also Hutter 
��
� Paterson 
��
� Lliboutry 
��
 and Fowler 
��
 among others� Ice
is taken to be incompressible and the �ow is very slow� It �ows as a viscous medium
under its own weight� owing to gravity� Then� the model equation can be deduced
starting with the usual equations of conservation of mass� momentumand energy writ�
ten in terms of a slow� gravity driven� viscous �ow� The �unknown	 domain where
the equations hold has to be determined as part of the solution and it is characterized
by the kinematic boundary condition �or surface kinematic condition	� The resulting
continuity equation� equilibrium equation and energy equation� complemented with
the constitutive Glen�s �ow law� the Arrhenius� rate law �which is usually written
in terms of the Frank�Kamenetskii approximation	 and the kinematic boundary con�
dition generate the basic system to solve� A Stokes problem arise coupled with the
energy equation �via the Arrhenius term	 in a a priori unknown domain� Assuming
the usual hypothesis of shallow �ow �when l and d are typical longitudinal and depth
scales of the problem �of the Antarctic� for example	� the lateral extent is l � �����
kilometers and its thickness is typically d � � kilometers	� we can use the lubrication
approximation to simplify the equations�

The variables are then scaled to non�dimensionalise and the reduced model �which
is obtained from the equations by neglecting O���	 where � � d�l � ���� � �	 is
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considered�

Using the �additional	 hypothesis of isothermal �ow corresponding to temperature
independence of the ice viscosity� the �ow problem uncouples from the energy equation
and an integrated mass conservation equation is deduced� Two integrations of the
Glen�s law provide an expression for the ice �ux which� together with the kinematic
boundary condition� yield a nonlinear di�usion equation for h�t� x	 �the unknown local
thickness of the ice sheet	

ht �

�
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where a � a�t� x	 is a scaled �xed� given accumulation rate function �a � � signi�es
ablation	 and ub is a �given	 function representing the basal velocity� For each �xed
t the domain I�t	 represents the �unknown	 bounded real interval where h�t� x	 � ��
�i�e�� I�t	 �� fx � h�x� t	 � �g	� Notice that the physically relevant rate functions
a�t� x	 are changing sign functions which are positive in the central �accumulation	
region of the ice sheet and negative near the margins �the boundaries of I�t	� i�e��
in the ablation region	� see Fowler 
��
� pp� ��� The exponent n which appears in
����	 represents Glen�s exponent and it is usually assumed n � �� Infact� we shall
assume that n � � but the qualitative analysis remains unchanged for any n � �
�non�newtonian case	� For simplicity we also assume a �at� rigid and impermeable
base �the bedrock	� As regards the appropriate �mechanical	 boundary condition it
depends on the thermal regime that we consider at the base� There are two possible
geophysical situations corresponding to slip or no slip conditions�

When basal ice reaches the melting point� there is a net heat �ux arriving at the
bed of the ice sheet� and consequently basal melt water is produced� the ice begins to
slide� Sliding is expected only where the basal ice is at the melting point� When ub
�the sliding velocity	 is a prescribed function of �t� x	 �i�e�� ub � ub�t� x		� this equation
is a nonlinear di�usion�convection equation for h� It corresponds to slip conditions
along an assumed temperate bed �warm�based ice sheet	� Once the base reaches the
melting point we assume that the ice above remains cold� Here we are not concerned
with the functional dependence of the sliding velocity on the shear stress or other
physical variables� i�e� water �ux or e�ective pressure� which� in turn� depend on the
kind of bed considered� hard or soft� Our aim is to show how it is possible to solve
this model for a general� prescribed� velocity �eld�

In the di�usive case the ice sheet is supposed to be cold�based� For slow� shallow
�ow over a �at base� with no sliding �i�e�� ub � �	� the isothermal ice sheet equation
����	 is just
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Some remarks about the equation ����	 are in order� As discussed in Fowler 
��
�
where the no slip condition is prescribed� singularities appear at the margins �due to
in�nite slope	 during the advance of fronts of a land based ice sheet �such that which
covered North America in the last ice age	� Classical ��nite�di�erences	 numerical
methods can fail� A further complication is due to the fact that the domain where the
equation holds is unknown� In fact it has to be determined as part of the solution�
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The original strong formulation can be stated in the following terms� let T � ��
L � � be positive �xed real numbers and let � � ��L�L	 be an open bounded interval
of IR �a su�cently large� �xed spatial domain	� Given an accumulation�ablation rate
function a � a�t� x	 and a function ub � u�t� x	 �a sliding velocity eventually zero	
de�ned on Q � ��� T 	 � ��L�L	 �a large� �xed� parabolic domain	 and an initial
thickness h� � h��x	 	 � �bounded and compactly supported	 on �� �nd two curves
S�� S� 
 C��
�� T 
	� with S��t	 � S��t	� I�t	 �� �S��t	� S��t		 � � for any t 
 
�� T 
�

and a su�cently smooth function h�t� x	 de�ned on the set QT ��
�

t����T �

I�t	 such

that

�SF 	 ��

������
�����
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 ��� T 	�

h � h�� on I��	�

����	

and h�t� x	 � � on QT � Notice that� for each �xed t 
 ��� T 	� I�t	 � �S��t	� S��t		 �
fx 
 � � h�t� x	 � �g denotes the ice covered region� The curves S��t	 are called the
interface curves or free boundaries associated to the problem and are de�ned by�

S��t	 � Inffx 
 � � h�t� x	 � �g� S��t	 � Supfx 
 � � h�t� x	 � �g

These curves de�nes the interface separating the regions in which h�t� x	 � � �i�e� ice
regions	 from those where h�t� x	 � � �i�e� ice�free regions	� In the physical context
they represent the propagation fronts of the ice sheet�

Many other examples of the class of degenerate equations are typical �see e�g� D��az

��
	 of slow phenomena and satisfy the �nite speed of propagation property �although
this property must be shown for each special formulation as �SF 		� Assuming� for
instance� a � � if h��� x	 has compact support then h�t� x	 has also a compact support
in IR� for any t 
 
