On a forward-backward parabolic equation.

C.D. Pagaxnt - G. TaLenNti (*) (*%)

Abstract- - Boundary value problems for the equation
sgn (%) « Uy — Uy + Bu = (x, y)

(where k is a positive constant and | is a given funclion) are investigated. The do-
main of the solutions will be the whole upper half-plane y >0, or the half-plane y >0
cut along the positive y-axis. We are interested in square integrable solutions u, with
square integrable generalized derivatives uy and u,,.

Existence theorems are proved, with an integral equations technique. Thus a theory
is developed of Wiener-Hopf integral equations of the first kind with solutions belon-
ging to Sobolev spaces.

Introduetion.

In this paper we consider the equation
H sgn () « #y — U + kU =171

where k is a positive constant and f is a given complex valued function. Note
that the equation (1) is forward parabolic in the half-plane x>0 and back-
ward parabolic in the half-plane x << 0. The equation (1) is an example of
equations of the following form:

(2) le|? sgn () « u, — a(®, Y)U.. + (lower order terms)=f

where p is a nonnegative number and the coefficient a(x, y) is bounded from
below by a positive constant.

The equation (2) has been considered by GEVREY [3]. He has shown that,
under suitable regularity assumptions, (2) is the canonical form of parabolic
equations of the type A(x, y)u, — alx, y)u.. + (lower order terms)= f, where
the coefficient A(x, y) changes sign through the line A(x, y) =0.
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Relevant equations of the form (2) are the following

XL, _%um + x4, =0

XUy — Y == 0

Such equations are of interest in problems of kinetic theory and stocha-
stic processes; see for instance [11], [2]. Equation (3) has been investigated
by Pacant [10], FuemiNG {2] and, from the point of view of weak solutions,
by BAOUENDI-GRISVARD [1].

An appropriate boundary value problem for the equation (1) is to look
for a solution u(x, y) which is defined in R’ , the whole upper half-plane
y > 0, and which verifies the condition: u(w, 0) = N(x) on the positive half-axis
0 <x <+ oo, where 2 is a given function.

We are interested in square-integrable complex valued solutions u,
whose generalized derivatives u,, u, and u.. are square integrable. We shall
call W(@) the set of functions, defined in an open two-dimensional set &,
with such a property. For a discussion of the properties of functions belon-
ging to W(G) see for instance Nixor’ski [8], SLoBoDECKII 18], LioNs-Ma-
GENES [6] chapter 4; in the NI1KoL’ SKII notation: W(@) = Wg Q(G). Tt is easy
to prove the following theorem:

TaeporeM 0.1. - Let [ and 1 be f{wo given [functions; we suppose that
/e L%Ri) and he HY0, 4 oo). Let u be a solulion of the equation (1) such
that:

@) ue W(RL)
(5) ulx, 0 4-), the trace of w on the x-axis = h(x) a.e. in 0 <x < -+ oco.

Assertion: the following inequalily holds:
0
) [ [ i+ a2 upandy +  f[1utw, 0 400 =
R2 —_
+

oo

= [ [1reanay 41 [ nepae.
22 g

-+

The (6) is an a priori estimate; it implies uniqueness for the problem

1)-(4)-5).
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With regard to the boundary condition (5), it should be remarked that
HY(— oo, 4 oo} is exactly the space of the traces on the x-axis of the fune-
tions belonging to W(R). We recall that H'(a, b) is the set of all absolutely
continuous square integrable functions on the interval Ja, b] with square
integrable first derivative,

Proor or THE THEOREM 0.1. - Clearly we can suppose that # is infini-
tely differentiable in the closure of R} and vanishes outside a bounded set;
for the set of such functions is dense in W(Ri), the norm in W(Ri) being:

J [ttt 102 4 | ranay |

rZ
+

(M) a2y =

From the equation (1), squaring the absolute values of both members and
neglecting the nonnegative sum ju, > + |u. [ — 2 Re sgn(@)u,u.., we get:

8) *QkReu;éxx+k2§z¢§2+ksgn(m)%{u§2g]f§2.

Integrating over R’ both members of (8) we obtain easily (6).

We consider now another problem for the equation (1). Roughly speaking,
this problem consists in looking for solutions of (1) which equal some given
data on the positive x-axis and have prescribed discontinuities on the inter-
face x =0. More precisely, it is requested to find a solution u of (1) such
that:

)] u belongs fo W(Gy) where G4 is {(&, #):2F+0, y > 0},
the upper half-plane R’ cut along the positive y-axis;
(10 uw, 0 +4)=AN(x) a.e. in 0 < << + oo,

where /1 is a given function and wu(., 0 4) is, as before, the trace of u on
the x-axis;

(11) u verifies either of the follewing conditions:
T w0 —, ¥ = u(0 4, »)

1ty 0= 0 = 2 [eromuo +, a
¥

i_ a.e. in O <y < 4 o0
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“u0 —, y)=ul 4, y) "
(1) w0 —, )+ w0+, )= 2 [ -0 —, ha
¥y

_ ae in <y < +oo

Here u(0 4, ) [or u(0 —, +)] is the ftrace on the y-axis of the restriction
of u to the north-sast [or to the north-west] qnadranst; similarly for .0 4, .)
and #.0 —, +). It should be remembered that, if uwe W(Gy, then u(0 +, »)
and u(0 —, -) are HOLDER continuous functions and belong to the SoBOLEV
space H3Y0, -} oo), while #, 04, ) and u, (0 —, «) belong to HY0, +4 oc);
moreover the traces of uw on the y-axis are connecfed with the trace of u on
the x-axis by the equations:

lim %04, )= lim wux, 0+4), lim u0—, y)= lim ufe, 04

O y~30 O<la0 0 y—50 0>2-30

For an exhaustive discussion of the SOBOLEV spaces of fractionary order
see LIONS-MAGENES [6], chapter 1 and 4.

We have the following theorem, which gives uniqueness for the problem
(1)-(9)~(10)~(L1).

TaroreEM 0.2. - Lel fe LZ(Ri) and e HY0, - o) be given; moreover let
u be a solution of (1) verifying (9)-(10)~(11). Then there exists an absolule
constant C such that:

(2 ff(?“xx12+iuy{2+2ktuxlz 1 k2 u Pidady +

0
+f(}£c—u<m, 0+>f + Eu, 0+)i2>dm_<

“+oo
< C%ff}f[zdxdy -+ f (|1 () P+ ls]h(x)lz)dm} .
B2 0
+

The theorem 0.2 is an easy consequence of the following formula:

(13) jfw—{umzzwzuyzt-2k¢m12—k21u52}dmdy+
"
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+ (| e 04

o+ k|ulz, 0H)F ) sgn (@lde =
= 2Re <(Ed§— k) u(0—, <) |u(0—, «) > +

+ 2Re < (4 + B0+, )| w0, ) >

In this formula » is any function belonging to W(Gy), where G is de-
fined in (9}, and 7 is related to u by (1).

The symbol < |> at the right of (13) denotes the pairing between
H-40, 4- o) and HY*0, -+ oo). We recall that H—(0, -} oc), with § > 0, is
the set of all hermitian complex valued continuous functions on Hy(0, 4 oo)
== closure of C7(]0, -+ oc[} in H*0, 4 oo). It must be borne in mind that
Ho(0, + oo) == H0, 4 oc) if OS-SS%
in H'™0, 4 o}, a pairing < ® |9 >, between some element & in H-40, - oo

. In other words, if ¢ is a funection

and the function ¢, is a limit of the form: lim [ ®,pdy, where &, is some
0

oo

sequence of test functions such that: [ (P, — ®.jddy -0 uniformily as ¢
runs on the balls of HY40, -} oc). °

The operators (d/dy)=t=k at the right of (13) are taken in the sense of
the distributions. As is well-known and easy to see, (d/dy) ==k are bounded

operators from H*(0, + oo} into H {0, 4- oo} if s :}:% .

