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SUMMARY

The motion created by withdrawal of a piston from an infinitely long tube
containing a relaxing gas is examined by the method of perturbations in the plane
of the characteristic parameters, It is shown that the technique fails to produce a
uniformly valid first-order solution, except for the limiting cases of zero or infinite
relaxation times and in certain portions of the general flow field. The analysis
exemplifies the reasone for this failure,
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1. Introduction

The analytical study of reacting or relaxing gas flows has received consider-
able attention in the last few years, but has with few exceptions been confined within
the framework of a purely linearised theory. That is to say, in general terms, the
equations for a singly-relaxing gas have been set up in an orthogonal coordinate
system and all non-linear terms which appear have subsequently been discarded.

At least this is true, with few exceptions, in all cases where more than one dimen-
sion (or in other words, more than one independent variable) is concerned. In
dealing with one-dimensional problems, such as plane shock-wave behaviour, or
the flow through a nozzle it has often proved possible to solve the resulting ordinary
non-linear equations with a minimum of additional restrictive assumptions although,
to be sure, one has all too frequently been driven to use numerical methods in order
to obtain results.

Naturally there will always be situations for which the basic notion of.small
disturbances (which leads to linearisation) is not reasonable, but we shall not be
concerned with these cases here. Instead we shall concern ourselves with the failure
of the formal linear theories to provide an adequate description of the flow field in
regions remote from the primary source of the disturbance. The basic reasons for
this failure are two-fold. Firstly, an infinitesimal disturbance propagates at the
(variable) local and not at the (constant) undisturbed-field speed of sound and secondly,
it does this relative to the fluid, from which it follows that the disturbance is also
convected with the local gas velocity. For brevity we shall hereafter refer to both
of these phenomena as 'convective effects'. It is the accumulation of these second-
order influences which eventually leads to a lack of uniformity in the first-order theories.

There are several techniques for the development of uniformly valid first
approximations to the flow of a compressible ideal gas. Two of these are epitomised
by the work of Whitham (1952) and Lighthill (1949) for example but, principally
because they involve an investigation of the second-order terms in the solution,
these methods appear to be difficult to apply directly to the relaxing gas case. A
third method, due to Lin (1954), would seem to be more readily adaptable to the
problem in hand and it ie this technique which we propose to examine here. Lin's
method makes use of the equations in their characteristics form, so that our first
task will be to set up the appropriate equations for a relaxing gas flow.

The specific problem to be studied is that of the flow created by the withdrawal
of a piston from an infinitely long tube filled with a relaxing gas. In order not to
complicate the situation with non-linear effects other than those of convection, we
shall assume that the gas hag a constant value of relaxation time 7‘ and constant
values of the specific heats. We shall write Cp,, Cy, for the specific heats at con-
stant pressure and constant volume, respectively, of the active molecular energy
modes. The specific heat of the relaxing energy mode will be denoted by C,. T,
and T, are the translational and relaxing-mode temperatures.




2. Equations in characteristics form.

For a one-dimensional unsteady situation the equations of conservation of
mass, momentum, energy and excitation of the internal mode can be written down
as follows:

Dp du _
ot "’ "% (1)
Du , 3p _
YT e Y (2)
DT DT du
=2y 2y LA
Coi D * G * o ax - 0 (3)
2T, T, =0, (4)
where the convective operator D/Dtm @/at + ud/dax. The thermal equation of state is
p = oRT, (5)
and, writing
G, m (6)
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where 7, is the active mode (or frozen) specific heat's ratio, it is clear that equations
(1), (3) and (4) can be manipulated to give

22y et d L (y,-DC T, ST /Y =@ . (D)

a, is the frozen sound speed,
ats= 7‘ Plo , (8)

and the symbol Q is defined in equation (7) for later convenience.
Introducing a length variable y, where
y = 31-t (9)

and a, is a constant (reference) frozen sound speed, which we will define more
carefully at a later stage, equations (2) and (7) can be re-written as

ap au du

2 T Pugs t aa,_,—ay = 0, (10)
a du

“%E * a..a‘f; teafas = Q (11)

Equations (10) and (11) define a set of characteristic curves: denoting the charac-
teristic parameters by « and £, these curves are given by
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ox - -
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and equations (10) and (11) with a, £ as independent variables become*
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We intend to use the characteristic parameters a and g as the new independent
variables (this is the essence of Lin's method) and, accordingly, both x and y are
hereafter treated as a pair of dependent variables which are to be found from equations
(12) and (13) and some suitable boundary conditions which have yet to be discussed.

In order to proceed, it is now necessary to eliminate Q from equations (14) and (15).
To do this we note first that equations (3) and (4) give

'« D (DT DT, | au
™ Cw bt Dt) +Cr t o =0 ot
where
Cy = Cy,+C,, (17)
whilst equations (9) and (7) give
Q_ _ - DT
e (74 1)C,--—--—"Dt ; (18)

Combining (16) and (18) we have

fen B (3) B0, 2 4 c

Q
ea * Cvy 70 e

It is easy to show that
D 1 8 1 3@ ) 3 B a _ 1 2
D o.ga (-2 ,12) 2. 2.283% (g
Dt 2 m(ya oa % aﬂ) ax ? a, yu da Vg ap

whence, substituting equatione (14) and (15) into equation (19), we find that

*The Jacobian of the transformation from x )y to a, # coordinates is tacitly assumed
to be neither zero nor infinite. Since perturbations are to be assumed small u

will never be permitted to approach a, in magnitude and it will appear later that the
chosen piston paths are such as to avoid this difficulty in any finite part of the flow.
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where

