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ON A FIXED POINT PROBLEM OF REICH

CHEN YU-QING

(Communicated by Palle E. T. Jorgensen)

Abstract. In this paper, we give an affirmative answer to a fixed point prob-
lem of S. Reich.

1. Introduction

Let X be a metric space. CB(X) stands for the set of all non-empty closed
bounded subsets of X . CB(X) is a metric space with the Hausdorff metric H. In
[6], S. Reich presented the following

Problem. Let (X, d) be a complete metric space. Suppose that F : X → CB(X)
satisfies H(F (x), F (y)) ≤ K(d(x, y))d(x, y) for all x, y in X , x 6= y, where K :
(0,+∞) → [0, 1) and limr→t+ supK(r) < 1 for all 0 < t < +∞. Does F have a
fixed point?

In fact, this problem was raised by S. Reich in [4]. S. Reich [5] also gives an
affirmative answer to this problem when Fx is non-empty compact for x ∈ X .

In this paper, we give an affirmative answer to this problem. We have the
following results.

Theorem 1. Let all the conditions of the above problem be satisfied. Then F has
a fixed point if and only if there exists a closed subset Y ⊆ X, Fx ∩ Y 6= ∅ for all
x ∈ Y , such that for each closed subset Z ⊆ Y , if Fx ∩ Z 6= ∅ for all x ∈ Z, then
d(x, F (x) ∩ Z) = d(x, F (x)), ∀x ∈ Z.

Remark. When F is single valued, let Y = X ; then for each subset Z ⊆ X , such
that Fx ∈ Z for all x ∈ Z, we must have d(x, F (x)) = d(x, F (x) ∩ Z).

Theorem 2. Let (X, d) be a complete metric space. F : X → CB(X) satisfies the
following conditions.

(1) If Y ⊆ X is a non-empty closed bounded subset, and Fx ∩ Y 6= ∅ for all
x ∈ Y , then d(x, Fx) = d(x, Fx ∩ Y ) for all x ∈ Y ;

(2) H(F (x), F (y)) ≤ K(d(x, y))d(x, y), ∀x, y ∈ X, x 6= y, where K : (0,+∞)→
[0, 1) and limr→t+ supK(r) < 1 for all 0 < t < +∞.

Then F has a fixed point.
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2. Proofs

We first prove Theorem 2, then we can prove Theorem 1 similarly to the proof
of Theorem 2.

Proof of Theorem 2. Take tn ∈ (0,+∞), n = 1, 2, . . . , and t1 > t2 > · · · > tn → 0.
Since limr→t+n supK(r) < 1, there exist 0 ≤ kn < 1 and δn > 0, such that K(r) ≤
kn, ∀r ∈ (tn, tn + δn), n = 1, 2, . . . .

Let ηn = min{ δn4 ,
1
n}, εn = tn + ηn; then K(r) ≤ kn, ∀r ∈ [εn − ηn

2 , εn + ηn],
n = 1, 2, . . . . It is easy to see εn → 0+ as n→∞.

Step 1. For ε1 > 0, we prove there exists x1 ∈ X , such that

Fx ∩B1 6= ∅, ∀x ∈ B1 = {x|d(x, x1) ≤ ε1}.(2.1)

Suppose (2.1) is not true. Then for each x ∈ X , there exists x0 ∈ X , d(x, x0) ≤
ε1, but

d(x, y) > ε1, ∀y ∈ Fx0.

Case (a). If d(x, x0) < ε1 − η1

2 , then

d(x, Fx) ≥ d(x, Fx0)−H(Fx0, Fx) ≥ ε1 −K(d(x0, x))d(x0, x)

> ε1 − d(x, x0) >
η1

2
.

Case (b). If d(x, x0) ≥ ε1 − η1

2 , then

d(x, Fx) ≥ d(x, Fx0)−H(Fx0, Fx) ≥ ε1 −K(d(x0, x))d(x0, x)

≥ ε1 − k1ε1 = (1− k1)ε1.

From Cases (a) and (b), we have

d(x, Fx) ≥ min
{η1

2
, (1− k1)ε1

}
> 0, ∀x ∈ X.(2.2)

Now, fix x0 ∈ X and x1 ∈ Fx0. Since

d(x1, Fx1) ≤ H(Fx0, Fx1) ≤ K(d(x0, x1))d(x0, x1) < d(x0, x1),

there exists x2 ∈ Fx1, such that

d(x1, Fx1)− 1

22
≤ d(x1, x2) ≤ d(x0, x1)

and

d(x1, x2) ≤ K(d(x0, x1))d(x0, x1) +
1

22
.