It is a simple matter to show that the right~hand side of (13) vanishes
if the function u verifies the conditions (11'): thus from (13) we see that (12)
becomes an equality with U==1 if (11') holds. If # verifies the conditions
(11"), the right-hand side of (13) equals:

co

(14) — 4k Re[ lim u{04, #)] - fe”"‘ux{()«, fdi.
Gy
0

To see this we have only to use «integrations by parts» following the rule:

< |4 > = — 90 +)50 1) — f oly) Vi) dy

¢ € H**0, + oo), € HY0, + oo).
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The expression (14) can be easily majorized with:

ol s

24k ulx, O -{—}]2>dw X

0 oo
fdxf (gum;wzmmgzmgj}%
—o0 0

Thus (10)-(11")-(13) imply an inequality of the form (12).

For the proof of (13} we can suppose, owing to density arguments, that
the restrictions of # to the north quadrants coincide with the restrictions to
the same quadrants of Co(K? -functions. Then we obtain (13) by squaring the
absolute values of both members of (1), integrating over G and using inte-
grations by parts. The details are straighforward.

In this paper we present some existence theorems for the problems
(1)=(4)~(3) and (1)-(9)~(10)-{11), see sections 1 and 2. It should be pointed out
that in one of such theorems compatibility conditions on the data must be
imposed; instead no compatibility conditions occur if weak solutions are
wanted, compare with [1).

The method for the existence proofs is a usual one and can be described
in this way. We give a fictitious datum (belonging to suitable classes of data)
on the y-axis. Then a solution v of the equation — v, — v + kv ==f, which
is of class W in the west half-plane x <0, is determined by fthe fictitions
datum, and a solution w of the equation w, — ., -+ kw = f, which is of class
W in the uorth-east quadrant, is determined by the fictitious datum and
the boundary condition on the x-axis. Hence we specialize the fictitious datum
in such a way that the function u, defined by: u=v if x <0 and u=w
if © >0, is the wanted solution. To do fhis, we have to solve a WIERNER-
Hopr integral equation of the first kind. It should be remarked that our pro-
cedure gives solutions «# which are of class W in the union of R (or Gy)
and the west half-plane « < 0, and which verify a boundary condition on the
lower half-axis — oo <y < 0.

As is well known, the WIENER-HoOPF integral equations are of the follo-
wing form:

~}- o0
(15) [ Kiw— oy =@l 0<w<+oo)
i .
(16) ol — [ Kle — gty = 7o) © <@ < +9)

where K and [ are given functions, ¢ is the unknown.
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It should be pointed out that the equality between the left and the right
member of (15) or (16) holds only on the half-line 0 <@ < +4 oo. (19) is called
of the first kind, (16) is of the second kind. For a formal approach to these
equations, see NoBLE (9], MorRsSE-FESCHBACH [15]. Very comprehensive results
are known for the WiErRNER-HOPF equations of the second kind; ses KruIn [5),
GOHBERG-KREIN [4], see also SamBAGIAN [12]. Instead it seems that the
WiENER-HOPF equations of the first kind have not been exhaustively inve-
stigated.

In section 3 we present an exisience theorem for solutions, belonging to
SO0BOLEV spaces H'(— oo, 4 o), of such equations. The proof depends on some
properties, which will be stated in lemmas 3.2-3.3-3.4, of CAvcCHY integrals:

+w
(18) o) = - fiﬂlm C=&+in, 1 40)

2xi t—

o

where the density is the F'OURIER transform of a distribution g € H{— co, -4 oo).
The plan of the paper is the following:

1. - Results about the homogeneous equation.
2. - Solutions of the nonhomogeneous equation.

3. - A discussion of an integral equation of the WieNEr-Hopr type
(contents: statement of the problem, statement of the existence theorem, re-
marks, an example, lemmas on CAUCHY integrals, proof of the theorem. proofs
of the lemmas).

4. - Proofs of theorems 1.1 and 1.2,
APPENDIX. - Some proprieties of solutions of the heat equation.

We conelude the introductory remarks with a lemma on the WIENER-
Hopr factorisation of a special kernel, which will be useful later and also
for a more clear understanding of section 1.

LuMMA. - Consider the kernel K(y)= (z'!yl) “i exp( kiy|) (k= constant
> 0) and its Fourier transform K(E)=2Re(k -~ i§)~ 5. More explicitely:
119) R =20 + e 3[1 4 ke 1]

There exist two functions A and B such that:

(i) =& 4 in— A({L) iés holomorphic in the half-plane Im{ >0 and
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Hélder conlinuous in the closed halp-plane Im{=>0; {=E& - in— B} s
holomorphic in the half-plane Im G <O and Holder continuous in Im § << 0.

(i) 20 < (k2 4 [P | AQ) | <2 if Tm (=0,
218 < (B2 4 [ LRI | BG) << 2 4f Im § <O,

{iii) K (&)= A(E) - B(&) for every real §.

For £ real we have:

(20) A5 =
s 1 s PP
:__ﬁ_[l_{_ -_1}4 exp %21 fm{u- lr dttf
gyt (4 )3 {ES e+ 3]
P 2 i
(21) B(E) = m[ s ]4 exp § — ZT'C ...%,

where the integral is taken in the Cauchy principal value sense.

The proof is quite simple. We define 4 and B with the equations (20),
(21) and the following:

(22) A(G) = 2k — i)~ exp (WG] for Im{ >0
(23) B(G) = 2V4Fk + Q) exp {— W(C)} for Im § <0,
where
o EOTodi
) = g f In {1 + W tﬂ”é} i—t (L § == 0).

— O

Then the well-known PrEMELJ formulas (see e.g. [7]} guarantee the con-
tinuity requested in (i); the (iii) is obvious; the (ii) follows from:

0 < Be W(} sgn (Im )=

+oo
L i kg <lme
- 2—712 ._..f (t _ g)z + 7]2 l” [1 + (kZ + tz}-zl-J dt < 4 ln ’
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1. - Results about the homogeneous egunation.

In this section we consider the homogeneous equation:
(1.1) sgn (x)uy, — U+ ki =0 (k == constant > 0).

THEOREM 1.1. - Let b be a function belonging to HY0, 4 co).

A solution w of the equation (1.1), such thal:
(1.2) we W(R%)
(1.3) u(x, 04)="h'z) ae in 0 << -4 oo

exists provided that I verifies the following condition:

(1.4) f;]g(y)ﬁdy < + oo for some & > 0.
0

The function g is defined in this way:

(1.5) g, the Fowrier transform of g = —:é,

where 1 is any function such thai:
le H%— oo, + o0
tz

(1.6) ° oxp | — ky —
f ( 49)13(&5;)@; for 0 <y < 4 o0

J (4ry)3

and A is given by (19).

REmARrgs. - (i) There exist functions ! verifying (1.6). For the integral
appearing in (1.6) is a function of the y-variable belonging to H¥*0, 4~ oc).
In fact such an infegral is the trace on the positive y-axis of the function:

) Ui, 4) = fwexP (_ (o Zyt)z... ky)

. h{|t})at
% (4ny)3

(“oo<m<+°°,y>0)'

)
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As heHYO, + o), the funetion = ->h{lz) is in HY— oo, 4 ool
Thus, according to well-known properties of solutions of the heat equa-
tion (see the appendix), U is in W(E’). Incidentally, U is indefinitely diffe-
rentiable and bounded. Note that U verifies the equation U, — U, 4+ kU =0
and the initial condition: Ulw. 0 +)=~{x|) (— oo < < -+ o0).