�� T 
� So� if a � �� the domainQT can be found through the support
of the solution h�t� x	 of the doubly nonlinear parabolic equation over the whole space
��� T 	� IR and satisfying the initial condition h��� x	 � h��x	� x 
 IR� Unfortunately�
the physically relevant case� a �� �� is much more complicated� Indeed� the �nite speed
of propagation still holds if a�t� �	 has compact support in IR �for �xed t 
 ��� T 		�
Moreover� in that case� it can be shown that support h�t� �	 � support a�t� �	 and
so a�t� �	 vanishes on the free boundary� Nevertheless� in glaceological models it is
well�known �see Fowler 
��
� pp ��	 that a�t� �	 � � near the free boundaries �i�e� the
margins of the ice�sheet	 and so there must exist another reason �other than the de�
generate character of the equation	 justifying the occurrence of the free boundaries
S��t	� S��t	� It is a mathematical modelling problem� We must insure that the math�
ematical solutions are no negative� compactly supported �i�e�� physically admissible	
solutions� In short� �xed a su�cently large spatial domain� the physically admissible
solutions are compactly supported non�negative bounded functions such that a � �
where h � � �in particular in the free boundary	 and this is not predicted by the solu�
tions of the di�usion equation �despite of its degenerate character	� Mathematically
is then possible �for special choices of the accumulation�ablation rate function	 to
have negative �no physically admissible solutions	 solutions corresponding to negative
thickness� A practical way to overcome this inconsistence is proposed in the following
section�
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�� Weak formulations� In this section we show that a proper mathematical
modelling of the physical problem must be considered if the assumed physics have to
be respected �i�e� if just physically admissible solutions have to be computed	� This
introduces the need of a weak formulation for the ISM� Notice that we shall consider
an isothermal model but the technique can be applied to more general cases provided
a free boundary problem is considered�

Let T � L and � as before and set Q �� ��� T 	 � � � IR�� The new model we
present is based upon the fact that we can extend the function h�t� x	 outside of QT

�the ice covered regions	 by zero on Q nQT � 
��� T 	� �
 nQT �the complementary
ice�free region	 and that this extension still satis�es a nonlinear equation �this time of
multivalued type	 having the great advantage of being de�ned on an a priori known
domain Q � ��� T 	� � �whose parabolic boundary is  � �Q � ��� T 	� ��	� This
type of problem is known in the literature as an obstacle problem �in our case the
obstacle function is 	 � �� the null function	 and it arises in many contexts related
to friction� elasticity� thermodynamics and so on �see e�g� Duvaut and Lions 
��
�
for further details	� The multivalued formulation we propose appeared �rst in D��az
and Schiavi 
��
 �where the no slip condition was considered	 to describe the slow�
isothermal� one�dimensional �ow of cold �i�e�� all the ice is below melting point and the
melting point is reached only at the bed	 ice along a hard �i�e�� rigid� impermeable	
bed� Our results can be generalized to deal with the two�dimensional case which
describes the evolution of a ��D ice sheet� Here we extend that model to consider
sliding �prescribed	 along a temperate base� This introduces a nonlinear convective
term in the multivalued equation which describes the movement of the ice masses�
Introducing the maximal monotone graph of IR�� 
� de�ned by


�r	 � � �the empty set	 if r � �� 
��	 � ���� �
� 
�r	 � � if r � ������	

the obstacle formulation �written in terms of a multivalued equation	 is� given a
bounded� su�cently large interval � � ��L�L	 � IR� a rate function a 
 L��Q	� a
sliding velocity ub 
 L��Q	 and a compactly supported initial data h� 
 L���	� �nd
a su�cently smooth function h�t� x	 solution of

�MF 	 ��

�����
����
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�h	 � a�t� x	 in Q�

h�t� x	 � � on  �

h��� x	 � h��x	 on ��
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Notice that 
 is multivalued just where h is zero� i�e�� at the free boundaries� Moreover�
by de�nition ����	� we have that� � 
 
��	� Now� let h be a solution �in a weak sense
to be precised later	 of ����	� a�e� x 
 � and � t 
 ��� T 	� It is clear that in the null
set QnQT we must have 
��	 � a�t� x	� This condition shows that� if 
 is multivalued
at the origin� then it is possible to have solutions with a non empty null set �i�e��
Q n QT �� �	 corresponding to equations in which a �� � on Q n QT and thus new
results are possible with respect to the single valued case �
 � �	�

Details on this kind of �multivalued	 formulations� �MF 	� and on maximalmonotone
graphs can be found in Brezis 
�
� It is well known that the multivalued equation ����	
can be written in terms of the so called complementary formulation for obstacle pro�
blems which states� given �� a� ub and h� as before� �nd a su�cently smooth function
h such that�
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�CF 	 ��

���������������
��������������
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h � h��x	 on ��
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It is obvious that if a regular function h veri�es the strong formulation then its
extension by zero over Q nQT �which we will denote again by h	 satis�es trivially the
complementary formulation� assuming that a�t� x	 satis�es the condition

a�t� x	 � � on Q nQT

A more general framework is obtained if we de�ne ��r	 � jrjn��r� r 
 IIR� n � �
and 	�s	 � s��m with s 	 � and m � ��n � �	�n � � �infact the existence and the
uniqueness of solutions and some qualitative properties remain true if we replace �
by any real continuous strictly increasing convex function such that ���	 � �� and 

as before� see ����		� Introducing the new variable u � u�t� x	 and the real function
b�s	 in form

u �� hm � 	�h	� �� u��m � h � 	���u	 �� b�u	����	

we have ��	�h	x	 � ��ux	 � juxj
p��

ux� where p � n � �� The previous multivalued
formulation is the following� given �� a� ub and u� � 	�h�	 as before and a constant
� � nn�
�n�n� �	n�n� �	
� determine a function u�t� x	 � 	�h�t� x		 solution of

�GF 	 ��

����
���

b�u	t � 
���ux	� ubb�u	
x � 
�u	 � a�t� x	 in Q�

u�t� x	 � � on  �

b�u��� x		 � b�u��x		 on ��

����	

This general formulation� �GF 	� is that we shall use to deal with the well�posedness
of the model problem ����	� Notice that we can write 
�u	 instead of 
�b�u		 because

�u	 � 
�h	 �� 
�b�u		 in Q� The equivalence is readly understood observing that h
�i�e�� the original variable	 and u have exactly the same support� The same remark
applies to the boundary condition on  �

���� On the existence and uniqueness of weak solutions� Problem ����	
admits various notions of solutions according to the required spatial and time regu�
larity� In any case we must start by assuming some regularity on the data a�t� x	�
ub�t� x	 and u��x	� In our case it will be enough to assume that

a 
 L��Q	� ub 
 L���� T �W �����		 and u� 
 L���	�����	
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Then a natural notion of weak solution is the following�

Definition ���� A function u 
 L��Q	 is a weak solution of ����� if u 
 Lp��� T �
W ��p

