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Abstract. We show that the lower bound on substitution success probabilityPS pro-
vided by Theorem 3.8 in De Soete’s paper [4], which appeared earlier in this journal, is
not correct by exhibiting a counterexample. We identify the flaw in the “proof” of this
theorem and we prove a valid lower bound onPS.
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1. Introduction

An authentication code permits the communication of some information over an insecure
channel, from a transmitter to a receiver. An opponent, who has access to the insecure
channel, tries to deceive the receiver by getting him to accept either a message inserted
by the opponent himself (impersonation) or a message different from the legitimate one
sent by the transmitter but intercepted by the opponent (substitution). For an up-to-date
bibliography on authentication codes, the reader is referred to [6].
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In authentication codes, a quantity of particular interest isPS, the probability of suc-
cessfully deceiving the receiver by using an optimum substitution attack. De Soete [4]
proposed a combinatorial bound onPS. In this paper we show by exhibiting a counterex-
ample that the lower bound onPS provided by Theorem 3.8 in [4] is not correct. We
identify the flaw in the proof of this theorem and we prove a valid lower bound onPS.

2. Authentication Codes with Splitting

Consider the following scenario with three parties, atransmitter T, a receiver R, and
anopponent O. The transmitter wants to communicate some informations, called the
source state, to the receiver. He does this by sending amessage mover an insecure
channel to which the opponent has access. The messagem ∈M is a function ofs ∈ S
and of the encoding rulee∈ E , where the particulare is known to the transmitterT and
receiverR but not to the opponentO. The opponentO tries to deceive the receiverR by
gettingR to accept either a message inserted byO (impersonation) or a message different
from the legitimate one sent byT but intercepted byO (substitution). An authentication
code is a code intended to thwart such deception.

When more than one message can be used to communicate a source states under the
same encoding rulee, the authentication code is said to havesplitting. We denote by
e(s) the set of possible messages encoding a source states ∈ S under the encoding rule
e ∈ E . With splitting, there exists ane ∈ E and ans ∈ S such that|e(s)| > 1. In an
authentication code with splitting, one requires thate(s)∩e(s′) = ∅ for everye∈ E and
s, s′ ∈ S such thats 6= s′.

Definition 2.1. An authentication code with splittingis a triple(S,M, E), together
with probability distributions{pS(s)}s∈S , {pE(e)}e∈E , and{{p(m|e, s)}m∈M : e∈ E ands ∈
S}, such that:

1. S is a finite set ofk source states.
2. M is a finite set ofv messages.
3. E is a finite set ofb encoding rulesassociating to a source states ∈ S one or more

messages inM. That is, anye∈ E is such thate: S → 2M.

We describe the family of encoding rules of an authentication code by ab× k matrix
having entries in 2M. The rows of the matrix are indexed by the elements ofE , the
columns are indexed by the elements ofS, and the entry(e, s) of the matrix is the set
e(s).

Let PS denote the probability of successfully deceiving the receiver by using an opti-
mum substitution attack. Suppose that the transmitter sends the messagem to the receiver
and that the opponent replaces it withm′ 6= m. As in [4], we denote the probability that
the messagem′ is accepted by the receiver as authentic by payoff(m,m′), i.e.,

payoff(m,m′) =
∑

e∈E(m,m′)
fe(m)6= fe(m′)

pE(e) · pS( fe(m)) · pM|ES(m|e, fe(m))∑
e∈E(m) pE(e) · pS( fe(m)) · pM|ES(m|e, fe(m))

, (1)

where fe(m) denotes the source states corresponding to the messagem under encoding
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Table 1. Encoding rules for
the authentication codeA.

E\S 0 1

0 {0,1} {2,3}
1 {0,2} {1,4}
2 {1,3} {0,4}
3 {2,4} {0,3}
4 {3,4} {1,2}

rulee. Let PS(m) denote the maximum probability of successfully deceivingR once the

messagem has been replaced, i.e.,PS(m)
4= max{payoff(m,m′) : m′ 6= m}. Then

PS

4=
∑

m∈M
pM(m) · PS(m).

De Soete (Theorem 3.8 in [4]) claimed that, for any authentication code with splitting,

PS ≥ min
e∈E

κ(e)−maxs∈S |e(s)|
v −mins∈S |e(s)| , (2)

whereκ(e) is the total number of distinct messagesm that can result from the encoding
rulee.

