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SUMMARY 

The motion created by withdrawal of a piston from an infinitely long tube 
containing a relaxing gas i s examined by the method of perturbations in the plane 
of the characterist ic parameters . It i s shown that the technique fails to produce a 
uniformly valid f irst-order solution, except for the limiting cases of zero or infinite 
relaxation t imes and In certain portions of the general flow field. The analysis 
exemplifies the reasons for this failure. 
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1. Introduction 

The analytical study of reacting or relaxing gas flows has received consider-
able attention in the last few years, but has with few exceptions been confined within 
the framework of a purely linearised theory. That is to say, in general t e rms , the 
equations for a singly-relaxing gas have been set up in an orthogonal coordinate 
systemi and all non-linear terms which appear have subsequently been discarded. 
At least this is true, with few exceptions, in all cases where more than one dimen-
sion (or in other words, more than one independent variable) is concerned. In 
dealing with one-dimensional problems, such as plane shock-wave behaviour, or 
the flow through a nozzle it has often proved possible to solve the resulting ordinary 
non-linear equations with a minimum of additional restrictive assumptions although, 
to be sure, one has all too frequently been driven to use numerical methods in order 
to obtain resul ts . 

Naturally there will always be situations for which the basic notion of. small 
disturbances (which leads to linearisation) is not reasonable, but we shall not be 
concerned with these cases here. Instead we shall concern ourselves with the failure 
of the formal linear theories to provide an adequate description of the flow field in 
regions remote from the primary source of the disturbance. The basic reasons for 
this failure are two-fold. First ly, an infinitesimal disturbance propagates at the 
(variable) local and not at the (constant) undisturbed-field speed of sound and secondly, 
it does this relative to the fluid, from which it follows that the disturbance is also 
convected with the local gas velocity. For brevity we shall hereafter refer to both 
of these phenomena as 'convective effects'. It is the accumulation of these second-
order influences which eventually leads to a lack of uniformity in the first-order theories, 

There are several techniques for the development of uniformly valid first 
approximations to the flow of a compressible ideal gas. Two of these are epitomised 
by the work of Whitham (1952) and Lighthill (1949) for example but, principally 
because they involve an investigation of the second-order terms in the solution, 
these methods appear to be difficult to apply directly to the relaxing gas case. A 
third method, due to Lin (1954), would seem to be more readily adaptable to the 
problem in hand and it is this technique which we propose to examine here. Lin's 
method makes use of the equations in their characteristics form, so that our first 
task will be to set up the appropriate equations for a relaxing gas flow. 

The specific problem to be studied is that of the flow created by the withdrawal 
of a piston from an infinitely long tube filled with a relaxing gas. In order not to 
complicate the situation with non-linear effects other than those of convection, we 
shall assume that the gas has a constant value of relaxation time T ' and constant 
values of the specific heats. We shall write Cp,, Cy, for the specific heats at con-
stant pressure and constant volume, respectively, of the active molecular energy 
modes. The specific heat of the relaxing energy mode will be denoted by Cg. T, 
and Tg are the translational and relaxing-mode temperatures. 
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2. Equations in characteristics form. 

For a one-dimensional unsteady situation the equations of conservation of 
mass , momentum, energy and excitation of the internal mode can be written down 
as follows: 

• if * H • « • '« 

T ' ^ H - T . - T , . 0 , M) 

where the convective operator D/Dt» a/3t + ad/dx. The thermal equation of state is 

p = flRT, (5) 

and, writing 

Cy» = T I T • ^̂ ^ 
t 

where Y, is the active mode (or frozen) specific heat 's ratio, it is clear that equations 
(1), (3) and (4) can be manipulated to give 

m ^ " " I ' t = - P < Y , - 1 ) C , ( T , - T , ) / T ' - Q . (7) 

a is the frozen sound speed, 

a / = 7^ P/p , (8) 

and the symbol Q is defined in equation (7) for later convenience. 

Introducing a length variable y, wh'^re 

y = a,„t (9) 

and a,^ is a constant (reference) frozen sound speed, which we will define more 
carefully at a later stage, equations (2) and (7) can be re-written as 

if ^ - I J - " . . I F • »• <"» 

Equations (10) and (11) define a set of characteristic curves: denoting the charac-
teristic parameters by a and^ , these curves are given by 
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a. r - = (a + u) - ^ ; ^ = constant , (12) 
"" 9a ' da 

9x 9y 
a , ^ g ^ = -(a, - u)-^; a = constant , (13) 

and equations (10) and (11) with a ,/9 a s independent va r i ab les become* 

aE+^a , - ^ = - ^ 1 ^ „ , pa, - ^ = ^ ^ , (14) 
3a < do a ,„ 3a 

§ £ . „ Sü = Q . a z (15) 
a^ ' a/S a,„a/9 ' ^^^' 

We intend to use the c h a r a c t e r i s t i c p a r a m e t e r s a and /9 a s the new independent 
va r i ab le s (this i s the e s sence of L in ' s method) and, accordingly, both x and y a r e 
he rea f te r t r ea t ed a s a pa i r of dependent va r i ab l e s which a r e to be found from equations 
(12) and (13) and some sui table boundary conditions which have yet to be d iocussed . 
In o rde r to p roceed , it i s now n e c e s s a r y to e l iminate Q from equations (14) and (15). 
To do th is we note f i rs t that equations (3) and (4) give 

, „ D / ' D T . \ ^ DT, n, 3u - , , „ . 

where 

Cv = Cv, + Cg , (17) 

whils t equations (9) and (7) give 

? = - ( ^ i - l ) C a ^ . (18) 

Combining (16) and (18) we have 

It i s ea sy to show that 

Dt ^"\ya ^ ^ / ' •̂̂ a ^B ^ J 

whence, subst i tut ing equations (14) and (15) into equation (19), we find that 

*The Jacob ian of the t r ans fo rma t ion from x,y to a,/9 coordinates i s t ac i t ly a s sumed 
to be nei ther ze ro nor infinite. Since per turba t ions a r e to be a s sumed smal l u 
will never be pernnitted to approach a, in magnitude and it will appear la te r that the 
chosen piston paths a r e such as to avoid th is difficulty in any finite par t of the flow. 
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*^-K;^ è " 7̂ ' è ) (p-^tPa^^^i"«j)^^ [P«-''^-a] 