(iif The function g belongs to Hé’(-—- oo, -} oo). This follows immedia-
tely from (1.5), the first condition (1.6) and the inequalities given in the
introduction for the function 4.

The condition (1.4) does not depend from the choice of the funotion / in
the class defined by (1.6). For the restriction of g to the positive half-axis
[0, 4 oc[ is uniquely determined by the restriction of [ to [0, 4-o<[. For a
proof of this assertion, see the remark (ii)}-section 3.

Following LioNs-MAGENES [6] (chapter I, section 11.5), a function

g€ H%(O, + oo}, verifying
-} 00

d
f lg(y)iz—gf’< + o0,
0
1
is said to be in H(E)(O, -+ oo}

TaEorEM 1.2. - Let he H'0, 4 o). There exists a solution u of (1.1)
such that:

(1.8) ue W(G,), where G =i(x, y)e R?:x+=0, y > 0!,
(1.9 ulze, 0) = h{x) a.e. in 0 <a <+ oo,
and verifying either of the following conditions:

w0 —, y) = u.{0 +, y)

+oo
(1.10) w0 —, y) -+ uf0 +, y) = 2% f S0 -, Ut
¥
a.e in 0 <y <+ oo
(a0 —, ) =ul0 +, )
T
(L.11) w0 =, y) w0, 9) =2 [ om0 —, Yt

¥

ae in 0 <y <<+ oo,

No compatibility conditions on h are {mposed.
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ReMARK. - From the theorem 1.2 we may easily deduce an existence
theorem for solutions of the equation:

(1.12) sgn (x) - u, — afe, YU + ku = blx, y)

where k== constant > 0, afx, ¥) is a measurable fanction bounded from above
and from below by positive constants, b(x, ) is square integrable. More pre-
cisely we may prove that there exists a unique solution u of (1.12) verifying
(1.8)-(1.9), where h is any function in HY0, + co), and (1.10) or (1.11).

In view of the theorem 1.3 and fthe contents of the next section, this
assertion follows, via standard principles of functional analysis, form a sui-
table a priori esfimate. In order to obtain such an estimate, we may first
derive form (1.12) an algebraic inequality similar to that known in the theory
of elliptic equations as Bernstein’s inequality, namely:

(1.13) w2 o s (@) 3t
< 24 . Re (sgn {x)u, + ku)u.. + B|b|*

where 4 is any constant greater than A :% sup |afx, y) + &—-(0—6-1’3@ and B is
any constant not less than (4% — 1)/(24afx, y) — a(x, y)*> — 1).
Arguing exactly in the same way as in the proof of the formula (13)

and of the theorem 0.2, we deduce from (1.13):

(L14) [ [ 2t 2k e 1wy

=+

B0

gch.f (]17/12+mh(2)dw+Bff{bvda;dy}

where C is a constant depending only on X and w is any solution of (1.12)-
(1.8)=(1.9)=(1.10), or (1.12)~(1.8)~(1.9)-(1.11).
The (1.14) is the needed a priori inequality.

2. - Solutions of the nonhomogeneous equation.

In this section we consider the nonhomogeneous equation:

(2.1) sgn (w)u, — .. + ku =f (k= constant > 0).
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We shall prove the existence of solutions defined in the whole RZ, or
solutions defined in G= R?\ (the y-axis) and verifying some conditions at x=0.

TaEOREM 2.1. — For every fe L*E? there exisls a unique solution u of
(2.1), belonging to W(R?. This solution verifies an inequality of the form:

2.2) ff (110,17 4 | thee|? + 2K 00 |? - B2 w|?)daedy < C ff | |*dedy

where C is an absolute constant.

THEOREM 2.2. - Let p and q be temperate distributions; we suppose that the
Fourier transforms p and q are complex valued measurable functions and:

(2.3) o Lk — &P+ (B E)ig@)2_ 1

— 2 = _> 0.
—wci<te || - E|(14 | p(E) L+ )2 4

Then for every fe LXR? there exisls a unique solution u of (2.1), belon-
ging to WI(G) and such thai:

(2'4) “( - ‘) == P * M(O +, ’); ux(o 7 ‘) =q=* ux(o +, )

This solution verifies the inequality:

25) [ [ w22 e panay < ¢ [ [ 1f1asay
R R
where
o= ki
(2.6) C=1+24. sup |pE)GE) —3—=/-
—eE< e — €

We recall that a temperate distribution p is a linear continuous funec-
tional on the space of all infinitely differentiable complex valued functions
@ such that lim |[f["p®™)(¢) =0, for all nonnegative integers m and n. We

t~ytoo
say that the FOURIER transform of p is a complex valued measurable func-
tion p if :
+oe
<pl7>= [ BOvOE tor every ge CF(— oo, + o),

—o0

where <P|E’> is the value of p at o.
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ReMARKs. - (i) The theorem 2.1 is a corollary of the theorem 2.2.

For the hypoteses of the theorem 2.2 are fulfilled, if we choose p=g=3,
the Dirac mass. In particular (2.3) holds with 4 =2 when p=¢=23. On the
other hand, it is easy to see that if

ue W(a), “{O — )= %{O +, ') and u{0 —, '} = ?1;,,-(0 +, '):

then uw e W(R?. We recall that G denotes the R? cut along the y-axis.

{ii) The condition (2.3) holds with 4=2 if p and ¢ are related by
the equation:
s b
(2.7) pEQE) = e
whatever is the behaviour of p. The proof is straighforward.
Obviously (2.7) implies C=1, where C is the constant of the estimate
(2.5) given by (2.6). Note that (2.7) is true in the following cases, for instance:

p=3 = 5+ 2ke—H)Y
or:
p=—38+4 2kl —Y) g=3,

where Y is the Heaviside function. It is easy to see that in the first case
the conditions (2.4) are equivalent to the following:

s

+
w0 —, ) = (0 4. 9), w0 —, y) + w0 +, y)— 2% f =0 —, e
¥

while in the second case the (2.4) become:
. too

“3(0 > ,{,’) - ux(O + Yl uto " ?/) -+ u(O -+, ?j) =2k f ek(y—t)u{o s t}dts
5

compare with (1.9) and (1.14).

(iii) It is of some interest, e.g. in view of more general equations like
{1.15), to estimate the smallest absolute constant C appearing in (2.2). We can
prove that such a constant is strictly greater than 1. More precisely we have
the following result:

Let C be a positive constant such that:
g ff ((oy|? + |Uax |HAedy < C ff | sgn (x)u, — U + ku|?dedy
(2.10) VR R

for every ue Cq(RY);
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then:

lBe ff sgn (i), dady | <
R?

{2.11) <_<<1 ——é)[ ff lu, | *dedy ff Lot |2dedy
R?

R?

i
2

\ for every ue Cy(R2).

Conversely, (2.11) émplies (2.10).
Note that, if we C5(R?):

oo

+
R [ [ sen sy = —2ke [ 1,00, 90, iy
R2 — o0

Proof that (2.10) = (2.11). ~ Integrations by parts and obvious arguments
of dimensional analysis show that (2.10) is equivalent to:

(2.12) =1 [ [ e+t iedy +
"{"Cff (2ks?| . |2 + k2 |u|2)dredy — 2Cs*Re ff sgn (), u.dady = 0,
R? R2

where s and ¢ are arbitrary real parameters and s >> 0. Setting { — + co we
obtain at first ¢ — 1=>=0. Hence minimizing with respect to { we obtain:

(2.13) Czs4<Re fj sgn (m}uyivxxdmdy)?é
R2

é(C——I}ff {uyjzdmdylsL*(C»- 1j ff [ 4. |2d2edy +

+ 2kCs? ff |u.|2daedy + E*C ff | u |2dxedy
R

R?