T4 =7 Cy [Cy. (23)

(The suffix notation for partial derivatives hasbeen used above and will be employed
in the work which follows when it proves to be convenient.) Equations (21), (22),
(12), (13) and (8) constitute five equations for the six unknown quaatities p,» , u, a,,
x and y as functions of aandg. The set iz completed by using equation (1) which,

with the aid of equation (20), can be written as follows:

7]

it (24)
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y¢ ﬁ ﬁ

In order to examine the piston problem mentioned in the Introduction we shall
assume that the piston's displacement is given by

x=e¢D(y) ; y >0 , (25)

=0 ; y<0,

and we shall assume that the gas occupies the infinite half-space to the right of this
boundary. For withdrawal of the piston it follows that D(y) must be a negative

function, but it is not too important to stress this restriction at this stage. From
equations (9) and (25), the velocity condition becomes
u = eamD'(y) ; ¥>0, x =eD(y) , (26)

=0 ; y <0, x=0.

Arbitrarily restricting dD/dy = D’ to be at most of order unity, the positive consiant
¢ is a measure of the maximum piston speed as a fraction of the reference sound speed
a .. Small perturbations will therefore follow if e<<l. We shall assume throughout

feo

that

D(0) = 0 = D'(0). (27)

The line a=g is selected to represent the piston-path in the «,8 - plane whence,
remembering that x and y are functions of a and fwe deduce from equation (25) that
(28)

x(pg,B8) = €D (y (5,8).




1f we choose

y(8,8) =8 (29)

the conditions on u, x and y in the «,8-plane become

U= €8y D’{ﬂ}, (30)
x = €D (F), (31)
¥y =8, (32)

all when a = 8. It follows from equation 27 that the curves labelled a = 0, £= 0 intersect
at the origin (x = 0, y = 0) in the x, y - plane. If the gas in x> € D (p) is in a uniform
equilibrium state for y < 0, sufficient conditions for a solution of the equations

derived above are found by requiring that all disturbances vanish for all £ <0. The
configurations in the x, y and a, f planes are sketched in Figs. 1 (a) and (b).

3. Perturbation procedures.

In order to solve the equations set out in the previous Section the dependent
variables, including x and y, will be expressed as power series expansions in the
(pmall) parameter €: i.e. we shall write

W (a,8) =¥ @+ et (ag)+ oonnn... (33)
where ¥ stands for either u, p, », a,, xor y.

Since the disturbances created by the piston motion propagate into an initially
quiescent uniform gas we can write
.a(°)=p; a, L ' (34)

0 ©

. (o) _ 8 B (o)
where a’ = 7, B, b, , and all of these quantities are constants. (It will be noticed
that a _ has been chosen to be the frozen sound speed in the undisturbed gas.)
Substituting the series 33 into equations (21), (22), (12), (13), (24) and (8), and
equating coefficients of like powers of e leads to the following set of equations:

Ja ol 2,1 3\(1 -
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(35)
1 e, 8 .1 98N1 (1) _ (1) 7
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(36)
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Xg =Y , (37)
Nt Ya ( ) (39)
amxﬁ(') i 'ﬂ,.-‘fa(') ( () _ m) ( i
t\_(i(,)pu(' + —-(,, .e‘)) (Yu(” ut" - —1-(,) ug )) (41)
a,")ﬂa, B )) (42)
Similarly the boundary conditions (30), (31) and (32) give
uh) = a‘-D'(a), ' (43)
IR e (44)
) - Dig iy -0, (45)

all to be applied when a = g. The causality condition (described in the last sentence
of Section 2) can be expressed in the form

vV « Bln (46)

where ¥ has the same meanings as before.

Equations (35) to (46) inclusive are applicable to the first approximation (as
indicated by the superscript (1) ) except, that is, for equations (37) and (38) which
we shall discuss shortly. Clearly one could, in principle, proceed with approxi-
mations of higher order, but we shall be concerned with only the first approximation
here.

Equations (37) and (38) can be integrated at once to give

NONNO (o) ,

- 18) ; x ) e glw) (47)

where f and g are, as yet, arbitrary functions. Application of conditions (44) shows,
however, that g(a) = a and f(8) = -8, whence

2x(°)= a-£ , ]

2y(°) = g+ .

(48)

(o)

Thus both yg(” and yg ° are equal to 4 and the remaining equations above can be
simplified somewhat.

If we write

( )Cv‘*(l"_ ,a==:—1.—>1. (49)




where

Y, =CplCy;iCp=Cy+R=Cp +C,, (50)

equations (35) and (36) become

a @ 5 1 1 1
[a“_-r'(a+$ +1J{.p“(')+pwa,wua!')]— %(1 -;;)p..a....(ua( ) -u “)= 0

(51)

[a";ra (a% +% + 1J{ pﬂ{tl —p“a'“uﬁh, }_ 1 (1 B a_la')ﬂmanp uﬂ(ﬂ } uﬂh)) .
(52)

Note that a® in equation (49) is also equal to the square of the ratio of the frozen to
equilibrium sound speeds. p(') can readily be eliminated from equations (51) and
(52), resulting in the following equation for ul*) :

r( X +5%X2 Uaﬁ(¢>)+ o 1) uaﬁ(" + Hat - ”(uum " uﬂﬁm) e
(53)

where
fil = ama"'r"' =a Cp, T'!Cp o (54)
(The second result in equation (59) follows from equations (23), (49) and (50).)