(Tl ^^.^(t--i->^ -
' ' ^ - ' 1 ^ ^ ' ^ i ) ( PT: fp/s • "^'"^0' PT: ^ "'̂ " ""'"''̂  

Tl - D Q p / ' J _ 

2pa,Cy V y „ -« y^ " ^ ^ ""(22) 

(Y, - DCaP / 1 1 \ -
\ y^ y^ ' ' / (5 

where 
T" = T' C v / C y . (23) 

(The suffix notation for partial derivatives has been used above and will be employed 
in the work which follows when it proves to be convenient.) Equations (21), (22), 
(12), (13) and (8) constitute five equations for the six unknown quantities p, P , u, a^, 
x and y as functions of aand/9 . The set is completed by using equation (1) which, 
with the aid of equation (20), can be written as follows: 

In order to examine the piston problem mentioned in the Introduction we shall 
assume that the piston's displacement is given by 

X =eD(y) ; y >0 . (25) 

= 0 ; y < 0, 

and we shall assume that the gas occupies the infinite half-space to the right of this 
boundary. For withdrawal of the piston it follows that D(y) miust be a negative 
function, but it is not too important to s t ress this restriction at this stage. From 
equations (9) and (25), the velocity condition becomes 

u=ea^^D'(y) ; y > 0, x = eD(y) . (26) 

= 0 ; y <0, X = 0. 

Arbitrarily restrict ing dD/dy =D to be at most of order unity, the positive constant 
e is a measure of the maximum piston speed as a fraction of the reference sound speed 
a,^. Small perturbations will therefore follow if e « l . We shall assume throughout 
that 

D(0) = 0 = D ' ( 0 ) . (27) 

The line a =/9 is selected to represent the piston-path in the a,fi - plane whence, 
remembering that x and y are functions of a and ySwe deduce from equation (25) that 

x(/9./9) = cD (y (/?,/9)). (28) 
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If we choose 

y(P.P) = P (29) 

the conditions on u, x and y in the o,^-plane become 

u = ea^Tt' (p), (30) 
X = e D ( ^ ) , (31) 
y = ̂ . (32) 

al l when a = /9. It follows from equation 27 that the curves labelled a = 0, ^ = 0 in t e r sec t 
at the or igin (x = 0, y = 0) in the x, y - plane. If the gas in x> e D (;3) i s in a uniform 
equi l ibr ium s ta te for y < 0, sufficient conditions for a solution of the equations 
der ived above a r e found by r equ i r ing that a l l d i s tu rbances vanish for al l ^ < 0. The 
configurations in the x, y and a, /9 planes a r e sketched in F i g s . 1 (a) and (b). 

3 . Pe r tu rba t ion p r o c e d u r e s . 

In o rde r to solve the equations set out in the previous Section the dependent 
v a r i a b l e s , including x and y, will be expressed a s power s e r i e s expansions in the 
(smal l ) p a r a m e t e r e: i . e . we shal l wr i t e 

* (a ,^ ) = *^°Na,/3) + €* <^) (a ,^ ) + (33) 

where * s tands for e i ther u, p , p , a,, x or y. 

Since the d i s tu rbances c rea ted by the piston motion propagate into an init ial ly 
quiescent uniform gas we can wr i te 

(o) _ (o) (o) (o) , „^ . 
u = 0 ; p = p ; p = p ; a = a , , (34) 

where â *̂  = T, p /P„ , and a l l of these quanti t ies a r e cons tan t s . (It will be noticed 
that a has been chosen to be the frozen sound speed in the undisturbed ga s . ) 
Substituting the s e r i e s 33 into equations (21), (22), (12), (13), (24) and (8), and 
equating coefficients of like powers of e leads to the following set of equations: 

i-i»^"^o) aV + ^(0) h)\h°) [pj^) + P̂  S„" J 'V+ 

1 r r ,< ' ) < ' h / ' T , - 1 \ c , ( i ( ,) 1 U) \ „ 

;-(o) K + "„̂ oô a J - ^ - ^ j c t ''~SA^(°) "« "̂ ««̂ "'̂  h'' 
(35) 

^ ^ « ^ (^^(o)a^ + ^(o)3^j(^^(c) [P^* '-".a^^u^ \ y 

r <') „ <<)i { I ±- A \ CJ. M (') 1 (,)\ 
-(0) LP^ -''„a,„u^ ^ \ - ^ ) ct """'A^^o) "a -^(0) -P ) 

(36) 

= 0 
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(42) 

x„<'> = y.^"^ . (37) 

(• ) (o) 

/ 1 (i) ^ 1 ( o ^ / 1 (i) 1 (1)^ ,^ , , 

Similarly the boundary conditions (30), (31) and (32) give 

u^'^ = a D > ) , (43) 

X "̂̂  = 0 ; y < ' ) = ^ . (44) 

x^'^ = D(^);y^ '^ = 0 , (45) 

all to be applied when a = fi. The causality condition (described in the last sentence 
of Section 2) can be expressed in the form 

• *'Na.^ < 0) = 0 (46) 

where • has the same meanings as before. 

Equations (35) to (46) inclusive are applicable to the first approximation (as 
indicated by the superscript (i) ) except, that is , for equations (37) and (38) which 
we shall discuss shortly. Clearly one could, in principle, proceed with approxi-
mations of higher order, but we shall be concerned with only the first approximation 
here . 

Equations (37) and (38) can be integrated at once to give 

x<*')-y<') = f( /9) ;x<") .y<') = g(«) , (47) 

where f and g a re , as yet, arbi trary functions. Application of condltione (44) shows, 
however, that g(a) = a and f(^) = -/9, whence 

2x = « - ^ , ^ 

2y = a + /9 . -̂  
(p) ( o ) , 

Thus both y^ and y^ are equal to j and the remaining equations above can be 

simplified somewhat. 