From (2.13) we obtain (2.11) setting s — 4 oo,
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Proof that (2.11) = (2.10). - Integrating by parts and neglecting some non
negative terms we see that:

i

= ff (|tty]? 4 |2 |2y dedy — 2Re ff sgn (ac)u,u.dedy;
2 R?

sgn (x)u, — M., + kw2 doedy =

for every ue Cs(R?. Coupling (2.14) with (2.11) and the inequality a?--b2—

2(1 ——l)abzl a? 4 b?). we get {2.10).

c)®=¢l
Proor or THEOREM 2.2. - Let f be any function in L*R?.

‘We shall eall g the ourizr transform of f with respect to the y~variable;
g can be defined by the equation g = limit in L*R? of g., where

+ oo
gn{m: E}: f e-iy%fnfm, @I)d@}

—oc0

and f, is any sequence of infinitely differentiable compactly supported
functions converging to f in L% R?. From Parseval’s formula and Fubini’'s

theorem we have:
1
ff lg{e, E)l2dxd§=§;c ff |fle, y)|*dxdy.
R2 R

Suppose that u is a W(G)-solution of (2.1)-(2.4). It is easy to see that v,
the Fovrizr transform of u with respect to the y-variable, has the following
properties:

ff [vi2dwedE and ff |#€v|*dacdt are finite;
Y e R

v belongs to the NIKOL SKII space Wg: §§ (G), that is the function
(2.20) { (0=, &) —>v(x, ) has square integrable generalized derivatives
up to the second order with respect to the x-variable;

— Vwft, §) 4 (k + € sgn (@)v(x, §) = glw, E);
V(0 —, &) =pEp0+, § and v (0 —, &) = g(E)v.0 +, E).
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In the last equations (0 —, &) etc. denote traces, as usually.
Moreover:

(2.21) J:f (|0e]? + 2| 0|2 4 (B2 -+ E7)] v |?)dardt =

” (% o (o2 -+ 2| |2+ B |y

Conversely if a function v has the properties (2.20) then the inverse
Fourier transform (with respect to the E-variable) u of v is a W(G)-solution
f (2.1)-(2.4), and the equation (2.21) holds.

We shall prove that, under the hypothesis (2.3), the problem (2.20} has a
unique solution v and this solution verifies:

(2.22) [ ot 4 2t 4 e + £ 0 )aude <

=c [ | lojasa:

where C is the constant (2.6).
In fact, elementary calculations show that if a solution v of (2.20) exixts
then the following representation holds:

(k -+ &) 20k + )7
if x>0
’U(GS,E)= 1 +oo S
oxp Lok BF] o, g 4 [ SREle= AWy, gar
(& — &) _ 2k — &)
\ if x>0

and v,(0 4, &), v.0 —, y) are given by:

(k? 4 E)i
7 (ke — € p(E) + (k -+ EVEg(E)
| 00—, E) = qlEp0+, §

\ 00+, 8 = h(E)

(2.24)
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where:

+eoa n 0 4
- — tHk + )2 ke — k)2
e = (p(e) [ e e PO
A

We point out that in this paper (k4 é€): is defined as that branch of
the square root of k 4 4§ with positive real part. Therefore:
Rells 4 )4 = V% 2 22 [1 + kR o+ aZ)—%]é,

Re(k - 6&): = — (k> + £z .

V

Actually (2.23)-(2.4) is a solution of (2.20). This fact can be easily veri-
fied with a straightforward inspection, using the Young inequality on convo-

lutions and the estimate:
+
nindl 2
V2 f glt, £)|%dt,
where A is the constant given by (2.3).

To obtain (2.26) we apply the hypothesis (2.3) and the equations (2.24),
hence we estimate h(f) with the Somawarrz inequality as follows:

o0+, § IZ
(2.26) (B2 -+ 52)1/43

|00 —

-0

‘ 1+ |pE)|? ‘
RE)? < — t, £)%d¢.
[ R(E) V2 (0 52)3/4‘_1- lg(t, §)

With an analogous procedure we may find:

O+, Bl 4
=124 [ igt gla.
90 — , §]? i

(2.28) (k4 £y

Finally, squaring both members of the differential equation — v., 4
-+ (k 4 4€ sgn (x))v =g and integrating over G, we get:

(2.29) J [ ttr 2kt e g0 aray = [ [ 1grasae +

+oc
4 2Re f l(k — &)v(0 —, §)v.0 —, §) — (k 4"i€jw(0 4, B0 +, Ej} dE

——ca

Annali di Matematica 3
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-~

hence (2.22) follows, in virtue of the conditions: ¢(0 —, & = p(§jv(0+, &),

—~

0 —, &) = q(€v.{0 +, &) and the estimate (2.26)-(2.28). In the derivation of
(2.29) we have used the rule:

o o0

o o0 oo

[} o O

The proof is complete.

3. - A discussion of an integral equation of the the Wiener-Hopf type.

3.1. - In this section we consider an integral equation of the form:

e
3.1) [ Re—vtity=rie)  0<w<to

Here K and f are given, ¢ is the unknown; we exphasize that the equa-
tion holds only in the half-line 0 <o < 4 oo.

The following hypothesis are made on the kernel XK. K is an absolutely
integrable complex valued function; the Fourier transform of K can be fac.
torized according to the formula:

(3.2) K(§) = K.(§) - K_(§) for every real E,

where the functions K, and K_ have these properties:

(i) §==E&- én—> K({) is holomorphic in the upper half-plane Im{>0
and continuous in the closed half-plane Im{ =0, { =£& + in —> K_({} is holo-
morphic in the lower half-plane Im{ < O and continuous in Im{=<0; (ii)
some real constants p and g exist such that:

‘ 0 < Cp = const. < (1 4 [£|%¢| K4(§)| < constant
) g for every { in Im{ =0
0 < C_ = const. < (1 + |{|3)s|K_({)| < constant
o4 for every { in Im{ < 0.

Clearly, the numbers p and ¢ are restricted by p + ¢ > 0, since K is
bounded and tends to zero at the infinity.
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The right-hand side f and the unknown p we take in consideration be-
long to SomoLev spaces H’(— co, -} oo); they are also allowed to be distribu-
tions belonging to spaces H*(— oo, 4 oo) with negative indexes. In the latter
case the precise meaning of the equation (3 1) is the following: spt ¢, the
support of ¢, is contained in [0, 4 oo[ and the support of K » ¢ — f is con-
tained in }J— oo, 0O}

Targorem 3.1. - Let the aforesaid hypotheses on K be fulfilled; moreover
let us suppose that fe H{(— oo, 4 oo) with 8 > p — % .
Then o solution ¢ of (3.1) such that:

{3.5) peH'~(—o0, 40} (r=p+g
(3.6) spt 9 C [0, + ocf
exists provided that one of the following conditions holds:
(i) p—%<8<p+—;;
(i) a positive inleger n exists such that n+p —t <s<<n4p-+i, and:

(3.7) GO0 =0 (=0, 1, .., n—1);

(iii) s=p +% , and:
: dux
(3.8 f [g(ac){27r— < -+ oo for some & > 0
0

(iv) s=p+ ! + n (where n is a positive infeger), the equations (3.7)
are verified, and:

3.9 f tg(”)(a‘}[z%< + oc for some & > 0.
0

Here g is the distribution defined by:

(3.10) §:_Ef;‘

The solution we shall find verifies the following estimates,
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If s — p—} is not an inleger, and either of the conditions (i)-{ii) holds:

2
(3.11) I (o) =
C
< - inf I — e 4y
Oy C- g€y (I—o. 9[)

where r =p - q, C is a constant depending on s only, C, and C_ are defi-

ned by (3.3)-(34). If s —p _ 1 is an inleger n, and either of the condilions

2
(iii)-(iv) holds:
(3.12) lolm—r—e ey =
cl 1 .
= 5‘_{ or inf If —wlosi—, 4o +

2@y (J—=. )
H

.
+( [ 1eompg)

where C is an absolule constant.