The solution of equation (53) is facilitated by a simple change of variables;
we write

p=L;a-F=n, (55)
so that equation (53) becomes

(1) )

r(“(&‘n(') ] “ﬁnn(‘)) Yo g+t - D g <0 ()

Apart from a factor of 2 associated with the variable n (see below) equation (56)
is in precigely the form used by Der (1861) to study certain problems in the two-
dimensional steady flow of a reacting or relaxing gas. The distinction between two-
dimensional steady and one-dimensional unsteady cases is not important in the present
context and is mainly concerned with differences in the definition of a®. Der's
equation was derived from a formal linearisation of a set of equations like equations
(1) to (4) (see e.g. Vincenti, 1959; Clarke, 1960) by writing, in our notation,

E=Y'xix"§ﬂ-

We remark that in the present case § and nare not so simply related to x and y but
are, instead, rather similar functions of the characteristic parameters a and §.




4, First-order solutions

Equation (56) can be solved with the aid of the Laplace transform u (z ; ) of
the velocity perturbation ult) (E,n), where

T(z.:n)= f" ol (g.n) e ag . (57)
It readily followe that the requirecoi solution is
T Aa@eT @™ (58)

where A(z) is to be found from condition 43. In transform language this condition
reads

T (z:0) =8, D(z) , (59)

where we have written D'(z) for the transform of D' (§) = D’(8) . The inversion
theorem for Laplace transforms therefore shows that

u(!} C+ ie

S Eli f D' (z) 28+ 3200 - W 4, (60a)
d C - ie

or alternatively, from equation (55),

(1) c+ 1-

u 1 j‘ 5 (2 )e-}r.{l -x}a+-}z{1+x)ﬁdz . (60b)
C - lé

= —

a 2o

c is a constant, large enough to make the integration contour lie to the right of all
the singularities in the integrand. The function x is responsible for the appearance
of branch points, located at z = ~1/p and '#r . With regard to D’ (z), we shall
agsume that it behaves like z -V, u>1, as |z|* », which is sufficient to ensure that
both D(E) and D' (§) « 0 ag € « 0 from abovs. One can then show that

(1) ¢+ iw

u 1 f d z(g-g)+4z(-xn

— o — D(g,) [ e dz

8. 20 | a% [ = . qg, .

or, integrating by parts,

(1) c+i 4 C+ i

u - 1 * 4z2(1-xn dz _ [ (E EJ+32(1-x}nd!.
a. DR 3 [c . z j; D(EU}ﬂwi dE, 9%

(61)

Deforming the contour ¢ f iwinto a loop contour & surrounding the branch points at

z = “1/p and -#p and the simple pole at z = 0, the d/dﬁ, operation can be taken through
the integral sign in the last term of equation (Bl) whilst the first integral there can

be evaluated by expanding the integrand for large |z|. It follows that
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Equation (62) is a form of the solution for u(') which is especially suitable for later
developments.

It is now necessary to find p(‘) and p(') . The latter is found from equation
(41), simplified with the aid of equation (48) to read

8, (Patt‘) + ﬂﬂh}) = Py, (ua(‘) - uﬁ(") , (63)
(1)

and p = can be found from equations (14) and (15), the perturbation series 33, and
equation (48), which together show that

bl _p“%‘(uaw . uﬁ(.}) ' -
()

It is easiest to use equation (60b) to eliminate the derivatives of u " from equations
(63) and (64). Making sure that both p{t) and p(1) vanish for # =& < 0 it can be shown
that

(1) + ie
g_'_ - = [C B(z) Qo 2ol ~Mas izl g, (65a)
L] i = 1m
_1 - 4 ] = l =
= % D'(g)e gpla® - 1)n +f D'(Eﬂ)i;l}'i .{t %,_ ez(-‘.‘, E,) + 22(1 "Mdz dE,,
(]
(65b)
(1) C+ ie 1 R o
-l;L N %l- D' (z) x eiz(l hat 321 + 2 dz , (66a)
i v ¢ - i
-1(3'-1)7? €< 1 (£ -€ )+ 3z(1 - x)
= D' (§)e IF +f D‘(zgé—;if x P TR ST 18 "4z dg, .  (66b)
o i

It is now possible to use equation (42) to find ah) and then to solve equations
(39) and (40) for x{*) and y{'). Equations (65a) and (66a) are best for this task and,
initially, we find that

(1) w) _ g (o [v % ] £

2(% - Ya T”[c-i Di(z) | 5= -3 + 1 je dz , (67)
( (1) h)) _ 1 SIS [‘Y x ] f

-9 xﬂ h 3{6 oli o D (z) E-;: "3 1 (e dz , (68)

where, for brevity, we define

f m3z(l - X)a + 32(1 + x)@=z& + 3z(1 - x)n . (69)
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Using conditions(45) equations (67) and (68) can be integrated and rearranged a little
to give

C + e C + e
x{‘)'y{”:E;l_-f B"(Z]efd—z‘ +Lj D'(z) (—1- + ) Lz(l _x) '

¢ - i “ i Cc - i
(70)
(1) () _ 1 c+i-_‘ (‘Y _:_:_) [ef - ez'i'
X  +y = et [c—i“D(z] 5‘;-&-2 = W dz . (71)

The formal solution of the first-order problem, according to the present
method, is now complete. However, it is clearly not in a form which admits of
either a ready assessment of its physical significance or of its validity in any special
circumstances. Therefore we find it necessary to consider a number of special
cases which permit simplification of the complex integrals found in the foregoing
solutions.