The following counterexample shows that the bound (2) does not always hold. Con-
sider the authentication code with splitting,A, whose encoding rules are depicted in
Table 1, whereS = {0,1}, E = {0,1,2,3,4}, andM = {0,1,2,3,4}. Assume, for all
s ∈ S, e∈ E , andm ∈M, that pS(s) = 1

2, that pE(e) = 1
5, and thatpM|ES (m|e, s) = 1

2
if fe(m) = s and pM|ES (m|e, s) = 0 otherwise. Note, for allm,m′ ∈M with m′ 6= m,
that|E(m,m′)| = 3 and|{e∈ E(m,m′) : fe(m) 6= fe(m′)}| = 2 and, for everym ∈M,
that |E(m)| = 4 and pM(m) = 1

5. It follows, for all m,m′ ∈ M with m′ 6= m, that
payoff(m,m′) = 1

2. Therefore,PS = 1
2. Moreover, for anye ∈ E ands ∈ S, we have

thatκ(e) = 4 and|e(s)| = 2. However, (2) gives the erroneous boundPS ≥ 2
3.

We first identify the flaw in Theorem 3.8 of [4]. Having introduced (1), the author
states: “It follows that∑

m6=m′
∃e∈E: fe(m)6= fe(m′)

payoff(m,m′) ≥ min
e∈E

(
κ(e)−max

s∈S
|e(s)|

)
. (3)

Hence, there must be somem0, m0 6= m and, for at least one encoding rulee, fe(m0) 6=
fe(m), such that

max
e∈E(m)

(
v −min

s∈S
|e(s)|

)
· payoff(m,m0) ≥ min

e∈E

(
κ(e)−max

s∈S
|e(s)|

)
(4)

holds.” The latter claim, however, does not always hold. In the counterexample above,
for everye∈ E ands ∈ S, κ(e) = 4 and|e(s)| = 2. Moreover, for allm,m′ ∈M, with
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m 6= m′, payoff(m,m′) = 1
2. Hence, the left side of (4) evaluates to 1.5 while the right

side evaluates to 2, i.e., inequality (4) is contradicted.
We now fix the identified flaw. Since inequality (3) holds in any authentication code

with splitting, to get a lower bound onPS, it suffices to get an upper bound on∑
m6=m′

∃e∈E: fe(m)6= fe(m′)

payoff(m,m′). (5)

The following simple upper bound

(v − 1) · PS(m) ≥
∑
m6=m′

∃e∈E: fe(m)6= fe(m′)

payoff(m,m′) (6)

together with (3) gives the following bound onPS:

Theorem 2.2. For every authentication code with splitting,

PS ≥ min
e∈E

κ(e)−maxs∈S |e(s)|
v − 1

.

Remark. The authentication code with splittingA in our counterexample meets the
bound of Theorem 2.2 with equality.

In the scenario of authentication codes, aspoofing attack of order idescribes the attack
carried out by the opponent once he has observedi messages sent byT to R using the
same encoding rule. The quantityPdi

denotes the maximum probability of successfully
deceiving the receiver after having observedi messages. De Soete (Theorem 3.9 in [4])
generalized the (erroneous) bound (2) for a spoofing attack of orderL, claiming that, for
any authentication code with splitting,

Pdi
≥ min

e∈E
κ(e)− i ·maxs∈S |e(s)|
v − i ·mins∈S |e(s)| ,

for any 0≤ i ≤ L. This bound is also incorrect and can be corrected as follows.

Theorem 2.3. For every authentication code with splitting and for every0≤ i ≤ L,

Pdi
≥ min

e∈E
κ(e)− i ·maxs∈S |e(s)|

v − i
.

There is a close relationship between authentication codes and secret sharing schemes
(see, for instance, [5]): From any secret sharing scheme we can construct an authenti-
cation code. Therefore results for authentication codes provide alternative formulations
of results for secret sharing or new results. The bound on the size of the shares for
different models ofc-compact(k,n) threshold schemes with cheaters provided by The-
orem 15 and Corollaries 16 and 20 of [5] are not correct since their derivation is based
on the erroneous bound (2). For instance, the(2,2) robust threshold scheme depicted in
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Table 2. A (2,2) robust threshold scheme.

T P1 P2 T P1 P2

0 0 0 1 0 2
0 0 1 1 0 3
0 1 0 1 1 1
0 1 2 1 1 4
0 2 1 1 2 0
0 2 3 1 2 4
0 3 2 1 3 0
0 3 4 1 3 3
0 4 3 1 4 1
0 4 4 1 4 2

Table 2 violates the bound provided by Theorem 15 of [5]. Using the corrected version
of De Soete’s bound given by Theorem 2.2 in the proof of Theorem 15 in [5], we get the
valid bound

|D| ≥ c(|S| − 1)

ε
+ 1.

For secret sharing schemes with cheaters, the authors in [1] provide a new bound which
relates the size of the shares, the size of the secret, the probability of cheating, and the
probability of guessing. The new bound is an application of the technique used in the
proof of Theorem 15 in [5] and of the corrected version of the bound for authentication
codes with splitting provided in this paper. A different proof of this bound that does
not use results borrowed from authentication codes with splitting can be found in [2].
Moreover, an analysis of different models and bounds, including ours, for secret sharing
schemes with cheaters is given in [3].
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