� ��		� b�u	 
 L��Q	� u�t� x	 	 � a�e� �t� x	 
 Q and there exists a function
j 
 L��Q	 such that j�x� t	 
 
�u�t� x		 a�e� �t� x	 
 Q andZ

Q

�
tb�u	� 
j � 
a	dxdt�

Z
	

�
��� �	b�u�	dx �

Z
Q


x
���ux	 � ubb�u	
dxdt

for any 
 
 Lp��� T �W ��p
� ��		 � L��Q	� 
t 
 L��Q	 and 
�T� �	 � ��

The existence of a weak solution �assumed ����	 and b� � being the power functions
indicated above	 can be obtained by di�erent methods� For instance� it is an easy
modi�cation of Theorem ��� and Proposition ��� of Benilan and Wittbold 
�
� In fact�
in order to check assumption �H�	 of this paper it is useful to replace function b by
its truncation

bM �r	 ��



b�r	 if r 
 
��M 
�

b�M 	 if r 
 
M���	�

with M � � a upper bound of any weak solution �we shall come back to this point
later� see Proposition �	� The uniqueness of �and the comparison principle for	 weak
solutions is a more delicate task due to the presence of the nonlinear term b�u	� This
type of results are well known �see� for instance D��az and de Thelin 
��
	 when we
know� additionally� that the weak solution is time di�erentiable in the sense that
b�u	t 
 L��Q	 �we recall that from the de�nition of weak solutions we merely know
that b�u	t 
 Lp

�

��� T � W���p���		 � L��Q	 with p� �� p��p � �		� In order to get
such results a weaker notion was introduced in previous works by di�erent authors
�see� Boccardo� Giachetti� D��az and Murat 
�
 for the case of b�u	 � u and Carrillo
and Wittbold 
��
 for a general nondecreasing function b�u		� It is the notion of
renormalized solution coming originally from a di�erent context �Di Perna and Lions

��
	� In fact both notions coincide in the class of bounded functions u 
 L��Q	
which is our case as we shall prove in this Section�

In order to apply the methods of proofs by Carrillo and Wittbold 
��
 we need to
assume a technical assumption on the data

ub�t� �	 is spatially constant�����	

�we point out that the assumption ����	 is not needed in the linear case b�u	 � u and
that we suspect that this technical assumption can be avoid by means of some re�ne�
ment which we do not try to develop in this paper	� So� by some trivial modi�cations
of the results of Carrillo and Wittbold 
��
 �see Section � of that paper and use the
monotonicity of 
�u		 we arrive to the following result�

Theorem ���� Assume ai� ub and u��i satisfying ����� and ���	� for i � �� �� Let
ui be weak solutions of problem ����� associated to the data ai and u��i� Then for any
t 
 
�� T 
Z
	


b�u��t� �		�b�u��t� �		
�dx �

Z
	


b�u���	�b�u���	
�dx�

Z t

�

Z
	


a��s� x	�a��s� x	
�dxds�



� N� CALVO� J�I� D�IAZ� J� DURANY� E� SCHIAVI AND C� V�AZQUEZ

where 
f 
� � max�f� �	� In particular� b�u���	 � b�u���	 and a��t� x	 � a��t� x	� on
their respective domains of de
nition� implies that b�u��t� x		 � b�u��t� x		 for any
t 
 
�� T 
 and a�e� x 
 �� In consequence� there is at most one weak solution of
problem ������

We point out that the above comparison remains true even if functions ui are not
homogeneous at the boundary but they satisfy u��t� x	 � u��t� x	 for any t 
 
�� T 

and a�e� x 
 �� �this is again a trivial modi�cation of the result by Carrillo and
Wittbold 
��
	�

The boundedness of the associate weak solution can be deduced from the above
comparison principle�

Proposition ���� Let u be any weak solution of problem ����� then

kukL��Q� �M������	

with

M� �� b��

�
maxfkb�u�	kL��	� � �g expT


�
kakL��Q�

maxfkb�u�	kL��	� � �g
� k�ub	xkL��	�


��
�

Proof� We take as candidate to supersolution a spatially constant function of the
form u��t� x	 �� b���Ce�t	 for some C � � and � 
 IR to be determined� Then
u��t� x	 � u��t� x	 for any t 
 
�� T 
 and a�e� x 
 �� and b�u���	 � b�u���	 holds if

C � maxfkb�u�	kL��	� � �g�

Finally� by substituting at the equation of ����	 is easy to check that

a��t� x	 �� �Ce�t � �ub	x�x	Ce
�t

and so condition a��t� x	 � a��t� x	 is satis�ed if� for instance�

� � C�� kakL��Q� � k�ub	xkL��	�

which implies the result�

We point out that although the application of the present version of the com�
parison principle given at the above theorem requires condition ����	� the a priori
estimate ����	 can be obtained without passing by a comparison principle �see� for in�
stance formula ���	 of Benilan and Wittbold 
�
	 and so the boundedness of u remains
true also when �ub	x �� ��

�� On the free boundary� In this section we shall consider both thermal
regimes at the base� In the �rst case the bed is assumed to be cold �below melt�
ing point	� No sliding is prescribed �i�e� ub � �	 and the pure di�usive case is
analysed� Then we assume the ice sheet to be warm�based! the bed is then temperate
and sliding is prescribed �i�e� ub � ub�t� x		� Here we are not concerned with the
switching mechanism between cold�temperate dynamics �results in that direction can
be found in Fowler and Schiavi 
��
 and D��az and Schiavi 
��
	� Our aim is to describe
qualitatively the behaviour of the free boundaries by means of a priori estimates on
the support of the solution�
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���� The no slip condition �pure di�usive case	
 Existence of the free
boundary and the waiting time property� In this section we shall prove the
existence of a non empty null set

N �h�t� �		 �� f�t� x	 
 ftg � �� h�t� x	 � �g

for the �unique	 solution h�t� x	 of problem�����
����

ht � ���	�h	x	x � 
�h	 � a�t� x	 in Q�

h�t� x	 � � on  �

h��� x	 � h��x	 on ��

����	

which can be deduced from the general formulation �GF 	 written in terms of the
original variable h and of the functions � and 	 introduced before� Assuming extra
regularity of the solution �i�e� h 
 C� "Q		� we are able to analyse a great number of
geophysical fenomenous related to location and evolution of the free boundary and
associated with the behaviour of the function a�t� x	�

We shall now deal with the existence and location of the free boundary de�ned by
problem ����	� To show the existence of a free boundary as well as to estimate locally
its location� we will use a technique based on the comparison result of section ����	
and consisting of the construction of appropriated local super�sub solutions having
compact support� We de�ne� �� � � the set