5. Frozen flow.

When T', and hence 7/, is infinite the flow is said to be frozen because the
internal energy mode plays no part in the gas-dynamical processes. Referring to
equation (58) it can be seen that asI'* =« , x » 1 and (from equation (69) ) f » z8 = zZ£,

Using equations (60), (65a) and (66a), it can readily be geen that in the limit

u(tl

=a, D'(8) , (72)

() _ i ()
P =%R D& =p a u" (73)
p{'lj =‘°eo DJ(E) =(pﬂJa1 )u(lj ) (74)

These are precisely the results which arise from a formal linear theory of frozen
flow, except that x - y would appear in place of g for the argument of the function

IY. The present solution shows that, to first order, the flow is of the simple-wave
type, with all quantities constant on the (frozen) Mach lines € = § = constant. However
B is not equal to x - y and these Mach lines are not the undisturbed field characteris-
tics. Ueing equations (33) and (48) and taking proper limiting values in equations

(70) and (71), it is not difficult to show that

x-y=-B+eD(f) + elv,+ 1)D'(B) (a-p ) , (75)
x+y=a +eDB +elr, +1)[Dlw) - DAY . (76)
Adding these two equations gives

2 [x = SD(ﬂ}] = a-f + %9(7‘ + IJ[D'(ﬁ)( a-F)+ Dla) - D(p}]

Ueing the mean value theorem we can write

a ~ Fa% -
D(a) - D(A) j DA df = D@ (aB) |,
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wherea» B> . Since D'(f) must be bounded, if only from physical considerations,
it follows that

2 [x-eD(B) ] =(a-B)(L+0(),
whence equation (75) shows that

[x -eD®) ][1 - de(v, + DY@ ] -y =8 . (77)
correct to 0(€), :

The Mach line # = constant is therefore a straight line, passing through
the point eD(F),8 on the piston path, with slope

d
(a;’f) =1 - }e(v, + 1) D' (B) (78)

B
When the piston moves to the left D(8) is a negative function: if we also ensure that
D'(B) is always less than zero and decreases monotonically to some final value
D/ () in the interval 0 < # < §, thereafter remaining constant for allg > 6, it is
clear that each successive Mach line (£ = constant) has a greater slope than its
predecessors and no intersections of characteristics occur. The mapping from
the a,pf to the x,y plane is therefore single valued. The situation arising when
the image of the characteristics plane is no longer a single-sheeted surface in
x,y coordinates, and the associated question of shock wave formation, is discussed
by Miss Fox (1955) and we shall not pursue this matter any further here. The
paper by Miss Fox just referred to also establishes the convergence of the series
for x and y and we may take it that the results of this section constitute a uniformly
valid first-order estimate of the frozen flow behaviour for the case treated.

The case of a piston suddenly accelerated to a constant velocity ea, _D'(8) < 0
can be solved by letting 6 » 0+. Then D(8) = 0in 0< 8 < & and we find from
equation (77) that

y=x [1 - }el¥, + 1)DUA ] =x[1-§{71+1);“—] (79)

1ca
within this range of 8. Equation (79) describes the configuration of the centred
simple-wave, through which u dacreases from zero to its final value of ea, D'(5)
in between the diverging characteristic lines

y=xandy=x|:1 —%e('}’1+1)D'(5)] v (80)
Within this expansion fan the velocity gradient is given by

du -23, o
Sl | e 81
dy (v, + 1)x (81)

and hence is constant, to first order, for any given x.

The results for I' == given above will provide useful comparisons later on.
It should also be pointed out that all of the results obtained specifically for the
case I' =w will be equally true for the case a2 = 1, no matter what the value of I' may
be. Putting az equal to unity implies (see equation 49) that the internal mode con-
tains no communicable energy and it is therefore not surprising that the value of
I'is irrelevant,
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6. Conditions at the wave head.

It is clear from equations (62), (65) and (66) that the flow disturbances
vanish ag £ * 0, from above as well as from below, on account of the assumed
continuity of the function D’(E) at this point. However, we may profitably examine
the gradients of the perturbations along this same line.

We may note first that, if all perturbations vanish on @= 0, equation (12)
shows directly that

a
a—a(x'Y)=0 -

Then equations (28) and (29) show that the line g = 0 is simply the straight line
J =% (82)

a result which is true to any order of accuracy given the proviso made in the
previous sentence.
. . RN O S (D I O .
ince the flow disturbances (i.e. u ", p *, p ) all vanish on A= 0 it is
clear that their derivatives with respect to a (# being held constant) are also
zero on this line. We can find au('),’ag at fixed 7 (or uE(‘) for short) from equation
(62) for example. The result is

-y 3 g
ug(i} = 31‘“D”(€)E-:ﬂ{a 1)n +f DHE,) E_;_i [ EZ(E ~&o) + 32(1 - x)ﬂdz d,
0 L
(83)
from which it is clear that
1 1
U.E{‘) {E = ﬁ = 0) = a‘wD#(o)e«:fr(az - l)n = a1pr‘0)e-u(a’ = 1}& ) (84}

D*(0) is not zero (in general) and the velocity gradient immediately downstream of
the leading characteristic depends on the initial curvature of the piston path.
Comparing this general result with that for frozen flow, namely

ug(') (€ =5=0;T=w)=a D%0) , (85)

it can be seen that the relaxation effects lead to a decay in the velocity gradient
with increasing distance from the coruner, (i.e. with increasinga.) Equations (65b)
and (66b) show that

(1)
Pg

(1)
=

1]

1 2 _
(E=0)=7pD(0e e "V _ oM e-0 (86)

= 1-(a= -1)a (1)
0) =0 D' (0)e 4T =Pofy ug  (g=0) (87)

joo0

=]
o

-

am
"

From these results we see {compare with equations (73) and (74)) that the
relationships between ule), p('} and p(1) are those that would arise in a completely
frozen flow. These results apply, to the current order of accuracy, under all
circumstances.




