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Abstract. A dual pair G and G* of smooth and generalized random variables, re-
spectively, over the white noise probability space is studied. G is constructed by norms
involving exponentials of the Ornstein-Uhlenbeck operator, G* is its dual. Sufficient: cri-
teria are proved for when a function on S(IR) is the S—transform of an element in G or

g*.
1. Introduction

Dual pairs of spaces of random variables have been studied and applied to many
problems of stochastic and infinite dimensional analysis in numerous papers. We refer -
the reader to [HKP 93] for the background of the subject and for an extensive list of
references. The two most used pairs of spaces seem to be the Hida spaces (S ()Y and the
Meyer—Watanabe spaces DM, :

In [PS 91] a result was proved for the space (§)* of Hida distributions which charac-
terizes this space in terms of its S—transform, essentially a Gau-Laplace transform. This
result appears to be quite useful, as well from a structural point of view as for applications. ‘
For example, this “characterization theorem” has been applied to: quantum field theory
[PS 93], Feynman integrals [FPS 91, KS 92, LLS 93], (anticipating) stochastic (Volterra,
partial) differential equations [CLP 93, CP 92, KP 90, Po 92, Po 93], law of large numbers
and central limit theorem of Donsker’s delta functional [PS 93ab]. On the other hand,
for applications in stochastic analysis the pair D and D* of Meyer—Watanabe seems to
be more fitting: for example, the solutions of non-degenerate It6 equations belong to D
[Wa 84] and not to (S). This is due to the fact that elements in (§) have a chaos de-
composition with kernels in S(JR™) while solutions of SDE’s have kernels which fail to be
in S(JR™). Unfortunately, there is no characterization-type theorem known for the pair
(D*, D), and such a characterization appears to be a rather difficult problem. Therefore
the basic idea of the present paper is to consider a space of random variables bigger than
(S) but smaller than D which would possibly contain solutions of It6 SDE’s (in particular
having kernels of the chaos decomposition in L?(JR™)) but which at the same time allows
for a characterization in terms of the S-transform. '
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In fact, there is a pair denoted by (G, G*) which is “between” the above mentioned
pairs, namely we have the embeddings

($)*>G¢*O>D*>(L*) 2D DG D(S). (1.1)

Although we could not find an equivalent characterization of G* and G in terms of their
S-transforms, we prove in Section 4 a sufficient condition for functions on S(IR) to be the
S—-transform of an element in G or in G*. On the other hand, G is large enough to contain
at least some solutions of Ité—equations: indeed, we show in Section 2 that the solution
of the SDE defining the stochastic exponential of Brownian motion belongs to G. Thus
there is some hope that this dual pair is appropriate for the study of stochastic differential
equations, and that for this the power of characterization-type results becomes available.

The space G is . constructed by L?-norms with exponential weights of the Ornstein—
Uhlenbeck operator. It has been considered in several papers, e.g. [LM 88, UZ 93].

The organization of this paper'is as follows. In Section 2 we define G and G* and prove
some of their elementary properties. In particular we show that G is a Fréchet algebra. In
Section 3 we show some properties concerning the calculus on G. For example, we prove the
convergence of the Taylor series (in the sense of convergence in G) for translations in the
directions of L?(IR). In Section 4 we prove our main result, namely the above. mentioned
criterium on ray—analytic functions on & (R) which allows to conclude that such a function
F is the S—transform of an element in G or in G*. The main point is to find a condition on
F which implies that the kernels of S~ LF are in L2(IR™). This can be achieved by asking
for an exponential bound in terms of a trace class quadratic form on & (IR) (see Section 4).
We also prove a convergence result, discuss examples and the Wick product.

Acknowledgement. It is a pleasure to thank L. Streit for stimulating discussions.

2. Definition of G, G*, and Elementary Properties

Throughout this paper we work with the white noise probability space (S'(IR), B, i) as
the underlying probability space. (L?) is a shorthand for LP(S'(IR), B, ), p > 1. N denotes
the number or Ornstein-Uhlenbeck operator, i.e., N acts on the n—th homogeneous chaos
of (L?) as multiplication by n, n € INg. By P we denote the algebra of polynomials which
is ‘dense in (L?): P is generated by the canonical coordinate process £ — X, Xe(w) =
<w, >, € S(R),we S'(R).

Since every ¢ € P has a chaos decomposition
=) ¢ ' (2.1)

with only finitely many non-zero (™, n € INo, we have e*Ny € (L?) for every A € R.
Thus we, may define a family {|| - ||x, A € IR} of norms || - ||x on P by setting '

lella = lleMellLe)- (2.2)
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Note that (™ = I,(f(™) where I,(f(™) is the n—fold Wiener integral of f(™ € L?(RR")
(in fact, here f(™) € S(R™)). Thus we have

[o ]
1
lella = (O nte®*™ I f ™72 (mm)) * (2.3)
n=0 .