Remarks. - (i) The distribution g belongs to H*—?(— oo, + oo).

This fact follows immediately from (3.10) and (3.3). With regard to the
conditions (3.7) and (3.9), it should be remembered that a distribution-belon-
ging to H{— oo, - oo}, where { > 4 4 m and m = a nonnegative integer, is
a m — fold continuously differentiable function. In accordance with Lrons—
MacrNEs [6], the condition (iv), coupled with: ge H*—#— oo, 4 oo), means
that the restriction of g to [0, -4 oo] belongs to HZB"%(O.» + o).

(ii) If spt f S ]— oo, 0], then also spt g & ]— oo, 0]

This means that the restriction of g to the half-axis ]0, 4 oof is uniquely
determined by the restriction of f to 10, 4 ocf.

Thus the conditions (3.7)-(3.9), and the integral at the right of (3.12), do
not depend on the ristriction of f to ]— oc, O}

The prof is guite simple.

Let us suppose that spt f < ]—oo, 0] and consider < glu> with a
ue C5(l0, 4 oc]). Here < g|w > is the value of the distribution g at u,

o
[ gl@)u(x)dx if g is a square integrable function.
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+ 5

We have: <glu> = 21; f g(Eu(E)dE, hence from (3.10) we get <'g|u >
= < flu > where v is given by: ag):%.
K(§)

Clearly ve H(— oo, 4 oo} for every £, in consequence of (3.3).

We observe that the function {=E - iy — 1/K,(§ — in) is holomorphic
in the lower half-plane Im{ < 0, continuous in Imf{ < 0, and does not in-
creases faster than a polynomial as |{|-»-4-co. On the other hand, the
Fourier transform u is an entire holomorphic function of {=E& + iy, gro-
wing less than: (1 4+ |{])~* exp (bnt — av~), where & is arbitrary and [a, b] is
any interval containing spt u. As usually: 29+ =|n|+n, 29— =|y]|—7.
Therefore v can be continued with a fanction of §{=2¢& -+ in, holomorphic in
Im{ <0 and continuous in Im{ <0, estimated by (1 + |{|)~* exp (— a |Im{|)
with an arbitrary k.
~ From a theorem of Pavey-Wiener, it follows; spt v S {a, 4 oof.

Then < f|lv> =0, hence <g|u > = 0.

{iii) The term:

(3.13) inf If = w]ms (—es, )

v€Cg (J—e, 0])

appearing iun the estimates (3.11)-3.12), is the distance of f from the closed
subspace {u € H(— oo, 4 oo): spt u & |— oo, 0]}, Thus (3.13) does not depends
on the restriction of f to |— oo, 0]

For it is easy to see that ju € H{— oo, + oo): spt u & ]— oo, 0]} is the
closure in H¥(— oo, 4 oo} of C7(]— oo, 0.

(iv) The condition s >p—4 and the conditions (ii) ... (iv), appearing
in the statement of the theorem 3.1, guarantee that the distribution g+ Y),
where g is defined by (3.10) and Y is the Heaviside function, belongs to

H*=#(— oo, 4 oo). See the previons remark (i), the remark after lemma 3.7,
and the lemma 3.11.

We point out that if (g Y) does not belongs to H*~?(— oo, 4 oc) then
the equation (3.1) may not have a solution ¢ such that: spt ¢ S [0, + oof
and ¢ € H*~’(— oo, + oo).

Let us consider for example the equation:

-+
(3.14) f e Noly)dy = [ () 0 <ax < + o0,

x
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where k is a positive constant and [ is in some space H{— oo, -} o). Here
the kernel K is given by: K{x)=¢* if ® <0, K(r)=0 if > 0; we can
readily see that g=/f"—kf, where the derivative is taken in the sense of
the distributions.

Let us suppose that (3.15) has a solution ¢ such that: ¢ € H*~— oo, + o)
and spt ¢ € [0, 4-oo[. By definition, we have: <o|e~*OY) s u> = <f|u>
for every ue Cq (0, + oc).

It follows < ¢|v > = < — '+ Ekf|v > for every ve (5 (0, 4 o), as we
can see taking w =1 -+ k v in the previous equation.

Hence the restriction of —g=—f'+kf to C;{]0, -+ o[} can be extended
with a distribution belonging to H*—}(— oo, 4 oo} and supported by [0, 4 ocf.

3.2 Examprr. - We sketch now some considerations about a mixed pro-
blem for the Hermorrz equation, wich can be solved with the aid of the
theorem 3.1.

Let a € H¥*— oo, +oo) and be H'*(— oo, 4 oo) be two given functions.
Assertion: a solution u of the problem

(2 + %yy -_ kzu == 0
ule, 0 4)=alx) if 0 < < 4 o0
(3.16)
u,fx, 0 +) =blx) if —oco < <0
| e WE2(R})
exists if and only if the following equation holds:

o0

e—kx y e}cx
(3.18) f MTe| [a(x) — Ealx)]de = f Vi—?—f ble)dx .

¢}

Here k is a positive constant, W2 2(R%) indicates the space of all L(RY)
— functions with second derivatives in L*(E%).

Proof of the «if>». ~ Let ¢ be a solution of the following problem:

pE HUZ(_-. oo, + oo): spt ¢ - [0: + OCL

(3.19) e
E f K@ — y)elg)dy = f@) it 0<a < +oco;
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where:

+w
fla) = ate)— [ E(o—yibiyiay,

K = (&*+ E)3

Incidentally, K can be expressed with a Brsser function of the third
kind, or:

Lo @\ dt
K(x)= 5m f 8Xp (~ k2 — 4_6)
]

It is not hardy to see that the function:

1 s 0Xp [— ylk*+ 23]
wy_—% S

(-—oo<w<+oo, y>0)

(BE) + (&)

is a solution of (3.16).
Claim: in consequence of the theorem 3.1, a solution of (3.19) exists
provided that (3.18}) holds. In fact here is § = § , p.._é

k(z—x) Xt
glx) = f i ~b(t)dt — f @) — ket
_J [nle —b): i

Therefore (3.18) means exactly g(0) = 0.

Proof of the <only if>. - Let u be a solution of (3.16) and consider the
traces ¢ = u,(+, 0 +) and ¢ = u(-, 0 4).

From well-known theorems on SosoLev spaces we know that
9eHT (— oo, + oo} and ¢ € H¥— oo, + oo). It is easy to see the formula:

oo
1 _— 239
M%yhz_ggj’eenw W+g’%mﬁ

Lo (24 E2) ¢

(—-—OO<.‘E<+OO, y>0}-
Hence we have:

oo
Yo = — g [ e+ e,
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or:
$E) = — (B* + =3 9(0).

Rewrite this formula in the form:

(i€ — K)d (B) ol£)

(k— &) (k+ &3

and integrate over — oo < E< -4 oo both members of the last equation.
We find:
+oo 0
f w5 e~ (o) — kd(a)]dwe = f ||~ 5eM (o) dac
0 —o0

that is, the (3.18).
3.3. - For the proof of theorem 3.1 we need some lemmas on Cauchy

integrals:

(3.25) <I><C)=»1—.f 90 4 =&+, 10

where the density is the Fourier transform of a distribution ge HY(— co,
+ oo). Clearly we shall assume s > ——;, for otherwise the integral (3.25) woudl
be divergent.

Lemma 3.2. — Suppose that g€ H(— oo, + oo} and that either of the fol-

lowing conditions holds: {i) —««% <8 <}; (ii} @ positive integer n exists such

such that n—é <s<n +é and gW0)=0 (=0, 1, ..., n—1). Then there

exists a constant C, depending only on s, such that:

(3.26) D) | < Clglsice 4oy | TG 2L+ | T
(Im = 0).