=13~

7. The Quantities ya(” and 35(1]

The two equations (51) and (52) from which the single equation (56) for u(1)
and thence all the solutions presented in the last three sections have been derived
are themselves derived from equations (21) and (22) with the aid of the perturbation
series and the zero-th approximation to y (in particular y, (°) and yﬂ(")). We note
the implication that ya(‘) and yg (') shall both be no more than 0(1), so that we should
examine these two latter quantities in order to check whether this is indeed so.

Equations (70) and (71) show that

2 y(') = —2;—1» f: t :: D'(z) %(Ix’* + x)[ez:+_ :f + eiﬁ_-xef ‘ Ezi (88)

from which it readily follows that

2y¢(')=2—}i~ fCH- D' (z) (—' + )( ) 1dfx ; (89)
C -iw

2yﬁ") :5'1;1_ j j Ji j“’ D'(z) %(‘—} + xX ezﬁ- ef) ldﬂzx . (90)

(1)

The integral for yg ' can be re-arranged in the form

) ) a z(a Eo)
2y, =1 (v +1)DYa +[ D(g,) 2'” f (“1 ) < dzdg, (91)
[+]

1+ x
f-zEg
2 +1) D' (Be “qye” - 1n fD'(Eo 2m£§(l ’ x)'ETTTo Gedly

and it is apparent that ya(i) is 0(1) everywhere (since D' is limited to this same
order of magnitude.)

With regard to yﬁ(i) we note first that
2D/(z) = D" (z) + D'(0).

where D* is the transform of the third derivative of D. Putting this result into
equation (90), using the convolution theorem and integrating by parts gives

2y,e{" =D"(ﬁ')2+1‘:‘Ti 4;(% 4 x)<1 _ o221 "‘?’?)Z'SZ_”
B
{ﬁ Ep f' E
*'[D(E“ 2171[ <—L+ x)( ) ’ )z{l—x) dg, -

The first complex integral can be evaluated and we find that
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ﬁ = -3 (7, +1) D'(p)( )( -(a! - 1}n{4r)

P 5
+j D(g,) “2".}*1"{& *(:"‘ + X)(ezw 8o _ et 280 )-Z(T'df—-;} dE, (92)
0

In the limit as I' » = equations (91) and (92) give the same results as would
be obtained from equations (75) and (76).

The behaviour of yg “) is clearly very different from that of yg(') depending
as it does on D” rather than on D'. At this stage two observations are in order, First,
the parameters a and # which define the network of frozen Mach lines are only
appropriate so long as T > 0. In the special case for which I' = 0 the characteristics
change discontinuously to the equilibrium Mach lines and the compatability conditions
12 and 13, on which the whole of the subsequent analysis is based, cease to apply.
The case I' = 0 is developed briefly in the Appendix. Second, we note that when I'= e,
go that

' =k + 1) D (A,

( ) grows without limit as n increases for a fixedf. If we write the last term in
equation (92) in the form

g
j D*(E9 5= j %(_,, 2 ,)Ua ol - @+ a1 + 08 o }e—za, ax. d&,

it is apparent that y, (1) will in general be proportional to nD" for any value of T,

although the proportionality factor and the argument of the function D* will be much
more complicated expressions than the simple ones which arise when I' =e . When
g =0, so that

R ) [ (Rl I

we note that we cannot permit D (0)T to approach large values for any value of a which
makes (a® - 1)a/T » 0(1), as it would also not then be possible to write

1 ), (o)
Yﬂ 'gtj (1 €yg fyﬂ ...... )

as we have had to do in the derivation of equations (35) and (36).

When T = «, the success of the present method in producing a uniformly valid
first-order solution is not in question, even though yﬂ(i) does behave like D"(#)n, since
neither u{Y) nor p{*) depend explicitly on yg and yg in this case. Since we have no
need to look further at the case I = » and cannot examine the case I'= 0 by present
methods, we must concentrate our efforts on the situation for which 0< I' <« =. In
doing o we must take note of the restrictions imposed by the form of yp('), namely
that there will be a limitation on the size of n above which the solutions cease to be
valid, (this value will depend on D”) and that I'D” also cannot be allowed to become
large. If these restrictions are not adhered to the perturbation method will break
down. Unfortunately this would seem to preclude a discussion of both the suddenly
withdrawn piston and of the flow far from the piston face. However, despite these
rather disappointing limitations we can still produce some results of interest and
this we now proceed to do.
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8. Conditions on the piston face

The piston face is located on the line a =, or n = 0, in the «f plane. Con-
sequently the pressure and density perturbations are simply

(1) C + ie
E_ . —L] D'(2) 2 Pz | (93)
p 2w ; x

o C - 1w

(1) €+ iw
A —1 D' (z) x ezﬁ dz. . (94)
Pes & C - iw

(see equations (65a) and (66a)). When n= 0 we know from the boundary conditions
that 8 = y, so that equations (93) and (94) give the pressure and density perturbations
directly as functions of y on x = e D(8) = e D(y).