If we write 
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where 

Tg = Cp/Cv ; Cp = Cy + R = Cp, + Cj , (50) 

equations (35) and (36) become 

[•..''(è%i>'][p.'"*«.«.."«"']-K"^>-^-("""-°^"')=° 
(51) 

[ .̂-(aT*.̂ )-j[ p;"-....'.;'']-*(' -;^>---G»"'-^"')-
(52) 

Note that a* in equation (49) is also equal to the square of the ratio of the frozen to 
equilibrium sound speeds, p(^) can readily be eliminated from equations (51) and 
(52), resulting in the following equation for uv) : 

(53) 

where 

r =a ,«a«T ' = a ^ C p , r ' /Cp . (54) 

(The second result in equation (59) follows from equations (23), (49) and (50).) 

The solution of equation (53) is facilitated by a simple change of variables; 
we write 

/9 =5 ; a-/S = Tj , (55) 

so that equation (53) becomes 

^"CSn -\vr, )^\n -%7, + i < a * - i ) ^ é = « <̂ «) 

Apart from a factor of 2 associated with the variable rj (see below) equation (56) 
is in precisely the form used by Der (1961) to study certain problems in the two-
dimensional steady flow of a reacting or relaxing gas. The distinction between two-
dimensional steady and one-dimensional unsteady cases is not important in the present 
context and is mainly concerned with differences in the definition of a*. Der 's 
equation was derived from a formal linearisation of a set of equations like equations 
(1) to (4) (see e.g. Vincenti, 1959; Clarke, 1960) by writing, in our notation, 

£ = y - x ; x = | T j . 

We remark that in the present case 4 and Tjare not so simply related to x and y but 
a re , instead, rather similar functions of the characteristic parameters a and/g. 
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4. F i r s t -o rder solutions 

Equation (56) can be solved with the aid of the Laplace transform u (z ; q) of 
the velocity perturbation u' ') (5,J})i where 

\Hz.:n) = r n^'Ui.r,) e'"^ di . (57) 

It readily follows that the required solution is 

IT = A (z) e^^^^ "'*^'' ; x« = (a« + r z ) ( l + r z ) " ' , (58) 

where A(z) is to be found from condition 43. In transform language this condition 
reads 

H (as : 0) » a ,^5 ' (z) , (59) 

where we have written D'(z) for the transform of D ' (€) = D' ifi) . The inversion 
theorem for Laplace transforms therefore shows that 

(0 , ,c + 1«» - 1 /, \_ 
' « * * ^ < ' - ' " " d z , (60a) 

or alternatively, from equation (55), 

i C - Xm 

-—-±rC' ''D' (z) e*^ <̂  - ")« ^ *^ <̂  - '^^ dz . (60b) 
a, 2iri 

lee 

c is a constant, large enough to make the integration contour He to the right of all 
the singularities in the Integrand. The function x is responsiblejfor the appearance 
of branch points, located at z = "Vr and "^r • With regard to D ' (z), we shall 
assume that it behaves like z~^, i; > 1, as |z|-* ••, which is sufficient to ensure that 
both D(S) and D ' (4) <• 0 as £ •• 0 from above. One can then show that 

(i) , f5 . , c + 1 
u a,^ 2trl ( d e ^ < « o ) j ^ _ ^ ^ e ^ • <^^ • 

or, integrating by parts , 

^ -. D'(6) -L-f ' '" J- <1 - '')" ^ -/'D'(^)5i, -S^ r ' ' > ^ - ô)-̂ -<̂  - ")" ^ d̂  

(61) 

Deforming the contour c ± l<ointo a loop contour At surrounding the branch points at 
z = "Vr and -a^/r and the simple pole at z = 0, the V̂dĈ  operation can be taken through 
the integral sign in the last term of equation (61) whilst the first integral there can 
be evaluated by expanding the integrand for large |z | . It follows that 



^ ^ D ' ( 4 ) e - ^ < ^ * - ^ > ' ' J d(E)J^ je^^ -^o) + i-<l - ' ' ) ' ' d z . d £ . (62) 

Equation (62) is a form of the solution for u ' which is especially suitable for later 
developments. 

It is now necessary to find p and p . The latter is found from equation 
(41), simplified with the aid of equation (48) to read 

and p can be found from equations (14) and (15), the perturbation series 33, and 
equation (48), which together show that 

( i ) ( i ) ( ( i ) ( i ) ^ , „ , > 

It is easiest to use equation (60b) to eliminate the derivatives of u from equations 
(63) and (64). Making sure that both p^') and p(') vanish for/9 =5 < 0 it can be shown 
that 

El ' I f ' ' " D ' ( Z ) ^ e'^^' - ">« ^ ''^' ^ '^^ dz , (65a) 
p„ 2wi J " 
'^•» ^ C - loo 

= T , D ' ( , ) e - i < ^ ' - ^ ) ' ' ^ ° D ' ( 5 „ ) 2 ^ , / f e ^ < ^ - ^ o ) - ^ i - < l - ) ' ' d z d 5 , . 

(65b) 

i : ' 1 f - 5 ' ( z ) x e ^ ^ < ^ - ^ > ' ^ ^ ^ ^ < ^ ^ ' ^ ^ d z , (66a) 
• C - loo 

= D ' ( 4 ) e - i<^ ' - ^^^ J ^ X ) 2 ^ ƒ >= e^<S -«o) ^ ^^«^ " "^''dz d^, • (66b) 

It is now possible to use equation (42) to find a ^ and then to solve equations 
(39) and (40) for x^') and y<'). Equations (65a) and (66a) are best for this task and, 
initially, we find that 

C - loo 

-2 Vx^ + y^ ; = 2 ^ / D ( Z ) [ 2 ^ - - - 1 
^ C - loo 

e^ dz , (68) 

where, for brevity, we define 

f - i z ( l - x)a + | z ( l + x)/9= z§ + iz(l - x)rj , (69) 
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Using conditions(45) equations (67) and (68) can be integrated and rearranged a little 
\o give 

' ^y = iïrt i . °<^>V2^^ 2 ^ i(rTT) ^̂  

(70) 

^ +y ' = ^ / D'(z)V;ïf + TJ '̂ TT-TTT d̂  • (̂ D 
C - loo 

The formal solution of the f irst-order problem, according to the present 
method, is now complete. However, it is clearly not in a form which admits of 
either a ready assessment of its physical significance or of its validity in any special 
circumstances. Therefore we find it necessary to consider a number of special 
cases which permit simplification of the complex integrals found in the foregoing 
solutions. 