N��a�t� �		 �� f�t� x	 
 ftg � �� a�t� x	 � ��g����	

and also S��a�t� �		 � Q nN��a�t� �	� Then we have�

Theorem ���� Let h 
 C� "Q	� h 	 � be a solution of ����� and let � � � �a small
real positive number� such that the set N��a�t� �		 is not empty� Then there exists
T� 	 � such that �t 	 T� we have

N �h�t� �		 � f�t�� x�	 
 N��a�t�� �		� d�x�� S��a�t� �		 	 Rg�

Proof� The proof is based on an original idea of Evans and Knerr 
��
 which applies
when n � � and a�t� x	 � �� See also D��az and Hern�andez 
��
� for its adaptation
to the case n � �� In our multivalued case� with n � � but a�t� x	 �� �� we argue as
follows� We consider the set N��a�t� �		 and de�ne the function

#h�t� x	 � 	�� ���jx� x�j	 � 	�U �t			

where

��r	 � c r
p

p�� � c �
p� �

p

� �
�

� �
p��

�����	

and U �t	 is the �unique	 solution of the initial value problem

Ut �

�
�
�U 	 � � �

� �

U ��	 � jjh�jjL��	��
����	
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It is easy to see that U �t	 � 
� �
� t� jjh�jjL�


� whence

U �t	 � �� �t 	 T� �
�

�
jjh�jjL��	�

On the other hand� as by construction ��	�#h	x	x � ���x	x � ���� we have �in
N��a�t� �			

#ht � ���	�#h	x	x � 
�#h	 �

�
d

dt

�
	�� ���jx� x�j	 � 	�U �t			

�
�����x�jx�x�j		x�


�
	�� ���jx� x�j	 � 	�U �t			

�
�

�
	
�

�U 	

	�
�
	�� ���jx� x�j	 � 	�U �t			

� dU
dt
�����x�jx�x�j		x�

�

�

�	�����jx�x�j			�

�

�

�U 	 �

� Ut �
�

�

�U 	 � ����x�jx� x�j		x �

�

�


�
	�����jx� x�j		

�
� �� 	 a�t� x	�

Using the Comparison Principle written in terms of the original variable h� the
following estimate holds �see Benilan and Wittbold 
�
	

jjhjjL��Q� � jjh�jjL��	� �

Z t

�

jjajjL��	� �M �t	�

Then

jjhjjL��Q� �M �t	 � #h�t� �	� onN��a�t� �		

i� 	�� ����jx� x�j		 � 	�U �t			 	 M �t	� i�e�! ��jx � x�j	 � 	�U �t		 	 	�M �t		� In

particular this is true if c jx� x�j
p

p�� 	 	�M �t		! by ����	 the above reads

jx� x�j 	
	�M �T 		

p��

p

�p��
p
	
p��

p � �
�
	
�
p

� R����	

and ����	 implies that #h 	 h on �N��a�t� �		� At t � � we use the monotonicity of
	���

#h��� x	 � 	�� ���jx� x�j	 � 	�U ��			 � 	�� ���jx� x�j	 � 	�jjh�jjL�		 	

	 	�� �	�jjh�jjL�		 � jjh�jjL� 	 h��x	 	 ��

Summarizing we have� that if �t� x	 
 N��a�t� �		 is such that jx� x�j 	 R then
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ht � ���	�h	x	x � 
�h	 � a � inf
�
#ht � ���	�#h	x	x � 
�#h	

�
in N��a�t� �		�

h�t� x	 � #h�t� x	 on �N��a�t� �		�

h��x	 � #h��� x	 on N��a��� �		�

It follows from comparison result �theorem ���	 that

� � h�t� x	 � #h�t� x	� in N��a�t� �		�

and we end up observing that h�t� x�	 � � �t 	 T� �
�
� jjh�jjL� and x� satis�es in�

equality ����	� i�e�� �t� x�	 
 fN��a�t� �		�jx� x�j 	 Rg�

We shall now analyze the so called waiting time property� As discussed in Fowler

��
 p� ��� the slope of the surface is singular in advance but �nite in retreat� This
distinction causes the degenerate di�usion equation above to have waiting�time behav�
iour� because following a retreat� the margin slope must rebuild itself before another
advance it possible� The following property applies if the initial data is su�cently 
at
in the ablation region�

Theorem ���� let h 
 C� "Q	� h 	 � be a solution of problem ������ De
ne
� � ����	�M 		 and B�

� �x�	 � fx 
 �� x 
 
x�� x� � �	g being M � jjhjjL��Q��

x� � S���	� #c � �
p��
p
	�

�
p�� and ��jx� x�j	 � #c jx� x�j

p

p�� � Assume that there exists

T � � � such that a�t� x	 � �� a�e� x 
 B�
� �x�	 and t 
 ��� T �	� If x� 
 � satis
es

� � h��x�	 � 	�����jx� x�j		 then

� t�� � � t� � T �� such that S���	 � S��t	� �t 
 ��� t�	�

Proof� We de�ne the function

#h�x	 �� 	�����jx� x�j		� in B�
� �x�	� ��� T

�	�

Then

ht����	�h	x	x�
�h	 � a � �� � inf
�
#ht � ���	�#h	x	x � 
�#h	

�
� in B�

� �x�	���� T
�	�

On �B�
� �x�	 � 
�� t

�
 we have to verify that h � M � #h � 	����	 and this is true if

and only if 	�M 	 � � � #cjx� x�j
p

p�� � On �B�
� this reads 	�M 	 � #c�

p

p�� � Using that
� � ����	�M 		 then

h �M � #h �� 	�M 	 � #c
����	�M 		

p

p�� ��

��

�
	�M 	

#c

	 p��
p

� ����	�M 		 �� �

��
	�M 	

#c

	 p��
p

�
� 	�M 	�
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and this is always veri�ed as can be deduced by applying the de�nition of the function
�� In conclusion we have

ht � ���	�h	x	x � 
�h	 � a � inf
�
#ht � ���	�#h	x	x � 
�#h	

�
� in B�

� �x�	� ��� t
�	

h�x�� �	 � h��x�	 � #h�x	 � 	�����jx� x�j		� on B�
� �x�	

h�t� x	 �M � #h�x	� on �B�
� �x�	� ��� t

�	�

Then the comparison result gives that � � h�t� x	 � #h�x	 and so h�t� x�	 � ��
�t 
 ��� t�	�

���� The slip condition �di�usive�convective case	
 Existence of the
free boundary and the waiting time property� In this section we shall consider
the general formulation �GF 	 assuming that ub �� �� The presence of the convection
term makes the method of super and subsolutions very hard to apply� except for
very special data� Thus� in order to prove the existence of the free boundary we
shall use a di�erent technique� called the energy method� It has been developed by
di�erent authors in the last twenty years for the study of nonlinear problems lacking
the maximum principle �see� for instance� the monograph of Antontsev� D��az and
Shmarev 
�
	� In fact� although this energy method can be applied in di�erent ways�
we shall follows the ideas introduced in D��az and Galiano 
��
 in order to apply the
method to some Fluid Dynamics problems� We start by pointing out that the equation
of problem ����	 can be written in terms of a non�conservative transport multivalued
equation in form

b�u	t � ubb�u	x � ���ux	x � �ub	xb�u	 � 
�u	 � a�t� x	� in Q�����	

In this way� the equation involves the material derivative b�u	t�ubb�u	x which can
be associate to a virtual non�Newtonian 
uid with a reactive term �ub	xb�u	 � 
�u	�
We shall prove the existence of the free boundary in terms of the� so called� 
nite
speed of propagation near a given point x��

In the next results we shall assume that ub is a globally Lipschitz continuous
function� So� we can de�ne the characteristics of the associate �ow by

��
�

d

dt
X�t� x	 � ub�t�X�t� x		� on ��� T 	�

X��� x	 � x�

����	

As usual in Continuum Mechanics� given a ball B��x�	 � fx 
 IR � jx� x�j � �g we
denote the transformed set by

B��x�	t � f y 
 IR � y � X�t� x	 for some x 
 B��x�	g�

Theorem ���� Assume b� �� 
� a and u� as in Section �� Let ub be a globally
Lipschitz continuous function on Q� For � 	 � let N��a�t� �		 �� f�t� x	 
 ftg �
�� a�t� x	 � ��g� Assume also that � � � if m�p � �	 � � and � � � if m�p � �	 � ��
Let u� � � on a ball B�� �x�	 for some x� such that �t� B�T �x�		 � N��a�t� �		 for
any t 
 
�� T 
 and some L 	 ��� Then there exists a T� 
 ��� T 
 and a function
� � 
�� T�
� 
�� ��
 such that u�t� x	 � � a�e� x 
 B��t��x�	 for any t 
 
�� T�
�
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Proof� We introduce the change of variable b�w�t� x		 � b�u�t� x		e�t� Then� it is
easy to see that w satis�es the equation

b�w	t � ubb�w	x � �e�t����p���m���wx	x � 
�ub	x � �
b�w	����	

�
�w	 � a�t� x	e�t� in Q�

So� by taking � � �C with C � k�ub	xkL��Q� �which is �nite since ub is a globally

Lipschitz continuous function	 we have that 
�ub	x��
 	 C � �� Now� we shall argue
as in D��az and Galiano 
��
� By multiplying �formally	 by w �i�e� by some arguments
of regularization� localization and passing to the limit as in D��az and Veron 
��
	 we
get that if � � L thenZ

B��x��t

�

�t
$�w	dx�

Z
B��x��t

ub$�w	xdx� �e�t����p���m�

Z
B��x��t

jwxj
p dx �

� �e�t����p���m�w�t� �	 jwx�t� �	j
p��

wx�t� �	
��
�B��x��t � �

Z
B��x��t

wdx

where

$�w	 �� wb�w	�

Z w

�
b�s	ds����	

and we used that w 	 � and that 
�w	w � f�g� Now� by using the Reynolds Transport
Lemma Z

B��x��t

�

�t
$�w	 �

Z
B��x��t

ub$�w	x �
d

dt

Z
B��x��t

$�w�t� y		dy�

Thus� integrating in ��� t	 and using the information on u� we get thatZ
B��x��t

$�w�t� y		dy �C�

Z t

�

Z
B��x��t

jwxj
p
dyds �

� C�

Z t

�

w�s� �	
���jwx�s� �	jp�� wx�s� �	 ���B��x��t ��� ds� �

Z t

�

Z
B��x��t

wdxds�����	

with

C� � � min
t�
��T �

e�t����p���m�� C� � � max
t�
��T �

e�t����p���m��

Assume now� for the moment� that � � �p � �	m and � � �� Then we de�ne the
energies

B�t� �	 � sup
��s�t

Z
B��x��s

$�w�s� y		dy� E�t� �	 �

Z t

�

Z
B��x��t

jwxj
p
dyds������	
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Using H%older inequality and the interpolation�trace inequality of D��az and Veron 
��
	
we get that

B � E � K

�
�E

��

�	
�����	

for some positive constant K and some � � � and the result follows in a standard
way �see� e�g� D��az and Veron 
��
� or Antontsev� D��az and Shmarev 
�
	� In the case

� 	 �p � �	m and � � � we pass the term �
R t
�

R
B��x��t

wdxds to the other side of the

inequality �����	 and introduce another additional energy fuction de�ned as

C�t� �	 �

Z t

�

Z
B��x��t

jwj dyds

�remember that jwj � w	� Then we can apply Theorem � of Antontsev� D��az and
Shmarev 
�
� with � � � since the interpolation�trace inequality ����	 of that paper
applies also to the limit case � � �� Then we arrive to an inequality of the form

E � C � K

�
��E � C	

��

�	
�����	

for some positive constant K and some � � � and the conclusion holds�

Remark ���� We point out that due to the presence of the convective term and
concrete exponents involved in equation ����� the statement of the parabolic part of
D��az and Veron ����� is not directly applicable and so the reason of the characteristic
transformation argument� Notice� also� that in contrast with the case ub � � now it
may occurs that T� � T for any � 	 � and that the energy method allows the consid�
eration of the case � � � when m�p � �	 � �� Moreover� any estimate of the function
��t	 gives� automatically� an estimate on the location of the free boundary� Finally� we
indicate that it is possible to get global consequences of the above result by estimating
�globally� the energies introduced in ������ �for some related arguments see� e�g� D��az
and Veron ���� or Antontsev� D��az and Shmarev �����

The waiting time property can be also studied by energy methods once it is re�
formulated in terms of the characteristics associate to ub�

Theorem ���� Assume b� �� 
� a� ub� �� N��a�t� �		 and x� as in the previous
Theorem but now with L � ��� Let u��x	 � � such that B�� �x�	 and satis
es also
that