Some reduction of the complex integrals in equations (93) and (94) is possible,

using the convolution theorem and the known inverse transformations of the functions
(xz)™ and xz~'. The results are quite well known and will not therefore be repeated
here (see Clarke, 1960, and Der, 1961, for example). However we note that for
€=8"0

' v, B, D'(0) LN o, D' (0) (95)

whilst for £ = f +

p(!l . (1)

Y,a 'p D= ; p+ ap,D'(w) . (96)
Since um is equal to amD' (£), equations (95) and (96) show that the perturbations
are related as in a frozen or in an equilibrium state, respectively, according as to

whether one is near to or far from the point at which the piston begins to accelerate.

9. Conditions in regions where n/T is large

The previous section demonstrates that the perturbations can be readily
evaluated when n = 0. Unfortunately no such simple solutions are available for
n > 0 but it is possible to make certain useful approximations in regions where
m>» T,

Let us first consider u(‘ ), using the form of the solution written down in
equation (62). Since |D’| is 0(1) the first term there becomes very small when
fa® - 1)n /4P >> 1. We remark that it is therefore necessary to deal only with the
case for which a2 > 1 but as we already know the solution for a = 1 this causes no
hardship (see Section 5.) We may also observe that a2 is never very much greater
than unity, whence it follows that /T will be large if (a2 - 1) /4T is large. In
future we shall take n/I'>> 1 to be a sufficient condition for the neglect of terms
like the first one in equation (62). Under this condition, the major contribution to

u(') will arise from the second (integral) term of 62, as we shall shortly show, always

provided that § is not too small. The situation arising at £ = 0 is dealt with in
Section 6.
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In order to justify our assertion that the integral term in (62) is dominant
under the stated conditions we shall start by examining the inner (complex) integral
there. We note that it can be written in the form

1 w(g’ -g’ )+ 3w(1 - x)n’
Je= [t 2 0 dw (97)

where

w=2T; & =& ;&' =&/T;n' =n/T ,

andZ is a loop contour surrounding the braanch points at w = -a? and -1. When
n' »> 1 the major contributions toJ will arise from those parts of Iwhich can be
made to pass through saddle points of the function

wp+ w(l -x);u=2€"'-& )/n", (98)

the value of pbeing fixed. The saddle points occur at values of w, written as w,,
for which

u+F(w) =0 ; Flw)= w(l -x) ., (99)

Thus w, is a function of u. The appropriate dominant part of J will be proportional
to

exp[ [W°H'+ F(wo) ]%n'] ’

and with n’ fixed this exponential term will itself be a maximum for some particular
value of y. The latter value can be found by noting that a maximum for the function

Wou + Flw, )
occurs when w, = 0 (note equation (99)). Hence the required value of # is given by
u=-F(0)=a-1,
We are therefore led to write J in the form

1 F wa' o+ wla - 0in
fy R 2
it e dw (100)

where

& =g’ -&l-4@-1)

and S is the steepest path through the col at w = 0. It is now a straightforward
matter to evaluate equation (100) asymptotically, leading to the expression

o8 (@ - 1/a)

Y e E ) ' (o)

J
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(X0

).

'
correct to within a factor 1 + 0(n

Putting (101) into (62) we find that

(1) E . .
=~ _ k-5, - 3a - 1)n] J dg
- f D'(E,) exP[ o Py P {____T_____mn_a (102)

under the stated conditions. A similar result has been given by Whitham (1959)
in connection with his studies of a general equation like our equation (56).

A useful alternative form of equation (102) is derived by writing

and putting
B-g =As ; a=Vrnla-1/a) . (104)

Then (102) becomes

uh} 1 j‘ Ha - 1)n/r

-g2
7 D'(B +rs)e © ds . (105)
%0 YT Y B/
The upper limit in equation (105) is proportional to ¥n/T , so that replacing
it by infinity will lead only to errors of order exp(-n/T) and such terms have already
been neglected.

In order to make further progress it is convenient at this stage to be a
little more specific about the nature of the function D'(§). We have remarked
previously that it is a bounded function and we shall now assume that it is continuous
and tends monotonically to the value D'(E) as& increases from 0 to 8. For & > 6 we
agssume that D'(§) = D’(8) = constant, its magnitude being 0(1). The implications
of these assumptions are that thé second derivative D“is at worst piece-wise con-
tinuous and bounded. The mean/value can now be used to write

D'(B + As) = D'(B) + AsDY(B + OAS) ;0< 6 <1;-Be<As<b-B ]
| (106)!

D'(B + As) = D'(8); As » & - B.
Using equations (106) in (105) we distinguish between the two possible cases
B$56-4a-1)n (107)

for which the quantity B + As either does not or does pass through the value & within!
the integration interval, respectively.