Now we define Gx, A € IR, as the completion of P with respect to ||-]|x. Thus Gy is in one-to-
one correspondence with the (Fock type) space consisting of all sequences { (™), n € IV} of
symmetric elements f(™ in L2(R"), n € IN, f® € €, so that the sum in (2.3) converges.

It is clear that for A < A, we have Gy C Gx. Now we set

G:=[) G (2:4)

AER

and equip G with the projective limit topology. It is obvious that we can replace the
intersection over A € IR in (2.4) by the intersection over A € IN. Since the norm (2.2) is
Hilbertian, G is a countably Hilbert space (e.g., [GV 68]), and hence metrizable. Moreover,
the fact that e*V, X € IR, is closed on (L?) entails that the family {|| - ||z, A € R} is
compatible in the sense of [GV 68]. Therefore G is complete [GV 68]. Finally note that
as a countably Hilbert space G is reflexive (e.g., [GV 68]). Thus G is a reflexive Fréchet
space.

By definition, G* is the dual of G. We have

g = o : (2.5)

AER

Ezamyple 2.1. Consider the Brownian motion {B(t) = X1,,,; t 2 0}, where X. denotes
also the extension of the canonical coordinate process from S(IR) to L*(IR). Let Y(t) be
the solution of

dY () = Y(¢)dB(t), t>0,

Y(0)=1,

i.e., Y(t) = exp(B(t) — 3t). Then Y(¢) has a chaos decomposition which is given by the
sequence of kernels {f™ = #1[%’,';), n € INy} (with the convention 0! = 1). Let A € R,
then

ox 1 "
Iy =>, n!mez'\"t
n=0

= exp(e?*t).

Thus we have Y(t) € G for all ¢t > 0. (A somewhat slicker proof can be done by using
the facts that exp(AN) is equal to the second quantization I'(e*) of e*, considered as a
multiplication operator on L2(IR), and that for a closed operator B on L*(IR) and f € D(B)

we have
I(B): et :=:eXBs




where : exp X : = exp(X5 — 3| f || 12(R))- Lhen we have immediately

NY (1) = e B

ARisy_ 12X
—e® B(t)-3e t’

and the last expression has (L?)-norm equal to exp(3e**t).)

Ezample 2.2. Let z € IR,t > 0, and consider Donsker’s delta function 6, o B(¢). It has a
well-known chaos decomposition (in (S§)*) given by (e.g., [HKP 93])

820 B(t) = plt,2) Y —t 7" Ha () Ha 0 B(2),

n=0

where p(t,z) = (2nt)" % exp(—g;2?), and H,, ; is the n—th Hermite polynomial with vari-
ance t:
Hy,i(z) T ex (52— *t)]
n = — exp(sz — =s°t) |
AT ds™ Xp»S 2 9=0

Now write

6,0 B(t) = p(t,z)? Y en,() Hn,t 0 B(t),
() p( ) n=0m ,t( ) st ()
with the Hermite function

. 1 L
eni(T) = W?(t,x); Hy ().

Let A > 0. Then -
”61 c (t)llz—,\ = p(-t, 1") Z 6_2An'en,t{('$‘)2'
n=0 )

By a standard estimate on Hermite functions [HP 57, (21.3.2)] we have e ¢(z) = 0(n~ 4)
Thus the sum converges for any A > 0, and we have b, 0 B(t) € G_x, A > 0, and in
particular 6, o B(t) € G*. .

Examples 2.1 and 2.2 will be reconsidered in Sectlon 4.

Next we establish the inclusion relations (1.1). First we need some more notation. By
Il - |l .k we denote the norm on P which is given by

Bell ok = 11+ N)F el e,
where k € Z,p > 1. DP* is the completion of P with respect to | - || ,x, and the Meyer—

Watanabe space D is the projective limit of the family {D?*;p > 1,k € IN} (cf., e.g., [FP
89, Me 83, Wa 83, Su 85|, or in the white noise context [HKP 93]). D* is the dual of D.

Let A be the self-adjoint operator on L?(IR) which is given on S(IR) by:
(A6)(z) = —¢"(z) + (1 + 2% )¢(z), €€ S(R), z € R.
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['(A) denotes its second quantization (e.g., [Si 74, HKP 93]) which is a self-adjoint operator
on (L?) . Since infspecA = 2, it is not hard to see that infspecI'(A) = 1 (with 1 being the
normalized eigenvector in (L?) of I'(A) of eigenvalue 1). We define the norms

lellzp = IT(A)PellL2), pe R,

on P, and denote the completion of P with respect to | -{[2,, by (5),. (&) is the projective

limit of the family {(S),,p € R}. The space (S)” of Hida distributions is the dual of (S).
For more details on these two spaces we refer the interested reader to [HKP 93, PS 91],
and the references cited there. :

Let us now show that G C D. Assume that ¢ € P, and let k € IN,p > 1. Then we
may estimate for large enough A > 0 as follows:
Beellpe = eV (1 + M) 2ol ur)
<Nlem 3N+ M)E Mgl n)
< Caille*V el
= Cakllells.