Z
B��x��t

$�u��y		dy � �
�� � ��	
�
	��	���� for any �� � � � L�����	

for some � � � small enough and some L � ��� where $ is de
ned by ����� and � � �
is the exponent given in ������ or ������� Then� there exists a T� 
 ��� T 
 such that
u�t� x	 � � a�e� x 
 B�� �x�	t for any t 
 
�� T�
� where B�� �x�	t � fy 
 IR � y �
X�t� x	 for some x 
 B�� �x�	g with X�t� x	 the characteristics de
ned by ���	��
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Proof� It follows the same arguments than Antontsev� D��az and Shmarev 
�
�
but adapted to our framework� So� the integration by parts formulae �����	 must be
replaced by

Z
B��x��t

$�w�t� y		dy �C�

Z t

�

Z
B��x��t

jwxj
p
dyds �

�

Z t

�
w�s� �	

���jwx�s� �	jp��wx�s� �	 ���B��x��t ��� ds������	

�

Z
B��x��t

wdx�

Z
B��x��t

$�u��y		dy�

In particular� inequality �����	 becomes non homogeneous

B �E � K

�
�E

��

�	
� ��� � ��	

	��	���
�

and the conclusion holds thanks to a technical lemma �see� e�g�� Lemma � of An�
tontsev� D��az and Shmarev 
�
	�

Remark ���� We point out that if ub � � then the characteristics are vertical
lines and the conclusion of the above result coincides with the waiting time property�

�� Numerical solution� This section is devoted to the numerical resolution of
the ice sheet moving boundary problem stated in the multivalued formulation �MF 	
given in ����	� We �rst introduce the total derivative notation in conservative form

D�h

Dt
�

�h

�t
�

�

�x
�ubh	 �

so that the complementary formulation �CF 	 given en ����	 can be written in the
conservative form as�

���������������
��������������

D�h

Dt
�

�
hn��

n��
jhxj

n��hx

�
x

� a 	 � in Q�

�
D�h

Dt
�

�
hn��

n��
jhxj

n��hx

�
x

� a

	
h � � in Q�

h 	 � in Q�

h � � on  �

h � h��x	 on ��

����	

In a previous paper a �rst attempt to solve the previous problem has been per�
formed by using a �xed point method to deal with the nonlinear di�usion term� In
Calvo� Durany and V�azquez 
��
 the linearization process was based on freezing the
nonlinear di�usion term at each step of the algorithm� This method has been already
combined with the algorithm proposed in 
��
 to approximate ice sheet temperature
distribution in order to solve a temperature pro�le coupled problem �see Calvo 
�
 �
for details	� This approach to the pro�le problem requires extremely small time steps
and consequently leads to high computing times to obtain the stationary solution�



�� N� CALVO� J�I� D�IAZ� J� DURANY� E� SCHIAVI AND C� V�AZQUEZ

In this paper to overcome the drawbacks of the previous numerical approach we
use the complementary formulation �CF 	 introduced in section � to formulate the
nonlinear di�usion term by means a monotone operator� Let n � � �hence m �
��n� �	�n � ��� � � and p � n� � � �	� Using ����	 we introduce the new variable
u de�ned as

u�t� x	 � h����t� x	����	

so that the problem ����	 can be written in terms of u as

���������������
��������������

D�

Dt

�
u���

�
� �

�
juxj

�ux
�
x
� a 	 � in Q�

�
D�

Dt

�
u���

�
� �

�
juxj

�ux
�
x
� a

	
u � � in Q�

u 	 � in Q�

u � � on  �

u � u��x	 � h
���
� �x	 on ��

����	

where the constant � takes the value � � ������


 � The previous change of unknown
in the equations allows to introduce a maximal monotone formulation of the new
nonlinear di�usion term but gives rise to a new nonlinear convection term�

���� Time semidiscretization� Let T � M and &t �xed� positive real numbers
such that T �M&t� Problem ����	 has been discretized in time using the scheme of
characteristics with time step &t �as in previous works of Calvo� Durany and V�azquez�

��
 and 
��
 in the glaciology setting	� In short� this upwinded scheme is based on
the approximation of the total derivative �see Pironneau 
��
 � for linear convection�
di�usion equations	� Thus� in our particular case with nonlinear convection� for m �
�� �� � � � �M � �M � T�&t	� we consider the approximation�

D�

Dt
�u���	��m � �	&t� x	 �

�um��	����x	� Jm�x	 �um	�����m�x		

&t
����	

where

um���x	 � u��m� �	&t� x	� in ������	

and Jm�x	 is obtained by numerical quadrature in the expression

Jm�x	 � J�tm��� x! tm	 � ��

Z tm��

tm
�ub��� ��x� t

m��! � 			x d��

where J is the jacobian associated to the change of variable de�ned by the map
x� ��t� x! � 	� The presence of J arises from the application of characteristics method
when the convection is written in conservative form �see Bercovier� Pironneau and
Sastri 
�
 for details	� The value �m�x	 is given by �m�x	 � ���m � �	&t� x!m&t	
being � the solution of the �nal value problem
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���
��

d��t� x! s	

ds
� ub�s� ��x� t! s		�

��t� x! t	 � x�

����	

The next step consists of the substitution of the approximation ����	 in ����	 to
obtain the following sequence of nonlinear elliptic complementarity problems�

For m � �� �� �� � � ��M � 
nd um�� such that�

��������������
�������������

�um��	��� � Jm��um	��� � �m	

&t
� �

�

�x

�
jum��
x j�um��

x

�
� am�� 	 � in �

um�� 	 � in ��
�um��	��� � Jm��um	��� � �m	

&t
� �

�

�x

�
jum��
x j�um��

x

�
� am��

	
um�� � � in �

um�� � � in ��

u��x	 � �h�	
����x	 in �

����	
where am���x	 � a��m � �	&t� x	 and ' � � denotes the composition symbol�

���� Spatial discretization� In order to solve the nonlinear complementarity
problems ����	� for each value of m we initialize um���� 
 K � f� 
 W ���

� ��	 �� 	
� a�e� in �g so that in the step k � � we solve the variational inequality�

Find um���k�� 
 K such that

�

&t

Z
	

�um���k��	��� �� � um���k��	 dx �

�

Z
	

j um���k��
x j� um���k��

x �� � um���k��	xdx 	

�

&t

Z
	

Jm ��um	��� � �m	��� um���k��	 dx�Z
	

am�� �� � um���k��	dx� �� 
 K�

����	

In order to solve the nonlinear problem associated to the inequality constraint on
the solution� the algorithm proposed in Berm�udez and Moreno 
�
� is applied to the
variational inequality ����	 expressed in terms of the indicatrix function� IK � of the
convex K in the form�
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Find um���k�� 
 W ���
� ��	 such that