Firstly, when B < § - 3(a - 1)n, we find that
(1)

-::T—-— ~ D'(B) %[ 1+ erf (Bh)] T % D&)e

1o

— 2
B (108)

Terms of order exp(-n/r) have been neglected and E in the function D'(E) is a suitable
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mean value, lying between 0 and £, which depends in general on both £andn. Since
equation (108) applies essentially to the case n/T >> 1 we observe that if B is to lie

in the range around and above zero it is essential to have §/T >> 1 too if the result is
to be at all meaningful in the circumstances. This important supplementary condition
for the validity of equation (108) can be re-interpreted if we note the monotonicity of
D’ in the interval 0 s £ «8 , for we can then reasonably assume that D” is 0(1/g)
within this same interval. Consequently the requirement that 8 /T >> 1 is equivalent
to saying thatTD" << 1. As we have remarked at the end of Section 7, the present
theory is only valid if TD” is not allowed to become large and so the circumstances
leading up to equation (108) are quite in line with the inherent limitations of the present
theory (resulting from the behaviour of the functions Y. and yﬁ. )

Secondly, when B> 8 - 3(a - 1)n, the integration interval in equation (105)
can be split into two sub-intervals namely, -B<As < 8- Band 8- Bg As < 3(a - 1)n.
It then follows that

(1) ‘ ) Tl i
z—-— ~ D'(B}%[erf(—é-i—-@) + erf(%) J-i-wh-'-: D* (8) t o i -e-(a ) B)'h]

{fo
+D'(5)%[1 —erf( 6;3) ] . (109)

where & in D“(8) is the appropriate value of § (defined above) when & = &, That
equations (108) and (108) are equivalent when B = & - 3(a - 1)7n can be seen by writing
5 - B = #(a - 1)nin equation (108) and ignoring terms in exp(-n/T). (To this order of
accuracy erf {(8-B)/a ] =1.)

The conditions in equation (107) have a simple physical interpretation,
which can be seen by noting that they are (from equation (103) defining B) equivalent to

E=pS5 5.

Since the # = constant Mach lines delineate the limits of any upstream influence of
changes in the piston motion, it is clear that the condition decides whether the flow
field is unaware, or aware, respectively, of the fact that the piston has stopped
a¢celerating.

Before proceeding to further discussion of the results in equations (108)
and (109) we note two other results of considerable importance. If we treat equations
(65b) and (66b) for p(1) and p{1) in precisely the same way as we have just treated
equation (62) for ult) it can quickly be seen that, when o/T 5> 1,

(1)
u

(1) ¥ B (1)
P ey R * Pt .
" W W J bl
p'wp a— =p,
a
e 2 oo

a,, (equal to a _/a) ie the undisturbed-flow equilibrium sound speed, and equations
(110) are the first-order results for an equilibrium flow. The important point is
that they arise solely as a consequence of the assumptions which lead to equation
(105) for ul?) (these assumptions enable one to show that the inner integral terms in
equations (65b) and (66b) are equal to 7|Jla and aJ respectively) and they do not
depend on any additional factors.
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Returning now to equations (108) and (109), it is possible to derive a number
of interesting conclusions from them, but it is with one of these in particular that
we wish to concern ourselves here. Thus, if B >> \ equation (108) shows that
(1)

5—— ~DYB) ; B < 6-Ha-1)n (111)

gince erf(B/A) * 1 and the last term is small by hypothesis. When B » §- 3(a - 1) 17
we must use equation (109) and a first estimate under the condition B >> A can be
written as follows:

(1) = 2
8 . p4B) +  [D18) ~ D'(B)] [1 " erf(E';B) ] - ";’;L‘" e (8-BYI (119

The condition B> & - #(a - 1)nis certainly satisfied if B » 8, since nis positive in
the disturbed flow region. Since D'(B) = D’(8) for B » § the second term in (112)

vanishes. The order of magnitude of the last term in (112) is less than or equal to
A/6 and is therefore negligible if 4/8 << 1. When 0¢ § - B¢ 3{(a - 1)n we can write

D' (8) - D'(B) = 0( [6- B] /6)

and so the second term in (112) has an order of magnitude equal to

(et

We can show that when A >» I' this quantity has a maximum value and this value occurs
for 6- B <\, Consequently the whole term is less than A/6 in magnitude and so, if
the condition A /s << 1 is satisfied, equation (112) gives

(1)
i .0 (B) \118)

o

once again.

To reiterate, u( " will be given by (113) if all conditions n >» ', B » A and
& s> A are satisfied. Since\ » I is necessarily true when 1 >» T, the last of these
conditions merely confirms that§ » T .

Si (1) (1) (1)

ncep ,#» andu ' are related as in equations (110) we have now proved

that there are parts of the flow field in which the flow is, to a good degree of accuracy,
in an equilibrium state and, furthermore, that the flow variables are constant along
lines of constant B. We could now translate this information about the constancy of
ult), etc., on lines of constant B into the physical (x,y) plane by calculating x(1), y{*)
and so on. This is a fairly lengthy procedure and we can elicit sufficient information
for present purposes by looking instead at the behaviour of (dy/dx) on a line of
constant B, By making use of the compatibility conditions (12) and (13) it is easy
to show that

(QI . 2m(a+llya +a,ula - 1lyg (114)
dx B (a, + ulla + 1)yq - (a, - ula - I}yﬂ '

Ueing the series expansions (33) for the variables involved here, noting that
ya{"} = %= yﬁ(") , and neglecting terms of order higher than €, we find that
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(1) (1)
d a u at-1 (1) (1)
(EJX:')B' a[l -e;:: -aaa +e( = ) (3;9 > )J (115)

The assumption that ya(‘} and yﬁh} are less than 0(1) is again implicit in the deri-
vation of (115).

In the regions where (110) and (113) are valid approximate solutions we can
readily show that the terms

L (a4 au®?)

in (115) are equal to
(1)

lea(v,+ 1) : = tea(y, + 1)D'(B).

1e

Thus (115) can be re-written in the form

(% - a[l - }ea(7, + 1) D/(B) + e(a:‘) (yﬁ“’ -ya(”)J (116)
B

in these regions.