In the first estimate we used for large enough A (depending on p) Nelson’s hypercontrac-
tivity theorem [Ne 73]. In the second we used the spectral theorem. Since P is dense in
G, the above estimate extends to ¢ € G.

Now let p > 0, and consider again ¢ € P. The fact that infspecA > 2 entails that
I'(A)~! < 27V, and therefore for given A > 0 we can find p > 0 so that e*NT(4)? is a
contraction on (L?). Thus we have

lellx = XY T(A)PT(A) ¢l L2
< [T(AY eliz2)
= lll2,p-
Since P is dense in (S), the preceding inequality holds for ¢ € (S). Altogether we have
proved the following result (henceforth we identify (L?) with its dual):

Theorem 2.3. For the spaces D, G, (S) the following chain of continuous dense em-
beddings holds:
D>GD(S).

Consequently the chain of embeddings (1.1) holds.

In view of Theorem 2.3, Example 2.2 is rather trivial since Watanabe showed in [WA
83] that §, o X belongs to D*, and hence to G*, whenever X is in D with non-degenerate
Malliavin covariance matrix — which is clearly true for B(t),t > 0.

We now show that G is an algebra under pointwise multiplication. This result has
already been proved in [LM 88] with a quite different machinery than the one below. Our
proof follows the one in [PY 92] of the corresponding statement for (S) quite closely.




Proposition 2.4. Let ) := 1 5 m(2 + \/_) and assume that A > Ao, @, ¥ € Gy. Then
for all v > Ag, @ - ¥ € Ga—, and there exists a constant -C, so that

i - Blia-v < Collplls bl

Proof. Let ¢, ¥ have the following chaos expansions
w =2 L"),
n=0
b= 1),

n=0

with f(7) ¢ ¢ LZ@") (where ~ stands for .sjzmme.trization}).. Let m, n, k € INy with
k<mAn,set :

f(n) Rk ,g(m) = / f(n)(, 81y 000y Sk )g(m)(,sl g ey ‘S,‘k) ,dkS.,
R*
and let (M @rg™ denote the symmetrization of £ @ .¢g(™. Then we have (e.g., [HKP
93, HPS 88])

() Lulg™) n;\jk'( ) ()T £ ™8™,

We may assume that ¥ < A, and estimate in the following way:
M (F ) (g™ a—s <

3 MmN —v)(m4n— (n) &, (m
<> Ic!(k)(;)e(A W40 Lo g2k (1 Big ™l

k=0
mAn m n .
A'v.-‘,';‘.:':. 3 A—v)( n—2%k). 1, £n)a )

=) k!_( );.‘(ﬂk)eu Jmtn=28)((m 4 — 2k)) 3| F B rg ™ 2 gntm—2)

mAn

. = . dm\ ) L (At ) (T2
< ||f( )||L’-2»(m")£|'g(m)||L2(.JI%'"x Z k!,:( )( )((m +'n—i2:k_-)‘:!9é-e("\ "’?('m'*"" 2k)

\&/\ n—-%k )

mAn i
m + 7Y *

<N a €™ [[Tnlg ™) Ia ™™ Z (

mAn

= WA g™l e 3 (

9 d{m4n—2k) .
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Clearly we can bound the last sum by

m+ o) m+n
min m+n _k min koL m+n koL
2 < —7)2 -
> (") e e (M)

Therefore we get

a0 m(9™ V-0 < K o™ ITa(f )2 0™ [ Zm(g ™),

where K = (\/‘2-/51)5 and 0 = /2 + 2 - e~ . Now we estimate as follows

e dllame =11 Y Ln(f ™) n(g™)lr-s

m,n=0

< Z ”In(f(n))Im(g(m))”z\—v

<KEY (N IL(F™)IR) %an @™)3)*
n=0 n=0

1
= K——lielx Il

< K(ZU"HIn(f("))IIA)(Z""Ilfn(g("))llx)
|

if 0 <1,ie.,if v>1n(2+v2). O

. An obvious consequence of Proposition 2.4 is the following

Theorem 2.5. Pointwise multiplication is continuous from G x G (equipped with the
product topology) onto G, and in particular G is an algebra with respect to pointwise
multiplication.