Here ® is given by (3.20). It can be proved that an absolute constant C
exists such that:

(L + bt S
I XA

(ImG == 0)

(3.27) [ B8] = Clgllarti2—co, +) |
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provided that g e H 11— oo, -+ o) and either (iii) n =20, or (iv) n is a posi-
tive inleger and g®0j=0 =0, 1, ..., n—1).
Here Int denoles the positive pait of the logarithm.

Lemma 3.3. - Let g€ H(— oo, 4 o) and suppose that either of the con-
ditions (i), (ii) of the previous lemma holds.

Then there exists a constant C, depending only on s, such that:
oo
(3.28) f (L4 8| @E + i) [* dE < Olg ) (meo, 4y (0 E0);

—c0

moreover & —> ®(€ + iv)), the restriction of ® to a straight line Imf§ = constant == 0,
converges in mean if 0 <n—> 0 or 0> v —0. More precisely, there exist two
measurable complex valued functions |—oo, 4 oo[3E— O () and ] — oo,
+ o[ 3L~ ®_IE), the upper and the lower trace of © on the real axis, which
have the following properties:

+oo
0 [ aerieErasc lg — wl? e
s W€ CZ (10, +es])
+co
[ @tz grasc P
2 u@Cg (I, o)

where C is the same constant as in (3.28);
00
{ii) f {1 4 8% ®F + in) — ®(E)|*°dE -0 according as

—oo

0<np—>00r0>7n-0
We have the equation:

(3.29) Oy — D_=g.

Lemwa 34. - Let ge HHi(— oo, + oco); suppose that:

oo

d
f g0@) [0 < oo
) [l
and that either: (ij n=0 or (ii) n is a positive integer and g®0) =0
k=0, .., n—1).

Annali di Matematica 4
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Then there exislts an absolule constant C such that:
4o
(3.30) f (L 4 E5HE | O + in)|2dE <

-

~+ oo
= C(ﬁgﬂzww{—m, +o0) -+ f ig(")(fG)Ez%)(n =+ 0);

moreover the limits &4 = lim. ®(c -+ i) and ©®_= lim. & (- 4 in) exist
0<m->0 03>7—0

in LY{— oo. 4 oo; (1 4 E2n+3 dE).

We have the estimates:

+oo
331) [ swriomasc] mt g —uprhen i+
_ wg (10, + o)
d dx
(7} 2
+_! gl 2],
+oo
3.32) [ utertioqrasc] m lg-ule e, o
—% v€Cy (I—=0, 0)

\
o TR

where C is the same constant as in (3.30).
The equation holds:

(3.33) (I)_;.—' O_=g.

Remark. - For the application of the lemma 3.4 to the proof of the

theorem 3.1 it is useful to bear in mind the following fact. If a function g
-]:oo

is in H +5(— oo, + o0), g®W0)=0 (k=0, .., n — 1) and J |g("](w)]2c-l£g
4o ’
L, ax
< 4~ oo, then f 19("){93)12m<+oo.

- o

This property will result clear after the reading of the lemma 3.11 and
its proof.
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Proof of the theorem 3.1. - Consider the Cauchy integral:

3

(3.34) @Q=E% f@%m (Img == 0).

where g is defined in (3.10). Let us define two distibutions ¢ and ¢ with the
formulas:
- 1 ~

(335) P = K*(I)_, QI) = K+<I)+ .

Here K| and K_ come from (3.2), &, and ®_ are the traces of {3.34)
on the real axis.

From the inequalities (3.3)-(3.4), the hypotheses of the theorem 3.1, the
remark (i) and the lemmas 3.3-3.4, we get:

¢ E Hs—r(— ) + Oo)

(3.36) (r=p+q-
‘-I"EHS(—OO’ +°°)

Note that ¢ verifies the estimate (3.11) or (3.12). In fact we can apply
the definition (3.35), the inequality (3.4) and the estimates of the lemmas
3.3-3.4. Moreover we have:

(3.37) inf 9 — vle—rew, 4=y <
V€T (e, O
1,
< g int If — % ut (e, )
+

u€Cy (12, 0[)

where Cy is given by (3.3), f and g are related by (3.10).
To prove (3.37) we fix any ue C; (]— oo, O]) and start from the obvious
inequality:
If — ]os (— e 4 o) = C1 |9 — W [P o, +)

where w is given by w = —u/Ky. Arguing as in the remark (ii) we see that
w € H(— oo, 4-oc) and spt w is strictly contained in ]— oo, 0. Since such
a w can be approximated closely as please in the metric of H*—?(— oo, 4-o00)
with C5'(]— oo, Of)-functions, we have:

lg — wlw—r(—, 4=) = inf lg — vla—re, 4y -
V€ €4 (]—oe, 0])

Thus (3.37) follows.
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From (3.35) and the PrmmeLs formulas (3.29) or (3.35) we get, remembe-
ring (3.2):

It remains to show that:
(3.39) spt © S [0, + ocf spt ¢ S |— oo, 0]

We shall prove the first inclusion, the proof of the second being quite
similar. Let us fix any ue (5 (]—oc, 0]) and consider < p|u >, the value

oo
of distibution ¢ at u. If s —r=0 we have < ¢|u>= [ ofxju{x)dx; in
any case: -

+
<olu>—g. [ weuEaE.

Hence, remembering (3.35):

(3.40) <olu>= %: it

As is well-known, the Fourier transform of an indefinitely differentiable
compactly supported function # is an entire holomorphic function such that:

exp [— a(Iml— -+ b(Im§)*)

Q= ERL

—[-oa
|l juepas

—oa

where & is any nonnegative integer and [a, b] is any interval containing spt u.
Therefore, from the hypotheses on K_ made at the beginning, the function:

3.41 —Etin s U() = ME— )
(3.41) C=CE+in— UG RE T i)

is holomorphic in the half-plane Im{ < 0, continnouns im Im{ <0, and veri-
ties the estimate U({) = O(|{|*tee—t™%) for =0, 1, 2, ..., Im{ << O and
|{| = 4~ co. Here u is the same function appearing in (3.40); since the sup-
port of such a u is contained in ]— oo, 0, we have actually:

(342)  UEQ=0() (=0, 1, ...; Im{ < 0, |{|—> + oo).
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With an application of the Cauchy integral theorem we obtain:

Ry
(3.34) f O + UE + in)d§ =
— (R
arcsen (n/R)
= D(Re®)U(Re®)Re'idb,
—n- avesen (q/R)
where R is any positive constant and 0 > 9 > — R.

Using (ii) of lemma 3.3, or the lemma 3.4, it is a simple matter to show
that:

Ry
(3.44) lim O + in)UE 4 in)dE =
70 ey
" u(®)
- u€l gg.
[ e-0xy
R
From (3.40)-(3.43)-(3.44) we infer:
(3.45) < oplu > ==2i lim f D (Re®) U (Re®)Reidh.
T Rstoo

But | U(Re®)| < (const.) R—* for every k>0 and 0=0=>= — =, in conse-
quence of (3.42); moreover:

|@(Re*)| < (constant) |sen® ["2R—+r=12(1 + IntR)P

in virtue of lemma 3.2. Thus the right-hand side of (3.45) vanishes, so
< ¢ju > =0. For the arbitraryness of u, we conclude spt ¢ &[0, + odf.
The proof is complete.