Now, although we should not let T = 0 within the framework of the present
theory, we can let I' 0. If we do this, the conditions which lead to (116) are then
such as to make it apparent that the given approximate solutions within their region
of validity should be the same as those arising in an a priori equilibrium flow. The
first-order equilibrium flow solutions are given in the Appendix and, identifying B
with Be, we can see that the relationships between p(‘), pl1), u(t) and B are of
precisely the correct form (i.e. compare equations (A6) with equations (110) and
(113)). However, it is quite clear that yﬁ(‘} - ¥g{") is not in general equal to zero
and equations (116) and (A10) fail to agree,

One is forced to conclude that the extension of Lin's technique to the relaxing
gas problem does not lead to a uniformly valid first-order solution in the event that
0 < I <w. Certainly the behaviour of yg('), which was discussed in Section 7, intimated
that we could expect such a breakdown fn regions where nD” became too large, but
the results just presented show that the actual deficiencies in the theory are rather
more gerious.

This is not to say that there is absolutely no advantage to be gained by using

the characteristic-parameter plane in place of a formal linearisation in x,y coordinates.

For example, if we let I'* 0 and n * 0 in such a way that 7/p * « then yﬁ(‘) - yal") is
zero (see equations (89) and (90)) and (dy/dx)B is equal to (dy/dx)Be. In this case
the "lines of constant B" are, locally, coincident with the true equilibrium charac-
teristic lines in quite the proper way. In addition, if B> &, so that both a and g are
necessarily also greater than or equal to § we can show that both ya (1) and yg{t) = 0
as I'* 0. Once again we find that (dy/dx)B is equal to (dy/dx)g, and the "final"
equilibrium flow zone is correctly predicted to first-order.

Ingpection of the results shows that it is only in regions where y, and yg are
exactly equal to } that the solutions succeed. One must infer that the perturbation




Ly

techniques, which effectively replace the coefficients 1/y, and llyﬁ in equations

(21) and (22) by 1/y{°) and lfyﬁ("), (as in equations (35) and (36)), lead to too drastic
an oversimplification of the true dependence of p(1), u()) etc. on the parameters

a and 8.

It is significant that when 0 < T < the problem cannot be set up without
explicitly including the third set of characteristics, namely the streamlines or par-
ticle paths. Equatione (4), (14) and (15) make this quite clear and the non-trivial
existence of this additional set of characteristic lines (over and above the Mach
linee a and p) is directly responsible for the appearance of y, and yg in equations
(21) and (22) for p and u. In the limiting cases I'= 0 and I' = = it can be seen that
the problem is completely defined without the need for specific reference to the rate
of variation of quantities along particle paths. The de-coupling of the equations for
pl(a,B) and u(a,S) from those for x(a,B) and y(«,f) which results has a direct bearing
on the success of the method in these cases.

The relaxing gas problem has a considerable similarity to that of the flow of
an ideal gas which contains distributed heat sources: in fact equations (12), (13),
(14) and (15) describe the latter situation precisely, with Q related directly to the
heat source terms, which are assumed known. Even with the simplifications resulting
from some prior knowledge of Q it is still not possible to produce a uniformly valid
first-order solution for precisely the same reasons as those that we have met with
above, namely that it is impossible to avoid reference to the rate of entropy rise
along particle patheg, with the resultant coupling between the equations for x and y
and those for p and u.

In conclusion, whilst the characteristics plane perturbation scheme does lead
to some minimal gains in accuracy when compared with straightforward linearigations
in orthogonal coordinate systems, it does not succeed in producing a uniformly valid
golution over the entire field of an entropy-producing flow.
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APPENDIX

With the initial assumption that the flow is to remain in equilibrium throughout
(so that 7/ = 0 = T) it becomes necessary to make some changes in the basic equations
of Section 2. Without going into the matter too exhaustively these changes are as
follows. Firstly, the compatibility conditions (12) and (13) must be replaced by

ox <]

A, A, = (a, + u) A B, = constant, (A1)
e 4 .
B By (a, - u) a8, A, = constaut, (A2)

thereby defining two new characteristic parameters Ag and Be. (NB. a, is the local
equilibrium sound speed, equal to a,/a. The variable y is as defined in (9).) Secondly,
in place of (14) and (15) we have

op ou 5

aA, 2 pa,aje 0L (A3)
ap gu A
9B, pE*aBe e WAl

Using the perturbation series (33) together with the boundary conditions
u=ea, D'(Bg); x=eD(Bg);y = Be when Ae = By (A5)

we can show that

ul? - a,, D'(Be) ,

p(') _ pmazmuh) ; p(‘) 2 pﬁu(t)’(ﬂ ) (AB)
al®) _ (o) Be ' a0 . y(ol -
s oy O +(B=m L J)y S x
(A7)

where

W (0
a !V - %ah’({;— Mk (A8)
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We can now use the results in (A6) and (A8), together with conditions (A5) to show
that

a[x - eD(By)] - y = -Bg +¢§-(7. + 1)DYB)NA, - Bg) , ] i
alx - eD(Be)]+y = Ao +e (% +1)[D(A,) - D(B,)] ,
and thus to complete the first-order equilibrium flow solution.
Equations (A9) show that, to O(e),
(% . a[1-eX(v,+ 1D (B, ] (A10)
3

We remark that the foregoing analysis represeats a uniformly valid solution
of the equilibrium flow problem, to first order, for the reasons given in the paper
by Miss Fox (1955),
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