We conclude this section by conmdenng the Wick product, e.g., [MY 87, HKP 93,
LOU 91] of elements in G*. Since G* C (S)*, and since the Wick product ®o ¥ of elements
®, ¥ in (S)" is an element in ()" (cf., e.g., [HKP 93, Chapter 4]), 0¥ is also well- defined
for ®, ¥ c G*. & 0¥ can be defined as follows: if ®, ¥ have chaos decomposition given
by {f(") n € INo}, {¢'™, n € INy}, respectively, then ® o ¥ is determined by having the
chaos decompos1t10n given by {h(™, n € INy}, where

A = $7 flrmm gg(m),

m=0




In case that ®, ¥ € G*, i.e., &, ¥ € G for some A € R‘j\’ve have f’(") g™ e L@"), n €
IN. Let us denote from now on the norm of L*(R™) simply by | - {2 (there will be no
danger of confusmn) We have the estimate

n
BB < (n41) Y 1Rl

m=0
Let e >0andset X' =X —¢— %, then we can estimate in the following way:

(<] .n
1@ 0@} <D (n+ 1™ Y (T lgt
i n=0 m=0 .

= 'n " E n. n— 3 EY {m )y
=S 3 (7 )ae e

n=0 m=90
SKZY Y e A w ]
n=0m=0

= K2 || 2|3 13-

Here we have denoted by @™ g the n-th multiple Wiener integral of f‘("), .g(‘"), re-
spectively, and
1
K. = (26)'1/26_ 379,

Hence we have proved the following results:
Proposition 2.6. Let &, ¥ € Gy, A € IR. Let g = X\ — %, and A < Ag. Then

® 0¥ € Gy, and |
| 120 ¥l < Koxllal2hs,

where Ky x» = (2(A — X') — 1)—1/26(A—A")—1_

Theorem 2.7. G and G* are algebras under the Wick product. Moreover, the Wick
product is continuous from G x G (with product topology) onto G.

3. Calculus on ¢

In this section we give some basic results concerning the calculus on the spaces Ga.
Some related results have also been mentioned in [UZ 93] (in the Wiener space setting).
Most of the proofs are along standard lines (e.g., [HKP 93, PY 92]), and therefore will be

somewhat sketchy.

For h € L?(IR) let D} denote the Gateaux derivative in direction A.



Proposition 3.1. Let M, A€ R, \' < A, h € L}(R), ¢ € Gx. Then Dy € Gy and the
following estimate holds :

- IDagllx < Caoa lhlallel, @
where Cy x = (2(\ — ,\'))—1/26—(A’+1/2)‘ .

Proof. It suffices to show the estimate (3.1) for ¢ € P. If ¢ € P has a chaos expansion

given by the sequence {f(™), n € INy} with f(® ¢ L2(ﬂ\{"), n€ N, fO e € (" stands for
symmetrization), then Dj¢ has chaos expansion given by {(n + 1)(k, f*+V), n € IN,},
where :

(hy FP D) () = /}R h(s)FD (s, u)ds, u € R™

Now inequality (3.1) follows easily from (2.3) and an application of Schwarz’ inequality.

O

We conclude from Proposition 3.1 the following theorem:

" Theorem 3.2. Leth € LY(R), X € R, € > 0. Then Dy, is continuous from G into G —..
In particular, D;, is continuous on G, and G is C'™ with respect to Gateaux differentiation

in all directions of L?(IR).

Since G is an algebra with respect to pointwise multiplication (Theorem 2.5), it is
clear that we have the usual product rule on G: for ¢, ¥ € G,

Di(p - ¥) = (Drp) - ¥ + ¢ - (Dath).

We remark that a corresponding rule holds also for the Wick product:

Di(p o) = (Drp) o9 + ¢ o (Dpp). (3.2)

Firstly, all expressions make sense because of Theorem 2.7. Moreover, the kernels of the
chaos decomposition of the left hand side of (3.2) are given by (cf. the arguments leading
to Proposition 2.6)

n-1
(TL + 1)(h’7 z f(n+l_m)®g(m))L2(R), ne WO)

m=0

where the L2(IR) “inner product” above is taken in the first variable of the tensor product.
But the last expression is equal to ‘

n+1
3 [(n +1—m)(h, fOF™) 2 gy Rg™ + f("“‘""@(m(h,g""))mm)] -

m=0

" This on the other hand is the kernel of the n-th chaos of the right hand side of (3.2).
Now we discuss the adjoint (with respect to the dual pairing between G and G*) Dj
of Dy,




Proposition 3.3. Let h € L*(R), N, A€ R, X' < X, ¢ € Ga. Then D} € Gy and the
following inequality holds
IDiella < C o 1hl2llellas (3.3)

where C;,’,\ =(2(A — )\'))—-1/26(,\—1/2).

Proof.  Again the proof is straightforward by (2.3), an application of Schwarz’ inequality
and the formula '
. g(n) — h@f(n——l)’ ne W,

for the kernel of the n-th homogeneous chaos of D¢ (and of course ¢(® = 0), the chaos

of ¢ being given by the sequence {f(™ ne Ny} O
“Thus we have

Theorem 3.4. Let & € L?(IR) and A € R. Then for all ¢ > 0, D} acts continuously

from Gy into g,\__s. In particular, D} is continuous on g.