5. Frozen flow. 

When r, and hence T' , is infinite the flow is said to be frozen because the 
internal energy mode plays no part in the gas-dynamical processes . Referring to 
equation (58) it can be seen that as F •• oo , x -• 1 and (from equation (69) ) f •• z/9 = z4. 

Using equations (60), (65a) and (66a), it can readily be seen that in the limit 

u '̂̂  =a, D ' ( 0 . (72) 
' OO 

p < ' ^ Y , P ^ D ' ( g ) = p ^ a y ^ > . (73) 

P =P. D'(4) =(pJa, V ' ^ . (74) 

These a re precisely the resul ts which ar ise from a formal linear theory of frozen 
flow, except that x - y would appear in place of £ for the argument of the function 
D*. The present solution shows that, to first order, the flow is of the simple-wave 
type, with all quantities constant on the (frozen) Mach lines & = /9 = constant. However 
/9 is not equal to x - y and these Mach lines are not the undisturbed field character is-
t ics . Using equations (33) and (48) and taking proper limiting values in equations 
(70) and (71), it is not difficult to show that 

X - y = -^ + eD(/9) + ie(7 , + I ) D ' ( ^ ) (a-/9 ) , (75) 

x + y = a + eD(^) + H Y , + l)[D(a) - D(/9)] . (76) 

Adding these two equations gives 

2 [x -eD(/9)]= a-fi + ie(Y, + 1) [ D ' ( ^ ) ( a-/9) + D(o) - D(/9) J . 

Using the mean value theorem we can write 
r 

D ( a ) - D ( / 9 ) = / D'(^) d ^ = IX^^X a-^ ) , 



• 

where a > fi> fi . 

it follows that 
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Since D ' ( ^ ) must be bounded, if only from physical considerations, 

2 [ x -eD(^) J = (a - fi) (1 + 0(e)) . 

whence equation (75) shows that 

[x -eD(/9)] [ l - ie(Y, + 1)D'(^)] - y =^ , (77) 

correct to 0(e). 

The Mach line fi = constant is therefore a straight line, passing through 
the point eD(^),^ on the piston path, with slope 

(: 
^ = 1 -ie(Y, + 1 )D(^ ) (78) 

When the piston moves to the left DO?) is a negative function: if we also ensure that 
0*0) is always less than zero and decreases monotonically to some final value 
11/(6) in the interval 0 < ^ < 6, thereafter remaining constant for all/3 > 5, it is 
clear that each successive Mach line (/9 = constant) has a greater slope than its 
predecessors and no intersections of characteristics occur. The mapping from 
the a,/9 to the x,y plane is therefore single valued. The situation arising when 
the image of the characteristics plane is no longer a single-sheeted surface in 
x,y coordinates, and the associated question of shock wave formation, is discussed 
by Miss Fox (1955) and we shall not pursue this matter any further here. The 
paper by Miss Fox just referred to also establishes the convergence of the series 
for X and y and we may take it that the results of this section constitute a uniformly 
valid first-order estimate of the frozen flow behaviour for the case treated. 

The case of a piston suddenly accelerated to a constant velocity e a, D'(6) < 0 
can be solved by letting 6 •• 0+. Then D(/9) - « O i n O ^ ^ ^ Ö and we find from 
equation (77) that 

y = X [ l - ie(Y, + l)D'(/9) ] = x [l - | ( T , + D ^ ] (79) 
1 CO 

within this range of/9. Equation (79) describes the configuration of the centred 
simple-wave, through which u decreases from zero to its final value of ea,^D'(6) 
in between the diverging characteristic lines 

y = X and y = X [ l - ie(Y, + 1) D'(6)] . (80) 

Within this expansion fan the velocity gradient is given by 

_ - ~2a^ ou ,„ . 

'Qy ' (Y, + l)x * ' ' " 

and hence is constant, to first order, for any given x. 

The resul ts for T =•» given above will provide useful comparisons later on, 
It should also be pointed out that all of the results obtained specifically for the 
case r =00 will be equally true for the case a* = 1, no matter what the value of T may 
be. Putting az equal to unity implies (see equation 49) that the internal mode con-
tains no communicable energy and it is therefore not surprising that the value of 
r is irrelevant. 
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6. Conditions at the wave head. 

It is clear from equations (62), (65) and (66) that the flow disturbances 
vanish as 6 "• 0, from above as well as from below, on account of the assumed 
continuity of the function D'(5) at this point. However, we may profitably examine 
the gradients of the perturbations along this same line. 

We may note first that, if all perturbations vanish on /9 = 0, equation (12) 
shows directly that 

— (x - y) = 0 ; ^ = 0 . 
aa 

Then equations (28) and (29) show that the line ^ = 0 is simply the straight line 

y = X, (82) 

a result which is true to any order of accuracy given the proviso made in the 
previous sentence. 

(1) (1) (1) 

Since the flow disturbances ( i . e . u , p , p ) all vanish on /9= 0 it is 
clear that their derivatives with respect to a (^ being held constant) are also 
zero on this line. We can find du^^'/d^ at fixed ij (or UE-''^ for short) from equation 
(62) for example. The result is 

"e 
. m^)e-rT<-' - I)'' J^D'U,) ^ / ê <̂  ' ^o) + hd - x)n^^ 
loo j 0 2wi L » 

(83) 

from which it is clear that 

U£ '̂̂  (5 = /9 = 0) = a, D-(0)e-4T<^' " ^^^ = a, D"(0)e"i<^' ' ^^" . (84) 
* • ' C O «OO 

D*(0) is not zero (in general) and the velocity gradient immediately downstream of 
the leading characteristic depends on the initial curvature of the piston path. 
Comparing this general result with that for frozen flow, namely 

ug* '^^ =;9 = 0 ; r=».) = a,^D''(0) , (85) 

it can be seen that the relaxation effects lead to a decay in the velocity gradient 
with increasing distance from the corner, ( i . e . with increasing a .) Equations (65b) 
and (66b) show that 