3.4. Proof of the lemma 3.2, - Let ¢ be in H¥(— oo, -4 oc) and consider
the integral (3.25).

From the Smwarrz inequality we get:
e

1 dat %
2n f (L+ )t — 57

—oo

(3.47) O8] <] gles (e, +o0)
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We estimate the right-hand side of (3.47) at first in the case — ! <s<-1—

For convenience we shall write: 2 2
E=E-41iy (n=E0) or {=re®r >0, % not integer).
Suppose that 0 <s <%. Then we fix k, 0 <k <1, and write:
& g —kr

1349 IR f f

—e

kr

1+ #—dl (1 4+ t3)—ds
+ f (L + +f + 13 .
(t+ 1) — 4rt cos2 (t—17)* + drt sen’s

+oo kr
2 2 at 1+
N = =

—r0

IA

52 s
T e ft,_ [t s

Bt} dt
= .. +2{1 +k2rzl f tZS(,._t)z""‘
0

k

1 240 2}—s 2s di —
— (L R {7:4—2?9 Isenﬁlof tzg(l_t)ﬁ]s

(1 + k23— (O<s<;,0<k<1).

< (constant) l—l——

7 |

Suppose that ——% < 8=<0. Then we fix k> 1 and write:

+ oo =kr

. di
R L

0O

—kr }- 00

(1 -} £3—dt " 1+ t3—dt
+ | + S+ L <
s () — At coszé & {t—r)® 4 4rt sen’;

0
2
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s{1+k2r2)—sf c|2+2f r)z -

—oa

22«—57C 1 _]_'__S

< w2firgnl [ -

kr

; | dt
= L+ R {7: 4 9% sonb | f Z"i%(t‘—:i“,*z} -
k
=< (constant) TTY}I‘E (1 + kz,rz)_ ( ; <s< O k> 1)

From (3.47)-(3.48)-(3.49) the (3.26} follows, at least if — 1< 8 < ;

We estimate now the right-hand side of (3.47} in the case s = 5°

With the aid of the change of variable ¢ -t + (£2 4 1)z, we find:

..t,.oc
J dt
_d (=P

(8.50)

o0

L e
= Img ™ ot —1

0

Im (14 C%—3 (Iog (] + i aretgf w)l

(Imf == 0y,

2
= Imt g

where w={ + (1 4 {%3, and (1 4 %)z is the square root of 1 -+ {2 with po-
sitive real part.
From (3.47) and (3.50) we obtain the (3.27), at least if n=0.

Thus we have proved (3.26) in the case — % < 8 <—é and (3.27) in the

case n = 0. To conclude the proof we can apply the following lemma.
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Lemma 8.5. - Suppose that ge H{(— oo, -+ oo} and s > n—%, where n

is a posilive integer; moreover lel gW0) =0 if k=0, 1, ..., n— 1. Then:
SRS SRS T SRR
() (5) = S f H(Wg) (¢)at

when @ is given by (3.25).

Proowr.
+oo

(i) ®(7) — j (it)7g (0)2milt — Q)dt —

~—o0

+D°
1 n-—l

=5, ey j (ityrg(t)dt =

~—o0a

n—

=3 (Ep=-1g0)

k=0

3.5. -~ For the proof of lemmas 3.3 and 3.4 we need some other lemmas.

Lemma 3.6, - Let u be omy function in L%— oo, + oo) and consider the
Cauchy integral W(z )__ f u( jdt)2ni(t — 2), where z==0 + iy and y=+0. The
following properties hold:

]

.+., .
f (,N_W_Iﬂ_l__2 % sgn (y)u(t) +%(H“)(t} dt

) 1
{1) IIJ'(.’,U—I—Z]/)Z— 90-—-t)2+y

'

—c0

for every y == 0, where H denotes Hilbert's transform. Note that the right~hand
gide is the Poisson integral of the function in square brackets.

o0

+
f (E)dE if Imz>0

(i) W)=

?!H

etu(E)dt if Imz>0

1

_—'27:
oo 4o

(iii) j | W + iy) |2de = f \u(t)|2dt for every y ==0

e €0 —
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[+ i) — |5 sen gy

—te

2
at— 0 if

0<y—>00r 0>y->0.

Reuark. - As is well-known, the Hiuperr transformation is defined by:

Feo
(8.51) (Hujiw) = ~ f ;@7 at,

g

where the integral is taken in the Cavcmy principal value sense.
Suppose that u is a locally square integrable function and

—k -}-o0
(f + f )\mlz’lu(oc)izdw<+oofor every k> 0

and for some s > 1 . Then the precise meaning of the equation (3.51) is

the following: 2

P oo

oo = Lim ool [+ [ )2 ar

. res e — ¢
(3.53) o0 e 3 ( )

for every bounded compactly supported function ¢.

where Lim. stands for limit in L*— oo, 4 oc}. We recall that if
# € L*(— oo, + oo) the following equations hold:

Kee T o0
N uf{t)
(8.53) (Hulfw) = Lim. ( L + L r)mdt’
4o £
(3.54) f |(Hulx) |2 de = f |ufw) |* das
(3.55) (Hu) () = — 7 sgn (§) . @AL(E)-

Annali di Matematica 5
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Proof of the lemma 3.6. — The (i) is a consequence of the equations:

r Y . w1
—a w0ty w0t
1 [ t Lyl
x— 1 Y
| e | aeg e

{y == 0).

The last equation follows the fact that, for every fixed y <=0 the funec-
tion = — x/n(x? -+ y? is the Hiusmrr transform of the Porsson kernel
x—> |y|/n(x? 4 y?); the symmetry property of the Hruserr ftransformation:

4o

doo
f (Hu){x)v(x)de = — f u{x)(Hv){x)dx

#, v€ LY~ oo, - o)
should also be used.
The (ii) is a consequence of the formulas:

+
f g—itl—adE if Imz >0

1 0
it—2) 0
— f p—iE(—2)gE if Imz <O
and the «transfert theorems» on Fovrier transforms.
(iii) follows from (ii) and Perseval’s theorem.

(iv) follows form (i) and well known properties of the Poissox integral.

Lruma 3.7. -~ Let u be a measurable function such that:

oo
f (1 4+ 2% |ulx)|?de < 4 oo for some real constant s.

—oa

Assertion: if ”‘"é <8<+ %, the Hilbert transform Hu of w verifies the
inequality :
o S
U+ @ | o) de < (14 0)° [ (14 @2 e e

— oo —cg
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where: )
(3.66) C=+4 f 11—_% i—2lside.
§

Remark. - Lemma 3.7. enables us to prove very easily the following
theorem on Sowonmv spaces. If "“é <s§s <+ % , the wmultiplication by the
Heaviside function Y is a bounded operator in H¥{— oo, + oo, whose norm
1ot exceedes 1 +—g. Here C is the constant indicated by the last formula;
recall that Y(z)=1if 2> 0, Y(z) =01if z <O. In tact, let ue Co( oo, + o).

In consequence of (3.65) we have: (Y} =

on—a

2Hu for2+2sgn{x) Yi{z);

then from Mixkowskrs inequality and lemma 3.7 we get:
o 11~ P

5 | U+ e —

— o0

|1“Y[]HS(_°°,+,,O) =

2 1
d&}? <

o

1 — i
< glubricm o + 5 g [ 0 EFIED ) <

—o00

= (1 + 29){ Wi (oo, o)

Proof of the lemma 3.7. - We have

oz —t

(1+m2)s/2|(Hu)(x)‘_<_H f ( + )P ()dt‘—{—

—oa

L[] e — ey
ch ‘ r—1

lu(t) | dt.

-— oo

The first term at the right is the Hrueerr transform of a square inte-
grable function, so it can be estimated with the equation (3.54).
The second term can be estimated using the following lemmas.

Lewmwa 3.8. - Let s, 1, © be real numbers. The following inequalities hold :

* (1+t2)s/2

(6.57) (04 % (L ] = |17

&
(3.58) (1 + o7 (giw-t!+]/1+ t)2> (L4 t3pe.
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Leuma 3.9. - Let e L¥— o, -}- o0}, u nonnegative, and consider:

+o x ‘5
\ 1|7
vlz) = f tl ufhae
o z—1 J
1 1 . ,
where — 5 <s< 5 The following inequality holds:

Foo oo

f v(z)?dx < C? f u(z)?dzx,

—o0 o

where C is given by (3.56).