We remark in passing that — since G* C (S)" - the Hitsuda-Skorokhod integral (e.g.,
[HKP 93]) of processes in G* indexed by an interval I C IR, say, is well-defined, and it
gives an extension of the Itd integral with respect to Brownian motion. With a similar
argument as in the proof of Proposition 3.3 it is then easy to show that the Hitsuda—
Skorokhod integral is a continuous mapping from L*(I; G») into Gy_ forall A € R, ¢ > 0.

Next we turn to translations in directions of L2(IR). Again, let h € L?(IR), and define
for p € P '
The(w) = p(w + k), w e S'(R). (3.4)

Proposition 3.5. Let h € L*(R), ¢ € P, and X' € IR. Set Ao := X' +1In(1 + e |hl2).
Then for all A > )\ the following estimate holds : .

Inglly < (1= e 20PN gl (3.5)

Proof. The following formula has been proved in [PY 92] (cf. also [HKP 93]):

p(w + k) = i 3 (Z) L(fi"" "),

n=0 k=0

where {f("), n € INy} is the sequence of integral kernels of the chaos expansion of ¢, and
I,(f(™) denotes the n-th multiple Wiener integral of (" ¢ L2(IR™). Moreover,

fl(ln,n—k)(v) :/ B f(n)(v,u)h@)n——k(u) du, v E Rk.

n
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L]}

Using the triangular and Schwarz’ inequality we thereforexget for any € > 0 the estimate

: ITaeplla < E 1f™2 Z( ) Vie? klhl

n=0

< Z Vol F™eX (1 + eV |h|o)"
=0

< (1= ) llrgte.

O
Cleaﬂy, Proposition 3.5 implies the following result.
Thedtem 3.6. For every h € L?(IR), 7} extends to a continuous opera.tofon g.
Finally, we turn to the Taylor series expansion of Th¢.
Theorem 3.7. Let h € L*(R), ¢ € G. Then
The = exp(Dh ), (3.6)

where the exponential series

exp(Dp)p = Z Dh‘P,

converges in G.

Proof. Let ¢ € G have chaos expansion given by the kernels f(™ n e Ny, and denote by
©(") the n-th multiple Wiener integral of f(*). Iteration of the formula for Dy mentioned
in the proof of Proposition 3.1 gives for all M € IN, n € IN,,

M M n
> 20 = Y (%) e,

m=0 m=0
where we used the same notation as in the proof of Proposition 3.5, and we.make the

convention ( ) = ,(l" m=m) — 0 for m > n. Upon comparison with the formula for Thcp

given in the proof of Proposmon 3.5, we find

The - Z——Dw— DS ( )n—m(ff,"’"‘))-

n=M+1m=M

Thus by the triangular and Schwarz’ inequality we obtain

M oo n
1 m n n—
e = 3> = DPelas Y Wk 3 (7)) Vil e,
m=0 ) n=M+1 m=0

The last term is the remainder of a series which in the proof of Proposition 3.5 has been
shown to be convergent. Thus the exponential series exp(Dp, ) converges for all A € IR in
G to Thp. This concludes the proof of the theorem. O
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4. A Criterium in Terms of the S—Transform ; : ‘

In this section we prove our main result and discuss some of its consequences. First .
we define the S-transform of the elements of G*.

Let A € R and consider ® € Gy. Define its S—transform §® by
S8(6) =< F,: ¥ 1>,¢ € S(R), (41)

where < -,- > denotes the canonical dual pairing between G* and G. Note that : eX¢ :€ G
(which is proved as in Example 3.1) so that for all ® € G*,5® is an everywhere defined
function on S(IR). Moreover, if A > 0, € G,, then |

Se(¢) = / o + ) du(w).

Also, it is easy to see that S®(£),€ € S(IR) has an extension for € € S¢(IR). Indeed, if for |
¢ € S¢(IR) the canonical coordinate process X is defined by X¢ := XRe¢ + 1 Xim¢, this |
extension is also given by

SP(£) :=< B,: eX¢ :>, ¢ € S¢(R), .

where now .
ceXe s (w) = e8> 280, e S'(R),

and the last inr}er_product is the one of Li(R). Moreover, this extension is G-entire
everywhere in' S¢(IR), i.e., for all {,9 € Sc(IR), the mapping z — S®(€ + Ap),z € € is

entire analytic. .

in a criterium on F which allows to conclude that it is the S—transform of an element in ¢
or G*. Such results have been shown for (S§) and (S)" in [Ko 80, KPS 91, Le 91, MY 91,
PS 91] and other papers, and in the context of Hida distributions they seem to be useful
for applications. ' - h ‘

; |
Consider a complex-valued function F' on S¢(JR) whichis G-entire. We are interested |
|