�

&t

Z
	

�um���k��	������ um���k��		dx�

�

Z
	

j um���k��
x j� um���k��

x ��� um���k��	xdx

�IK��	 � IK �um���k��	 	
�

&t

Z
	

Jm ��um	��� � �m	�� � um���k��	dx�Z
	

am����� um���k��	dx� �� 
W ���
� ��	�

����	

Moreover� the use of subdi�erential calculus for the convex function IK leads to the
equivalent formulation

�m���k��
� � ��A�um���k��	� fm	 
 �IK�u

m���k��	�����	

where �IK �u	 denotes the subdi�erential of IK at the point u �see Brezis 
�
� for more
details	� the operator A �W ���

� ��	�W��������	 is de�ned by

� A��	� 	 ��
�

&t

Z
	

����	dx� �

Z
	

j �x j
� �x	xdx�

and the element fm 
 W��������	 is de�ned by

� fm� 	 ��

Z
	

am��	dx�
�

&t

Z
	

Jm��um	��� � �m		dx�

Therefore equation �����	 is equivalent to the problem�

Find um���k�� 
W ���
� ��	 such that

�

&t

Z
	

�um���k��	��� 	 dx

Z
	

�m���k��
� 	 dx� �

Z
	

�m���k��
� 	xdx�

�����	

�

&t

Z
	

Jm��um	��� � �m		dx �

Z
	

am�� 	 dx� �	 
W ���
� ��	

�m���k��
� 
 �IK

�
um���k��

�
�����	

�m���k��
� � (

�
�um���k��

�x

�
�����	

where (�v	 �j v j� v � v��
The application of method proposed in Berm�udez and Moreno 
�
� to solve the

nonlinear problem �����	������	 introduces the new unknowns qm���k��
� and qm���k��

�

de�ned by
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qm���k��
� 
 �IK

�
um���k��

�
� ��u

m���k�������	

qm���k��
� � (

�
�um���k��

�x

�
� ��

�um���k��

�x
�����	

in terms of the positive parameters �� and ��� The equation �����	 is then formulated
as

�

&t

Z
	

�um���k��	���	dx�

Z
	

�qm���k��
� � ��u

m���k��	 	 dx�

�

Z
	

�
qm���k��
� � ��

�um���k��

�x

�
�	

�x
dx ������	

Z
	

am�� 	 dx �
�

&t

Z
	

Jm ��um	��� � �m		dx� �	 
W ���
� ��	�

Since �IK and ( are maximal monotone operators� from Berm�udez and Moreno

�
� the de�nitions �����	 and �����	 are characterized by the respective identities�

qm���k��
� � ��IK 	

	�
��

h
um���k�� � ��q

m���k��
�

i
�����	

qm���k��
� � (	���

�
�um���k��

�x
� ��q

m���k��
�

	
�����	

where ��IK 	
	�
��
and (	��� denote the Yosida approximations �see Brezis 
�
� for example	

for the operators ��IK � ��I	 and �( � ��I	 with positive parameters �� and ���
respectively�

To discretize in space the equations �����	������	 we consider piecewise linear
Lagrange �nite elements� Thus� for a given positive parameter h we build a uniform
�nite element mesh �h for � whose nodes are xi � �i � �	h� i � �� � � � � N � �� Next
we introduce the classical �nite elements spaces and sets�

Vh � f�h 
 C���	 � �h jE
 P�� �E 
 �hg

V�h � f�h 
 Vh � �h j�	� �g�����	

Kh � f�h 
 V�h � �h 	 � a�e� in�g

where E denotes a standard �nite element interval� The resulting discretized problem
can be written as follows�

Find um���k��
h 
 Kh such that

�

&t

Z
	

�um���k��
h 	��� 	h dx � ��

Z
	

um���k��
h 	h dx �
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���

Z
	

�um���k��
h

�x

�	h
�x

dx �

Z
	

am��
h 	h dx �

�

&t

Z
	

Jm ��umh 	
��� � �m	 	h dx�

Z
	

qm���k��
��h 	h dx������	

�

Z
	
qm���k��
��h

�	h
�x

dx� �	h 
 V�h�

Thus� if we freeze the �rst term in �����	 at each step of the inner loop in multipliers�
the duality method for solving the discretized problem �����	� �����	 and �����	 gives
rise to the following algorithm �

Step� � Initialize �um���k��
h 	� �equal to um���k

h � for example	

Step j � For a given�um���k��
h 	j � compute �u

m���k��
h 	j�� 
 V�h

by solving the linear problem�

��

Z
	

�um���k��
h 	j��	h dx� ���

Z
	

��um���k��
h 	j��

�x

�	h
�x

dx �

�
�

&t

Z
	
�um���k��

h 	
���
j 	h dx �

Z
	
�qm���k��
��h 	j 	h dx

��

Z
	

�qm���k��
��h 	j

�	h
�x

dx�

Z
	

am��
h 	h dx

�
�

&t

Z
	

Jm ���umh 	j	
��� � �m	 	h dx� �	 
 V�h�

�����	

The multipliers updating is performed by means of the equations�

�qm���k��
��h 	j�� � ��IK 	

	�
��

h
�um���k��

h 	j�� � ���q
m���k��
��h 	j

i
�����	

�qm���k��
��h 	j�� � (

	�
��

�
�

�x
�um���k��

h 	j�� � ���q
m���k��
��h 	j

	
�����	

The convergence of the duality method is established in Berm�udez and Moreno

�
 and Berm�udez 
�
 under the technical constraint �i�i � ���� for i����� For this
choice of the parameters the Yosida approximation can be easily computed by

��IK 	
	�
�

���

�r	 � ���� j r j �

(	��
���

�r	 � �( �
��

��r	 � ��� r �

where (��r	 � �r � s	�� being s the solution of the nonlinear equation �s� � s � r�
which has been solved for each r by using Cardano� s formulae�

���� Numerical results
 comparison tests� One goal of this work is to pro�
pose a numerical solution method for the mathematicalmoving boundary model which
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governs the ice sheet pro�le in terms of a given accumulation�ablation ice rate and
of a given sliding velocity� A further goal is to illustrate the qualitative properties
which have been analysed in Section �� For this� in the Section ��� we propose a
numerical algorithm based on upwinding techniques for the material derivative� a
maximal monotone operator for the non�linear di�usion term� �nite elements and du�
ality methods for the maximal monotone operator involved in several aspects of the
problem�

As in previous work of Calvo� Durany and V�azquez 
��
� in order to validate the
correct performance of our numerical approach� we have considered the Test � with
closed form stationary solution which corresponds to a no sliding case �i�e� ub � �	
and that is adapted from Paterson 
��
� For a su�ciently large time interval ��� T 	�
the open set � � ��L�L	 and the following piecewise constant accumulation�ablation
function are de�ned�

a�x	 �

��
�

a� if � � jxj � R�

�a� if R � jxj � L�
�����	

where L � �� a� � �� a� � � and R 
 ��� �	 and the identity

a�R � a���� R	�����	

holds� Thus� for a� � ���� and a� � ����� we have a steady state solution

��x	 �

������������
�����������

H

�
��

�
� �

a�
a�

���� � jxj
L

����

���

if jxj � R�

H

�
� �

a�
a�

�����
��

jxj

L

����

if R � jxj � ��

� if � � jxj � L�

�����	

where H � ��� a�R 	
��� represents the thickness at x � � �divide	�

In the Test � presented in this work the values L � � and R � ���� have been
chosen so that H � ����� As initial condition for the evolutive problem we have
considered

���x	 �

��
�

c ��� jxj���	��� if jxj � �

� if � � jxj � � �
�����	

with c � ����

For the numerical solution a uniform �nite element mesh with N � ���� nodes
and a time step equal to &t � � has been taken�
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In Fig� ��� the initial pro�le �t � �	� the computed solutions for t � � and t � ���
and the stationary exact solution for Test � �which matches the numerical solution
for t � ���	 are presented� Fig� ��� is obtained with the described duality method
with �� � �� and �� � ��� The computed results agree with the same test example
solved with another numerical approach in Calvo� Durany and V�azquez 
��
� Notice
that in Fig� ��� for t � � the ice sheet is retreating� The retreat process occurs
until t � �� and then it expands with time until reaching the stationary solution
given by expression �����	� The initial contraction is mainly due to the fact that
accumulation taking place at the center cannot balance the initial e�ect of ablation
near the margins�
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Fig� ���� Computed numerical solution of Test �� t � ����� t � ��� � ��� t � �������
Stationary ����

Test � is proposed to verify the behaviour of the concave shape in the absence
of convection when increasing the sliding velocity� In this case� we take L � � and
R � � in �����	� so that equation �����	 is not veri�ed� Thus� in Fig� ��� � ��� and ���
several examples are presented by considering the velocity �eld

ub�t� x	 �



C x� if x 	 ��

�C x� if x � ��
�����	

and the initial condition �����	�

More precisely� Fig� ��� shows the results obtained for t � �� t � �� and t � �� in
the case C � ������ Fig� ��� shows the numerical solution for t � �� t � � and t � �
in the case C � ����� and Fig� ��� presents the computed pro�les for t � �� t � � and
t � � when C � ���� The set of these �gures illustrates the lack of concave pro�les
in the presence of enough convection �C � ���� or C � ���	� The time instants have
been chosen to present the pro�les that most emphazise this phenomenon� The time
step� the number of nodes and the parameters in Berm�udez and Moreno 
�
 algorithm
are the same as those taken in Test ��
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Fig� ���� Numerical solution of Test � in the case C � ������ t � ����� t � ������
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Test � has been designed to illustrate the waiting time property discussed in Sec�
tion �� The idea is to show that when the initial condition of the problem has a
su�ciently �at convex�concave shape �see Fig� ���	 then the displacement of the
initial free�boundary �S��t�	� for example	 starts after a certain time while for a con�
cave initial condition �as �����	� for example	 this displacement occurs instantaniously�

To illustrate this fact the numerical solutions obtained from �����	 and the alter�
native initial condition

���x	 �

�����������
����������

c �� � jxj���	��� if ����� � x � ����

����� c
�a�
�

����
jx� �j��� if ���� � x � �

����� c
�a�
�

����
jx� �j��� if �� � x � �����

� otherwise

�����	

are compared for di�erent values of c� Thus� in Fig� ��� and Fig� ��� the moving
boundaries are presented for the initial conditions �����	 and �����	 for c � ��� and
c � ����� respectively�
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Fig� ���� Convex�concave initial condition �� for c � ��� and c � �����

In view that the ice mass associated to an initial condition such as �����	 depends
linearly on the parameter c� in Fig� ��� we compare the moving boundary evolution
for di�erent values of c in the absence of convection� In Fig� ��� the in�uence of
convection is illustrated for the value c � �����
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Fig� ���� Moving boundary S��t� in Test � with convex�concave �� ��� and purely concave
�� �� � �� initial conditions for c � ����
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Fig� ��	� Moving boundary S��t� in Test � with convex�concave �� ��� and purely concave
�� �� � �� initial conditions for c � �����
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Fig� ��
� Moving boundary S��t� in Test � with convex�concave �� function and C � � for
c � �������� c � ������ � ��� c � �������

0 2 4 6 8 10 12 14 16 18 20
1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16

1.18

1.2

TIME ( t )

F
R

E
E

 B
O

U
N

D
A

R
Y

 (
S +

( 
t )

)

Fig� ���� Moving boundary S��t� in Test � with �� and c � ����� C � ��� � ��� C � ����
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� Discussion� In this paper we used di�erent but equivalent weak formula�
tions� expressed in terms of multivalued equations or of variational inequalities when
the complementary formulation is considered for numerical purposes� This approach
makes more precise the original doubly nonlinear formulation of Fowler 
��
 converting
it in an obstacle problem for the associated operator� Assuming some extra regularity
properties of the solution we give su�cent conditions �in terms of a� the accumulation
rate and h�� the initial thickness	 for the existence of the free moving boundary and
its spatial location� For this� we employed two di�erent methods� a comparison prin�
ciple combined with the construction of suitable barrier functions in the case ub � �
and a local energy method if ub �� �� In both cases� we prove rigorously the possible
existence of a waiting time in the dynamics of the free boundary� whose location and
evolution can be qualitatively described as long as suitable and physically admisible
hypothesis on the data of the problem hold�

From the numerical point of view� the main advantage of the proposed new ap�
proach follows from the introduction of a maximalmonotone operator for the nonlinear
di�usion term which had already been treated in explicit form 
��
� Thus� a duality
method can also be applied now to greatly improve the speed of convergence with
respect to the previous work� In order to verify the good performance of the new
algorithm as well as the computational cost reduction� a problem with a closed form
solution has been tested� Moreover� to complete the theoretical results� several test
examples illustrate some qualitative properties of the ice pro�le and the free boundary
associated�
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