Pg^ '^4 = 0) = Y,p„D'(0)e'3T<^' "^^" =Pe.,a,„u^<'Ng= 0) (86) 

Pe, ^'^ (Ê = 0) =p«. ü'(0)e"4r<^' - 1)« = Poo/ĝ ^ ug<') (^ = 0) (87) 

From these results we see (compare with equations (73) and (74)) that the 
relationships between u^'', p ' ' ' and p(<) are those that would ar ise in a completely 
frozen flow. These results apply, to the current order of accuracy, under all 
circumstances. 
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7. The Quantities y^ and Vg 

The two equations (51) and (52) from which the single equation (56) for u 
and thence all the solutions presented in the last three sections have been derived 
a re themselves derived from equations (21) and (22) with the aid of the perturbation 
ser ies and the zero-th approximation to y (in particular ya^"' and y^^''')- We note 
the implication that ya^'^ and j^^ ' ) shall both be no more than 0(1), so that we should 
examine these two latter quantities in order to check whether this is indeed so. 

Equations (70) and (71) show that 

. rc + i», / \ r za f z/9 f "i , 
2y<^) 1 / D'(z)H^ + 0 P T - ^ ^ + V - ^ -

•̂  2flriJ . ' ' ^ \ x / L l + x 1 - x J z 
(88) 

loo 

from which it readily follows that 

.c + i 
dz 
1+x 

dz 

(89) 

(90) 
C - loo 

The integral for ya can be re-arranged in the form 

2yJ '^=i (Y, . 1 ) D ' ( « ) + | D ' ( V ^ i _^i(^ + x) \ ^ ; dzd5„ (91) 

-i (Y, . 1) D'(.)e-^^^ - )̂" - / 'D ' ( ,„ ) ^ | é ( l - . . y ^ dz d, 

and it is apparent that ya is 0(1) everywhere (since D' is limited to this same 
order of magnitude.) 

With regard to y^ we note first that 

^mz) = D*(z) 4 1/(0). 

where D* is the transform of the third derivative of D. Putting this result into 
equation (90), using the convolution theorem and integrating by parts gives 

0 <b 

The first complex integral can be evaluated and we find that 
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+ 
•"o 

In the limit as F •• •> equations (91) and (92) give the same results as would 
be obtained from equations (75) and (76). 

The behaviour of y^ is clearly very different from that of ya , depending 
as it does on D* rather than on D ' . At this stage two observations are in order. F i rs t , 
the parameters o and fi which define the network of frozen Mach lines are only 
appropi-iate so long as T >0. In the special case for which T = 0 the characteristics 
change discontinuously to the equilibrium Mach lines and the compatability conditions 
12 and 13, on which the whole of the subsequent analysis is based, cease to apply. 
The case F = 0 is developed briefly in the Appendix. Second, we note that when F = •», 
so that 

3^^'^= -i(Y, +1)D ' (^ )7 , , 

VS grows without limit as rj increases for a fixed^. If we write the last term in 
equation (92) in the form 

i \ 

it is apparent that ya will In general be proportional to rjD* for any value of F , 
although the proportionality factor and the argument of the function D* will be much 
more complicated expressions than the simple ones which ar ise when F =•» . When 
^ = 0, so that 

( i ) 

y^ - H T , ^ l ) ^ ( 0 ) ( ^ ) ( l - e - < ^ ' - ^ ) « / ^ ^ ) 

we note that we cannot permit D*(0)r to approach large values for any value of a which 
makes (a* - 1 )a/V > 0(1), as it would also not then be possible to write 

r/>»-V'V' ' 
as we have had to do in the derivation of equations (35) and (36). 

When F = • , the success of the present method in producing a uniformly valid 
f irst-order solution is not in question, even though j^^l) does behave like D''(^)n, since 
neither u ' " nor p<̂ ) depend explicitly on ya and yo in this case. Since we have no 
need to look further at the case F = •• and cannot examine the case F = 0 by present 
methods, we must concentrate our efforts on the situation for which 0< F < «Q. In 
doing so we must take note of the restr ict ions imposed by the form of y^('), namely 
that there will be a linnltation on the size of /? above which the solutions cease to be 
valid, (this value will depend on D") and that FD" also cannot be allowed to become 
large. If these restrict ions are not adhered to the perturbation method will break 
down. Unfortunately this would seem to preclude a discussion of both the suddenly 
withdrawn piston and of the flow far from the piston face. However, despite these 
rather disappointing limitations we can still produce some results of interest and 
this we now proceed to do. 



- 15 -

8. Conditions on the piston face 

The piston face is located on the line a =/9 , or n = 0, in the a,^ plane. Con-
sequently the pressure and density perturbations are simply 

c + ioo_ 

D ' ( z ) ^ e '^dz , (93) 
c - ioo 

( i ) 1 f'^ + i " . „R 
— = ^ D ' ( z ) x e ^ ^ d z , (94) 
" - 2 ^ i C - ico 

(see equations (65a) and (66a)), When TJ = 0 we know from the boundary conditions 
that /9 = y, so that equations (93) and (94) give the pressure and density perturbations 
directly as functions of y on x = eD(/9) = eD(y). 

Some reduction of the complex integrals in equations (93) and (94) is possible, 
using the convolution theorem and the known inverse transformations of the functions 
(xz)"' and xz"'. The results are quite well known and will not therefore be repeated 
here (see Clarke, 1960, and Der, 1961, for example). However we note that for 
4 = ^ - 0 

p^'^- Y, p„D'(0) ; p* '^ .p^D' (0) (95) 

whilst for 5 = /9 "• " 

p^'^-Y a-*p D ' ( - ) ; p ^ ' ^ ap„D'(-) . (96) 
1 OO 

Since u ' is equal to a D ' {fi), equations (95) and (96) show that the perturbations 
are related as in a frozen or in an equilibrium state, respectively, according as to 
whether one is near to or far from the point at which the piston begins to accelerate. 