By induction, we get xn ∈ Fxn−1, n ≥ 3, such that

d(xn−1, Fxn−1)− 1

2n
≤ d(xn−1, xn) ≤ d(xn−2, xn−1)

and

d(xn−1, xn) ≤ K(d(xn−2, xn−1))d(xn−2, xn−1) +
1

2n
.

By the construction of {xn}, we know limn→∞ d(xn−1, xn) = S0 exists.
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Suppose S0 > 0. Then

lim
n→∞

d(xn−1, xn) ≤ lim
n→∞

[
K(d(xn−2, xn−1))d(xn−2, xn−1) +

1

2n

]
≤ lim
r→S+

0

K(r) lim
n→∞

d(xn−2, xn−1).

So S0 ≤ lim r→S+
0
K(r)S0 < S0, a contradiction.

Hence we have limn→∞ d(xn−1, xn) = 0. This implies that

lim
n→∞

d(xn−1, Fxn−1) ≤ lim
n→∞

[
d(xn−1, xn) +

1

2n

]
= 0,

a contradiction to (2.2). So (2.1) is true.

Step 2. For ε2 > 0, we prove there exists x2 ∈ B1, such that

Fx ∩B2 6= ∅, ∀x ∈ B2 = {x ∈ B1|d(x, x2) ≤ ε2}.(2.3)

Suppose (2.3) is not true. For each x ∈ B1, there exists y0 ∈ B1, such that
d(x, y0) ≤ ε2, but

d(x, y) > ε2, ∀y ∈ Fy0.

With the same argument of Cases (a) and (b) in Step 1, we get

d(x, Fx) ≥ min
{η2

2
, (1− k2)ε2

}
, ∀x ∈ B1.(2.4)

Now, fix x0 ∈ B1, x1 ∈ Fx0 ∩B1. By assumption (1),

d(x1, Fx1 ∩B1) = d(x1, Fx1) ≤ H(Fx0, Fx1) ≤ K(d(x0, x1))d(x0, x1).

So there exists x2 ∈ Fx1 ∩B1, such that

d(x1, Fx1)− 1

22
≤ d(x1, x2) ≤ d(x0, x1)

and

d(x1, x2) ≤ K(d(x0, x1))d(x0, x1) + 1/22.

Generally, we get xn ∈ Fxn−1 ∩B1, n ≥ 3, such that

d(xn−1, Fxn−1)− 1

2n
≤ d(xn−1, xn) ≤ d(xn−2, xn−1)

and

d(xn−1, xn) ≤ K(d(xn−2, xn−1))d(xn−2, xn−1) +
1

2n
.

So limn→∞ d(xn−1, xn) exists and equals zero.
We get limn→∞ d(xn−1, Fxn−1) = 0, a contradiction to (2.4). So (2.3) is true.

Step 3. By induction, we get xn+1 ∈ Bn, such that

Fx ∩Bn+1 6= ∅, ∀x ∈ Bn+1 = {x ∈ Bn|d(x, xn+1) ≤ εn+1}, n ≥ 2.(2.5)

It is obvious that B1 ⊇ B2 ⊇ B3 ⊇ · · · ⊇ Bn ⊇ . . . , and

lim
n→∞

diam(Bn) = 0.

So there exists only one point x ∈
⋂
n≥1Bn, and x ∈ Fx. This completes the proof.
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Proof of Theorem 1. Necessity: If F has a fixed point, let Y = {x ∈ X |x ∈ Fx}.
Then Y 6= ∅ is closed and it is the desired subset.

Sufficiency: Suppose Y ⊆ X is non-empty closed, Fx∩ Y 6= ∅, ∀x ∈ Y , and for
each closed subset Z ⊆ Y , if Fx∩Z 6= ∅, ∀x ∈ Z, then d(x, F (x)) = d(x, Fx ∩Z),
∀x ∈ Z.

Let {εn} be as in the proof of Theorem 2.

Step 1. Take B1 = Y ; then d(x, F (x)) = d(x, F (x) ∩B1), ∀x ∈ B1.

Step 2. With the same argument of Step 2 in the proof of Theorem 2, we get
x2 ∈ B1, such that Fx ∩B2 6= ∅, ∀x ∈ B2 = {x ∈ B1|d(x, x2) ≤ ε2}.

By induction, we get xn+1 ∈ Bn, such that

Fx ∩Bn+1 6= ∅, ∀x ∈ Bn+1 = {x ∈ Bn|d(x, xn+1) ≤ εn+1}, n ≥ 2.

So
⋂
n≥1Bn has only one point; it is the fixed point of F .
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