Theorem 4.1.  Assume that there exists a bounded, non-negative quadratic form ) on

L%*(IR) which is in the trace class, and such that for all £ € S(RR), z € €,

+

|F(26)] < K l*1"Q&8), (4.1)

for some positive constant K. Let p()) := 2e*A+DTrQ, A € R. If p()\) < 1, then there
exists a unique ® € G, so that S® = F. Moreover

1B]x < K(2m)~5(1 = p(\) . (4.2)
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Corollary 4.2.  Assume that (4.1) holds. Then there éxists a unique ® € G* so that
S® =F. k '

Proof. Choose A < 0, |A| large enough so that p()\) < 1. O

Corollary 4.3. Suppose that for every ¢ > 0 there exists K. > 0 so that for all
tE€S(R),z€C, '
|F(2€)] < K.ecl:* Q&8 (4.3)

Then there exists a unique ¢ € G so that Sy = F..

Proof. Replacing @ in p()) by eQ we get p()\) = 2ee?*+DTr Q. For every A € IR, choose
¢ small enough so that p(A\) < 1. Then S~!F belongs to Gy for all A € IR, i.e., it belongs
to G. . : a

Corollary 4.4. Assume that {F,,n € IN} is a sequence of functions on S(IR) which
have everywhere ray entire extensions. Suppose that {F,,n € IN} is pointwise Cauchy,
that the estimate (4.1) holds for every F;,, n € IN, uniformly in n, and that A € IR is such
that p(A) < 1. Then there exists a unique element ® € Gy, so that &, := S~!F}, converges
weakly to @ in G,.

Proof. The complex algebra £ C G generated by the functions w — exp < w,€ >,£ €
S(R), w € S'(IR), is dense in Gy, A € IR. The hypothesis implies that ®,, is Cauchy
on the dense set £ in Gx. The uniform bound together with inequality (4.2) show that
{®,,n € IN} is bounded in G). Therefore {®,,n € IN} is weakly Cauchy in Gj. Since
G, is a Hilbert space, it is weakly complete, and therefore there exists a unique ® € G, so
that {®,,n E IN'} converges weakly to ®. O

Remarks. 1. By general theory (e.g., [Ka 76]) we can replace everywhere above Q(¢, )
by || A€|3. (R)> where A is a symmetric Hilbert-Schmidt operator on L%(IR).

2. We have tried to construct an example of an element in G with an S—transform which
does not admit a bound of the type (4.1), however without success. Therefore, the “good-

Y

ness” of the criterium given in Theorem 4.1 remains an open problem.

We now prove Theorem 4.1 by followmg the arguments in [PS 91] quite closely (cf.
also [HKP 93, Chapter 4]).

Proof of Theorem 4.1. Let £ € S(IR), and consider the entire analytic function z — F(z£).
Its power series expansion at the origin reads

oo

F(z) =) =" F™M(9).

n=0
Clearly we have
1
n!

dn
F™(€) = = — F(z6)|

and it is easy to see that

F(€) = —(DEF)0),
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where D¢ denotes the Gateaux—derivativein dlrectlon €. The last relation shows that F)
is homogeneous in ¢ of degree n. ‘

Assume for the moment that Q(¢,¢) # 0, and normalize € so that Q(£,£) = 1. Then

‘Cauchy’s theorem entails the estimate
| ) < KRR
for every R >0, and optimizing we find
o FO(E)] < Kn~3(20)2.

Using the homogene1ty of F(™ we therefore get for arbitrary £ € S(IR) with Q(¢,£) # 0
the estimate

IF(")(§)| <Kn"%(2e)7Q(£,6)%. . (4.4)

If Q(¢,¢) = 0, Cauchy’s theorem shows that F(M(€) = 0, and therefore the bound (4.4)
holds for every £ € S(IR).

Now define the following symmetric n-multilinear form f( on S(IR) (cf. [KL 93]).
For &1,....,6n € S(IR) set

F™(E, . En) = %(Del .- Dg, F)(0).

Then f(*) can be obtained ffom F() by polarization:

f(")(&, oy €n) = 261 cen F™ (161 + ...+ €nbn),

- 2"n'

where the sum 3. is over all n-tuples € = (€1,...,6,) withe; = 1,0 =1,...,n. In order
to obtain a bound for f("), assume again first that Q(&,¢) £ 0, and by normahzatmn
Q(&:, &) =1 foralli =1,2,..,n. Then by (4.4)

1 —n n n
1 €y )] S K o™/ (2€)"/% EQ(elfl oot enbn€rbn +o o €abn)?