9. Conditions in regions where T}/F is large 

The previous section demonstrates that the perturbations can be readily 
evaluated when ?7 = 0. Unfortunately no such simple solutions are available for 
I) > 0 but it is possible to make certain useful approximations in regions where 
1?» F . 

Let us first consider u , using the form of the solution written down in 
lequation (62). Since | D ' | is 0(1) the first term there becomes very small when 
|(a« - l)rj /4F » 1. We remark that it is therefore necessary to deal only with the 
case for which a* > 1 but as we already know the solution for a = 1 this causes no 
hardship (see Section 5.) We may also observe that a* is never very much greater 
than unity, whence it follows that TJ/F will be large if (a» - 1) 7j/4'F is large. In 
future we shall take n/F » 1 to be a sufficient condition for the neglect of terms 
like the first one in equation (62). Under this condition, the major contribution to 
u(') will ar ise from the second (integral) term of 62, as we shall shortly show, always 
provided that 4 is not too small. The situation arising at 4 = 0 is dealt with in 
Section 6. 

plL =JLf 
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In order to justify our assertion that the integral term in (62) is dominant 
under the stated conditions we shall start by examining the inner (complex) integral 
there. We note that it can be written in the form 

J-.-l-j e^^^'-^o^-^-^l-^^'dw (97) 
2jrir V 

where 

w = z r ; &' = 5/r ; 4 ' =So/r;T,' =»?/r , 

a' + w 
1 + w 

andib is a loop contour surrounding the branch points at w = -a* and - 1 . When 
rj' > > 1 the major contributions to J will ar ise from those parts of i which can be 
made to pass through saddle points of the function 

W/i + w(l - x ) ; »i - 2 ( 5 ' -€Ó )/jj ' , (98) 

the value of ii being fixed. The saddle points occur at values of w, written as ŵ  , 
for which 

^ + F'(Wo) = 0 ; F(w)= w(l - X) . (99) 

Thus Wg is a function of U. The appropriate dominant part of J will be proportional 
to 

expl [w„w + F(Wo) J i n ' ! , 

and with TJ' fixed this exponential term will itself be a maximum for some particular 
value of/4. The latter value can be found by noting that a maximum for the function 

vlg^ + F(w, ) 

occurs when w^ = 0 (note equation (99)). Hence the required value of l* is given by 

f< = -F'(0) = a - 1. 

We are therefore led to write J in the form 

•WA' + w(a - X)|T)'^ 

S 

^ , / e - — — d w (100, 

where 

e' - e ' - i ( a - i ) n ' 

and S is the steepest path through the col at w = 0. It is now a straightforward 
matter to evaluate equation (100) asymptotically, leading to the expression 

-A' /7,'(a - 1/a) 
J ^ 2.—=—==——— , (101) 

F V ITTJ' (a - 1/a) 
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correct to within a factor 1 + 0( rj ). 

Putting (101) into (62) we find that 

^ ~ t D'(4„) expT - ff"-f]\'''^' L , f̂ ,̂ , (102) 
a,„ Ĵ  ° L FT?(a - 1/a) J VvrF7j(a - l / a ) 

under the stated conditions. A similar result has been given by Whitham (1959) 
in connection with his studies of a general equation like our equation (56). 

A useful alternative form of equation (102) is derived by writing 

5 - i(a - DTJ = B (103) 

and putting 

B -^^ =^.8 ; \M'/FTj(a - 1/a) . (104) 

Then (102) becomes 

(0 r i ( a - l ) T , / X ^ 
7 ^ / D'(B+Xs)e ds . (105) 

^1 -B/X 

The upper limit in equation (105) is proportional to Vrj/F , so that replacing 
it by infinity will lead only to e r ro r s of order exp(-Tj/r) and such terms have already 
been neglected. 

In order to make further progress it is convenient at this stage to be a 
little miore specific about the nature of the function D ' ( Ü - We have remarked 
previously that it is a bounded function and we shall now assume that it is continuous 
and tends monotonically to the value D'(5) as 5 increases from 0 to 8. For 5 > 6 we 
assume that D ' ( 6 ) = D'(6) = constant, its magnitude being 0(1). The implications 
of these assumptions are that thé second derivative D ' i s at worst piece-wise con-
tinuous and bounded. The mean'value can now be used to write 

D'(B + Xs) = D'(B) + XsD''(B + eXs) ; 0 < e < l ; - B < X s < 6 - B -̂  
(106)) 

D'(B + Xs) = D'(6); \ s > 6 - B. -' 

Using equations (106) in (105) we distinguish between the two possible cases 

B ^ 6 - i(a - a) TJ (107.) 

for which the quantity B + Xs either does not or does pass through the value & withlm 
the integration Interval, respectively. 

Firs t ly , when B < 6 - i ta - 1)17, we find that 

^ ~ D ' ( B ) è [ l + erf(B/^) j ^ ^ B''(i)e'^'''^^ . (108) 
• CO 

Terms of order exp(-J7/r.^ have been neglected and g in the function Tf(^) is a suitable 
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m e a n va lue , lying between 0 and 4 , which depends in genera l on both 4 and TJ . Since 
equation (108) appl ies e s sen t i a l ly to the ca se TJ/F » 1 we obse rve that if B is to lie 
in the r a n g e around and above z e r o it i s e s sen t i a l to have 6 / r >> 1 too if the r e s u l t is 
to be at a l l meaningful in the c i r c u m s t a n c e s . Th i s impor tan t supp lementa ry condition 
for the val idi ty of equation (108) can be r e - i n t e r p r e t e d if we note the monotonici ty of 
D ' in the in te rva l 0 « 6 «6 , for we can then r easonab ly a s s u m e that D* i s 0(1/6) 
within th is s a m e in t e rva l . Consequent ly the r e q u i r e m e n t that 6/F >> 1 is equivalent 
to saying t h a t F D * « 1. As we have r e m a r k e d at the end of Section 7, the p re sen t 
t heo ry is only valid If FD* is not allowed to become la rge and so the c i r c u m s t a n c e s 
leading up to equation (108) a r e quite in l ine with the inherent l imi ta t ions of the p resen t 
theo ry ( resu l t ing from the behaviour of the functions y and y_ .) 