1
< K. -nf2 nf/2gn,_n
< K—-——znn!n (2e) .2 n

' 1
-t onf2 n/2
=K —n (2e)™°,

where we used the triangular inequality for Q% in the second step. By multi-linearity of
f® we have

£ (&, ,§n>|<Ix 2671)?]—[@(6,,&)2 (4.5)
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if Q(&:,&:) 9é 0 for all . If there exists ¢ so that Q(ﬁ,,{,), then we can show as above that
(D¢, F)(0) = 0 and therefore also f™(&,..4,€:) = 0. Thus also in this case the inequality
(4.5) holds true. Now use Stirling’s theorem to obtain

L) —%12-';'1.‘.%“- '
GRS SCURN Lok | CCONY 49)
Let {ex,k € IV} be a CONS of L*(RR). Then we have
I ls = Y ey,
kl,...,kn=]
, _11 n
< K*(2r) 2H(2e2) Z Qer,,er, ) Q(ekn,ekn)

ki, kn=1

= K2(27r)—% —7%(2-62Tr Q)"

R Y
= K*(2m) Tye 227 ()

Since (™) has a finite Hilbert-Schmidt norm, it may be identified with a symmetric element
in L?(IR"), and its L>(JR")-norm is equal to the above Hilbert—Schmidt norm. Thus we
may set '

(b = Z In(ﬁ),
n=0

and we have

|I<I>||A = Z n! e F L2 o)

n=0

1
< K2(27r)" H

1—p(A)

Hence ® € G,. It is straightforward to compute the S—transform of ® (cf. also [HKP 93,
Chapt. 2]):

S®(&) =Y fE 0 8)

=3 F™(e)
= F(§).

Also, by inspection the above arguments show that ® is uniquely determined by F. 0
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Ezample 4.5. ~We reconsider Example 2.1. It is trivial to compute the S-transform of

Y (&) = exp(B(t ) — 1t): SY(t)(€) = expi fo £(s)ds). Con51der

f:t
woyds+2 [ €(6)ds), m €€ SUR), 2 €

Whlch is obviously the everywhere ray-entire extension of SY{(t). Now choose
fosite It Sy
o= / SEog
Jo
which is clearly a quadratic form on S(IR), and it is trace class on L*(iR (Wlth TrQ =t).

It is trivial to verify the bound-(4.3) for any ¢ > 0 {choose K. = exp((4e)™1)). Thus,
Y(t)€g.

Ezample 4.6. Consider again Example 2.2, Donsker’s delta function ¢, o B(t), t >90. Its
S—transform is given by (e.g., [HKP 93)) '

(2rt)~Y/? exp x——/ ﬁ(s)ds | |

Again it is easy to see that this function on S(IR) has everywhere a ray-analytic extension
{just replace above £ by 1+ z£), and that with the same ) as in the previous example the
bound {4.1) holds. Thus we have §, o B(t) € G*.
References.
fCcLpP 93] Cochran, G., Lee, J.-S. and Potthoff, J.: Stochastic Volterra equations with
singular kernels; Preprint (1993)
{CP 92] ~ Cochran, G. and Potthoff, J.: Fixed point principles for stopchastic partial dif-
' ferential equations; Preprint(1992), to appear in: Proc. Int. Conf. Dynamics of
Complezr and Irrgevlar Systems .
[FPS 91] de Faria, M., Potthoff, J. and Streit, L.: The Feynman integrand as a Hida
distribution; J. Math. Phys. 32 (1991) 2123-2127 |
[FP 89] ¢ Feyel, D. and de la Pradelle, A.: Espaces de Sobolev Gaussiens; Ana. Inst. -
Fourier 39 (1989) 875-908
{GV 68] Gel’fand, I.M. and Vilenkin, N.Ya.: Generalized Functions {V. New York, Lon-
don: Academic Press (1968)
{HKP 93] Hida, T., Kuo, H.-H., Potthoff, J. and Streit, L.: White Noise - An Infinite
Dimensional Calculus. Dordrecht: Kluwer (1993)
[HPS 88] Hida, T., Potthoff, J. and Streit, L.: Dirichlet forms and white noise analysis;
. Commun. Math. Phys. 116 {1988) 235-245
[HP 57] Hille, E. and Phillips, R.S.: Functional Analysis and Semigroups. Providence:
© American Mathematical Society {1957)
[Ka 76] Kato, T.: Perlurbation Theory for Linear Operators Berlin, Hexdelberg, New
York: Springer {1976)
KL 93] Kondratiev, Y., Leukert, P., Potthoff, J., Strelt L. and Westerkamp, W ‘Gen-
eralized functlonals in Gaussian spaces — the characterization theorem revised;
Preprint {1993) :
16 ' i



[KS 92]
[Ko 80]

[KP 90]

[KPS 91]
[LLS 93]

[Le 91]
[LM 88)
[LOU 91]
[Me 83
MY 87]
[MY 91]
[Ne 73]
[Po 92]

[Po 93]
[PS 93a]
[PS 93b]
[PS 91]
{Psgm

(PY 92]

[Si 74]