tt p 

Secondly, when B > 6 - ^(a - DTJ, the in tegra t ion in te rva l in equation (105) 
can be split into two s u b - i n t e r v a l s namely , -B < Xs < 6 - B and 6 - B < Xs < i ( a - l )n . 
It then follows that 

— ^ ~ D ( B ) i j _ e r f ^ ^ - ^ j + e r f | ^ ^ j j + ^ D (6) [̂  e 

+ D ' ( 6 ) i r i - e r f (^ -^ -^^ ) 1 , (109) 

where 6 in D*(6) i s the a p p r o p r i a t e value of S (defined above) when 4 = 8. That 
equat ions (108) and (109) a r e equivalent when B = 6 - j ( a - 1)TJ can be seen by wr i t ing 
6 - B = | ( a - l ) i J i n equation (109) and ignor ing t e r m s in exp(-Tj/F). (To th is o r d e r of 
a c c u r a c y er f [( 6 - B)/X ] = 1.) 

The conditions in equation (107) have a s imple physical i n t e rp re t a t ion , 
which can be seen by noting that they a r e (from equation (103) defining B) equivalent to 

e = / 9 ^ 6 . 

Since the fi = constant Mach l ines de l inea te the l i m i t s of any u p s t r e a m influence of 
changes in the piston mot ion, it i s c l ea r that the condition dec ides whether the flow 
fi«W is unaware , or a w a r e , r e spec t i ve ly , of the fact that the pis ton has stopped 
ai&célerating. 

Before proceeding to fur ther d i scuss ion of the r e s u l t s in equat ions (108) 
and (109) we note two other r e s u l t s of cons ide rab le impor t ance . If we t r e a t equat ions 
(65b) and (66b) for p(') and p( ' ) in p r e c i s e l y the samie way a s we have just t r e a t e d 
equation (62) for u (0 it can quickly be seen tha t , when i^F » 1, 

(1) 2L "^'^ o <') 

(1) u<'> u<̂ > 
' - " - a — =p„ — 

1 00 S 09 

] 
a^^ (equal to a, j^/a) i s the undisturbed-flow equi l ibr ium sound speed, and equations 
(110) a r e the f i r s t - o r d e r r e s u l t s for an equi l ib r ium flow. The impor tan t point i s 
that they a r i s e sole ly a s a consequence of the a s sumpt ions which lead to equation 
(105) for u(') ( these a s sumpt ions enable one to show that the inner in t eg ra l t e r m s in 
equat ions (65b) and (66b) a r e equal to Y J / a and aJ respec t ive ly ) and they do not 
depend on any addi t ional f a c to r s . 



IQ 

Returning now to equations (108) and (109), It Is possible to derive a number 
of interesting conclusions from them, but It is with one of these In particular that 
we wish to concern ourselves here . Thus, If B » X equation (108) shows that 

(0 
^— ~D'(B) ; B < 8 - i ( a - l ) D (111) 

since erf (B/X) • 1 and the last te rm Is small by hypothesis. When B > 6 - 2(a - 1) TJ 
we must use equation (109) and a first estimate under the condition B » X can be 
written as follows: 

J^^ D'(B) . i [ D ' ( 6 ) ~ D'(B)] [ l . e r f ( - A ^ ) ] - ^ ) e'^ ^ ' ^ ) ' / ^ " . (112) 

The condition B > 6 - ^(a - 1) ij is certainly satisfied if B > 6, since n is positive in 
the disturbed flow region. Since D'(B) = iy(6) for B > 6 the second term in (112) 
vanishes. The order of magnitude of the last term in (112) is less than or equal to 
X/8 and is therefore negligible If Xlb « 1. When 0< 6 - B < i(a - l)n we can write 

D'(6) - D'(B) = 0( [ 6 - B ] / 8 ) 

and so the second term in (112) has an order of magnitude equal to 

We can show that when X » F this quantity has a maximum value and this value occurs 
for 6 - B < X . Consequently the whole term Is less than X/8 in magnitude and so, if 
the condition x/5 << 1 is satisfied, equation (112) gives 

(0 
D'(B) (113) 

a,« 

once again. 

To re i terate , u will be given by (113) If all conditions n » T, B » X and 
8 » X are satisfied. SinceX » F Is necessarily true when TJ » F, the last of these 
conditions merely confirms that 6 » F . 

Since p , p and u are related as in equations (110) we have now proved 
that there are parts of the flow field in which the flow is , to a good degree of accuracy, 
in an equilibrium state and, furthermore, that the flow variables are constant along 
lines of constant B. We could now translate this information about the constancy of 
u('), etc. , on lines of constant B into the physical (x,y) plane by calculating x(0, y(') 
and so on. This is a fairly lengthy procedure and we can elicit sufficient information 
for present purposes by looking instead at the behaviour of (dy/dx) on a line of 
constant B. By making use of the compatibility conditions (12) and (13) it is easy 
to show that 

(EL) = a,oo(a + l)yg + a , J a - Dyp ^ ^ ^ j 
\ d x / g (a, + u)(a + Dya - (a, - u)(a - l)y„ ' 

Using the ser ies expansions (33) for the variables involved here, noting that 
y (°) = J = yo'°^ , and neglecting terms of order higher than e , we find that 
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(ë)-^['-é'-"É-(^)(^/'-.'")J 
The assumption that y^ and yo are less than 0(1) is again implicit in the der i -
vation of (115). 

In the regions where (110) and (113) are valid approximate solutions we can 
readily show that the terms 

V a , + au J 
100 

in (115) are equal to 

e 
a, 

u<'> 
iea(Y2+ \)^— = ita(T2+ 1 ) D ' ( B ) . 

a. 
l o o 

Thus (115) can be re-written in the form 

( £ ) g - a [ l - i e a ( Y , . l ) D ' ( B ) . e ( ^ ) ( y / ) - y J ' ) ) ] (116) 

in these regions. 

Now, although we should not let F = 0 within the framework of the present 
theory, we can let F •• 0. If we do this, the conditions which lead to (116) are then 
such as to make it apparent that the given approxinnate solutions within their region 
of validity should be the same as those arising in an a priori equilibrium flow. The 
first-order equilibrium flow solutions are given in the Appendix and, identifying B 
with Be, we can see that the relationships between p('), pO), u(') and B are of 
precisely the correct form ( i .e . compare equations (A6) with equations (110) and 
(113)). However, it is quite clear that yo^') - ya^^) is not in general equal to zero 
and equations (116) and (AlO) fail to agree. 

One is forced to conclude that the extension of Lin's technique to the relaxing 
gas problem does not lead to a uniformly valid first-order solution in the event that 
0 < F < ». Certainly the behaviour of y^^'), which was discussed in Section 7, intimated 
that we could expect such a breakdown in regions where ijD* became too large, but 
the results just presented show that the actual deficiencies in the theory are rather 
more serious. 

This is not to say that there is absolutely no advantage to be gained by using 
the characteristic-parameter plane in place of a formal linearisation in x,y coordinates. 
For example, if we let F - 0 and T) •• 0 in such a way that ' ' / r "* «» then y^^') - ya^') is 
zero (see equations (89) and (90)) and (dy/dx)B is equal to (dy/dxJBe- i*̂  ^bis case 
the "lines of constant B" are , locally, coincident with the true equilibrium charac-
teristic lines in quite the proper way. In addition, if B > 6 , so that both a and p are 
necessarily also greater than or equal to 6 we can show that both ya^') and y^^') •• 0 
as r •• 0. Once again we find that (dy/dx)B is equal to (dy/dx)Bg and the "final" 
equilibrium flow zone is correctly predicted to first-order. 

Inspection of the results shows that it is only in regions where y^ and yo are 
exactly equal to \ that the solutions succeed. One must infer that the perturbation 
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techniques, which effectively replace the coefficients l/y^ and l/ya in equations 
(21) and (22) by i-lyj"^ and l/y^^"), (as in equations (35) and (36)), lead to too drastic 
an oversimplification of the true dependence of p^'^, u(0 etc. on the parameters 
a and /9. 

It is significant that when 0 < T <„ the problem cannot be set up without 
explicitly including the third set of characteristics, namely the streamlines or par-
ticle paths. Equations (4), (14) and (15) make this quite clear and the non-trivial 
existence of this additional set of characteristic lines (over and above the Mach 
lines a and /9) is directly responsible for the appearance of y ,̂ and y^ in equations 
(21) and (22) for p and u. In the limiting cases F = 0 and F = «> it can be seen that 
the problem is completely defined without the need for specific reference to the rate 
of variation of quantities along particle paths. The de-coupling of the equations for 
p(a,^) and u(o,^) from those for x(o,/S) and y(a,^) which results has a direct bearing 
on the success of the method in these cases. 

The relaxing gas problem has a considerable similarity to that of the flow of 
an ideal gas which contains distributed heat sources: in fact equations (12), (13), 
(14) and (15) describe the latter situation precisely, with Q related directly to the 
heat source te rms , which are assumed known. Even with the simplifications resulting 
from some prior knowledge of Q it is still not possible to produce a uniformly valid 
first-order solution for precisely the same reasons as those that we have met with 
above, namely that it is impossible to avoid reference to the rate of entropy rise 
along particle paths, with the resultant coupling between the equations for x and y 
and those for p and u. 

In conclusion, whilst the characteristics plane perturbation scheme does lead 
to some minimal gains in accuracy when compared with straightforward linearisations 
in orthogonal coordinate systems, it does not succeed in producing a uniformly valid 
solution over the entire field of an entropy-producing flow. 
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APPENDIX 

With the ini t ia l assunaption that the flow is to r e m a i n in equi l ibr ium throughout 
(so that T ' = 0 = F) it becomes n e c e s s a r y to make some changes in the bas ic equations 
of Section 2. Without going into the m a t t e r too exhaust ively these changes a r e a s 
fol lows. F i r s t l y , the compatibi l i ty conditions (12) and (13) mus t be rep laced by 

3x 
BAp 

1]L = (a^ + u) ^ ^ , Bg = constant , (Al) 

ax 
^' "> 3Bp 

(a, u ) ^ ^ 
^ 3Be 

constant , (A2) 

t he reby defining two new c h a r a c t e r i s t i c p a r a m e t e r s Ae and Be- (NB. a^ is the local 
equi l ib r ium sound speed, equal to a , / a . The var iab le y is a s defined in (9) .) Secondly, 
in place of (14) and (15) we have 

3p 3u _ 

ïA- ' '^dx: - °-
(A3) 

8p 3u 

'e °^e 
(A4) 

Using the pe r tu rba t ion s e r i e s (33) together with the boundary conditions 

u = e a, D'(Be) ; x = eD(Bg) ; y = Bg when Ag = Eg 

we can show that 

u<') = a , „D ' (Be) , 

( t ) ( i ) 

P = Pooazco" 

(o) (o) 
ax - y = - Be 

(0 (0/ 
0 = Pa." /a • 

2oo 

(o) (o) . 
ax + y = Ag 

(A5) 

(A6) 

( i ) (.) 
yA, 

(o) 

100 B e 
( i ) ( i ) ( ( i ) ( i ) ) (o) 

(A7) 

where 

(0 / ( i ) ( I ) K 

( — - — ) 
' \P P / 

^ CO OO ' 

(A8) 
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We can now use the results in (A6) and (A8), together with conditions (A5) to show 
that 

a [ x -«D(Be)] " y = "Bg + « T ( Y , + l)D'(Bg)(Ae - Bg) , -, 
I (A9) 

a [ x - e D ( B e ) ] + y = Ag+e - (Y, + 1) [D(Ag) - D(Bg)] , -̂  

and thus to complete the first-order equilibrium flow solution. 

Equations (A9) show that, to 0(e), 

W = ^1^^ - e | ( Y . + l)D'(Be)] (AlO) 
^e 

We remark that the foregoing analysis represents a uniformly valid solution 
of the equilibrium flow problem, to first order, for the reasons given in the paper 
by Miss Fox (1955), 
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