[Su 85

Khandekar, D.C. and Strelt L.: Constructmg the Feynman mtegrand Ann.
Physik 1 (1992) 49-55

Kondratiev, Y.: Nuclear spaces of entire functions in problems of lnﬁnlte—dlmen—
sional analysis; Soviet Math. Dokl. 22 (1980) 588-592

Kuo, H.-H. and Potthoff, J.: Anticipating stochastic integrals and stochastlc
differential equations; in: White Noise Analysis — Mathematics and Applzcatzons
T. Hida, H.-H. Kuo, J. Potthoff and L. Streit (eds.). Singapore: World S¢ientific

(1990)

Kuo, H~H., Potthoff, J. and Streit, L.: A characterization of whité hoise test
functionals; Nagoya Math. J. 121 (1991) 185-194

Laschek, A., Leukert P., Streit, L. and Westerkamp, W. Quantum miechanical
propagators in terms of Hlda distributions; Preprint (1993)

Lee, Y.~J.: Analytic version of test functionals, Fourier transform and a char-
acterization of measures in white noise calculus; J. Funct. Anal. 100 (1991)
359-380
Lindsay, M. and Maassen, H.: An integral kernel approach to noise; in: Quantum
Probability and Applications II, L. Accardi and W. von Waldenfels (ed ’s). Berlin,
Heidelberg, New York: Springer (1988)

Lindstrgm, T., @ksendal, B. and Ubge, J.: Wick multiplication and It6—-Skorohod
stochastic dxfferentlal equations; Preprint (1991), to appear in: Ideas and Methods
in Mathematical Physics

Meyer, P.A.: Quelques résultats analytiques sur le semigroupe d Ornstein—-Uhlen-
beck en dimension infinie; in Theory and Application of Random Fields; G.
Kallianpur (ed.). Berlin, Heidelberg, New York: Springer (1983)

Meyer, P.A. and Yan, J.-A.: A propos des distributions sur ’espace de Wiener;

Séminaire de Probabilités XXI; J. Azéma and M. Yor (ed.s). Berlin, Heidelberg,
New York: Springer (1987)

Meyer, P.A. and Yan, J.—A.: Les “fonctions caractéristiques” des distributions
sur espace de Wiener; Séminaire de Probabilités XXV; J. Azéma, P.A. Meyer
and M. Yor (ed.s). Berlin, Heidelberg, New York: Springer (1991)

Nelson, E.: Probability theory and Euclidean quantum field theory; in Construc-
tive Quanium Field Theory, G. Velo and A. Wightman (ed.s). Berlin, Heidelberg,
New York: Springer (1973)

Potthoff, J.: White noise methods for stochastic partial differential equations; in:
Stochastic Partial Differential Equations and Their Applications, B.L. Rozovskii,

R.B. Sowers (ed.’s). Berlin, Heidelberg, New York: Springer (1992) -

Potthoff, J.: White noise approach to parabolic stochastic partial differential
equations; in preparation

Potthoff, J. and Sundar, P.: Law of large numbers and central limit theorem-for
Donsker’s delta function; Stochastics and Stochastics Reports 42 (1993) 135-150
Potthoff, J. and Sundar, P.: Law of large numbers and central limit theorem for
Donsker’s delta function of diffusions I; Preprint (1993) :

Potthoff, J. and Streit, L.: A characterization of Hida distributions; J. Funct.
Anal 101 (1991) 212-229

Potthoff, J. and Streit, L.: Invariant states on random and quantum fields: o-
bounds and white noise analysis; J. Funct. Anal. 111 (1993) 295-311

Potthoff, J. and Yan J.A.: Some results about test and generalized functionals
of white noise; in: Probability Theory, L.H.Y. Chen et al. (ed.’s). Berlin, New
York: de Gruyter (1992) '

Simon, B.: The P((I))g Euclidean (Quantum) Field Theory. Princeton: Prince-
ton University Press (1974)

Sugita, H.: .Sobolev spaces of Wiener functionals and Malliavin’s ca.lculus J.
Math. Kyoto Univ. 25 (1985) 31-48

17




(07 93]

[Wa 83].

[Wa 84]

Ustiiriel, A.S. and" Zakai, M.: The composition of Wiener functionals with non
absolutely contiriuous shifts; Preprint (1993)

Watanabe, S.: Malliavin’s calculus in terms of generalized Wiener functionals; in
Theory and Application of Random Fields, G. Kallianpur (ed.). Berlin, Heidel-
betg, New York: Springer (1983)

Watanabe, S.: Stochastic Differential Equations and Malliavin Calculus. Bom-
bay: Tata Inst. of Fundamental Reseatch (1984)

18



	00000001
	00000002
	00000003
	00000004
	00000005
	00000006
	00000007
	00000008
	00000009
	00000010
	00000011
	00000012
	00000013
	00000014
	00000015
	00000016
	00000017
	00000018
	00000019