Proof of the lemma 3.8. - The (3.58) is a refinement of PEETRE’S inequa-
liy, which will be useful later. For sake of brevity we prove here the (3.57)
only. Consider the function:

where @ = constant >0 and the variable A rans in 0 <2 < -+ cc.

It is easy to see that f(A) is monotone increasing if s =0 and O0<a <1
or if s<0 and a>=1; f(}) is monotone decreasing if s =0 and a =1 or if
s<0and 0<a=<l1.

As f(0)=0 and f(+ oo)=1—a’?, we have then:

[f(N)] < |1 — &P for every Az=0.

Putting in this inequality X ={?, a = 2?/{2 we obtain (3.57),
Proof of the lemma 3.9. - Let as consider the kernel:

| H

z
t
z—1

1 —

Nz, 1) =

With some manipulations one can see that:

oo oo
f Nz, 1);m—§dx=f N1, §)|t—zdt=C
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where C is the constant (3.56). As N is positively homogeneous of degre

— 1, it follows:
+ao
f N, §|o-tde= Cli[f  (==0)

—c0

+n>o
fN(x,t)!tQ*%dtszx]—é (z == 0).

From Sonwarrz inequality, and the previous formulas, we get:

oo +oo
v(z)? < f Nz, t)[tlt‘%‘dt . f Nz, t)[t[% u(l)?dt ==

—00 — oo

_!_w
—0 f Nz, §)] 25| ¢ ult)] dt.

— o

Hence:
oo oo

- oo
f v(x)zdxscf | ¢ 5 u(t)2dt f N(z, ¥ |z|-2dz =

oo
— ¢ f w(t)? dt.

— oo

This proof has been leaded from [13], theorem 3.19.

Lemwa 8.10. - Let P be a nonnegative integrable funclion such that:
»{:«oo

B
f Prjde=1, 4= J (1 4 2212 Pz)dz < + oo;

oy

where s is some real constant. Consider the convolution:
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where r 18 a positive parameter and u is a measurable funciion such thai:

oo

[ ke iuin s < 4 oo,

]

The following properties are true:

oo oo

(i) f u+xWMMPmsA%&+@~f (1 + 2% | u(o) * da
+oo

(i) j (1 + 2% |vfz) — u(z)|?de -0 if 0<r—0.

— 0

This lemma is a very slight variant of standard theorems on convolu-
tions. The (i) follows immediately from the Pprrre inequalify (3.58) and from
Youwne’s theorem. The (ii) is trivial if P and # have compact supports, for
in this case also v, has compact support. In the other cases the (ii) can be
easily proved by approximating P and u with compactly supported functions.

Proof of the lemma 3.3. - Let g be in H¥(— oo, + oc) and consider the
Cavcny integral (3.25).

1 1
— 5 <8<

Suppose at first 5 3

We can write:

)

(1+EZ)S/2¢<C)=LJ (L+ £ gll) 4

2 it —¢
Ul B

then, applying (3.57) and the obvious inequality |{— {|=|{—&]|, we obtain:

oo

1 (L + £2)2g(t)
i | M

—o

(1 4+ &2 loll] =

oo

+
1 1 — &/t —
+on [ e

—o0
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The first term at the right can be estimated with the (iii) of lemma 3.6,
the second with the lemma 3.9. Then:

feo +o

(1+zzyi¢(&+im12d§s<1+0>2f (L + 12| git) [

— 00 Y

where C is given by (3.56).

The (3.28) is so proved, at least if — ;— < s < %
We define:
S %5
(3:50) =  +iHg
o [ — %5

where H denotes Hruprrr transform, compare with (3.52).
Note that, taking into account the remark after lemma 3.7, we have:

(3.59) O_=—(gY) = Oy=(g—gY),

where Y is the Heaviside function.
Obviously ;

QL — d_ zle(\]
From (3.59) we deduce:

’ 1 - —
&®+= 59— u) +%H(g— u)
\/ for every ue (5(]0, + oqf)
(3.60)

[ i -
O =— ;5 (g — u) +§H(g - u)

f

for every ue Oy (]— oo, 0[).

From (3.60) and lemma 3.7 we get:

-+ oo
[+ eriegra<(i 4+ §) it 19~ wlPa e ey

_% u@Cy (10, o[}
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(3.61)

+e<>
[t eriomgiaz < (14 5) lg — s e, 4o

w5 (120, 0])

—oo

where C is the constant (3.56).
Let us admit for a moment the formula:

1 e |Y)| S(I)+(t) if‘f])O
(3.62) O + i) = J Ehr e di
" G0 s <o

The from (3.61), (3.62) and the lemma 3.10 we get:

e @4 (E)|? if0<n—>0

j (148 ®F 4+ i) — dt -5 0
—co O_(§) if 0>71—0.

So the properties asserted in the statement of the lemma 3.3 are proved,
at least if——% <s<—i—%.
The formula (3.62) follows immediately from lemma 3.6 if =0, that is

it g is square integrable. In any case, if -——-; <s <% the formula can be
established with the following argument. Let g, be any sequance of infinitely
differentiable compactly supported functions converging to g in H{(— oo, - o0),
and consider
oo
D,(E) = f g(t)dt/2mi(t — ).

—o

The lemma 3.6, or even the classical Premrrns formulas, gives to us:

e (®){f) iEn>0
(3.63) OofE + in) = j | )+()dtl !
mJ E—1¢)?+n* @) itn<0

where (®.). are defined as ip (3.59). In virtue of lemma 3.2, ®,({) converges
to ®(§) for every fixed { with Im{ == 0.

Using the Scmwarrz inequality, it is easy to see that the right-hand side
of {8.63) converges to the rigth-hand side of (3.62) for every fixed non real §,
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because:
+m

f (14 B | @() — (@u)alf) P dE <

po——

< (1 + —2)2 g — g:[Prs (—eo, 4y > 0

in virtue of lemma 3.7. Then (3.63) implies (3.62).

1
Suppose now that n — 5 <S8 <n -+ —12- and g®{0)=0 k=0, .., n—1),

where % is a posilive integer.
It is convenient fo write:

(3.64) = 9—1* f t) dt,

where # is any Cg(— oo, -+ ocj-function whose support is contained in
J—o0c, O] or in 0, 4 oof according as Im{ < 0 or Im{ > 0. The (3.64) follows

from:

/ 0

j e~ u(z)de it Im{>0
1 ult) ~=
S R T

J

e~ ufz)dz it Im{ <0,

|
8
e —
|
o
H

a consequence of (ii), lemma 3.6.
Consider the analytic function:

W(L) = (i — sgn (ImQ)@(§)  (Imf == 0).
From (3.64) and lemma 3.5 we infer:

oo

. 1 1
@(C)=% f “t*:-c

-~

hi(f) if Img>0
dt
h_{f) if Im{ <0

where:

e = (g5 = 1) lw—wn no = (3 +1)lg — )

and uy, #_ are arbitrary functions belonging to (5 (]0, 4-ocf} and C5'(]—oo, 0f)
respectively.

Annali di Matematica 6
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Clearly:
hy € H=— 00, + 00), [halo—ri—w, o) =

=g — U s (— o, 4o) -
Note that:

1 1
_2“<3*—n<+§.

Applying to the function W the arguments developed before, we can
easily obtain the desired properties of @.
The proof is complete.

3.6. - An easy proof of the lemma 3.4 is based on the following lemma.

Lemuma 3.11. — Let ge H" T (— oo, + oo) and suppose that either of the

following conditions holds: (i) n =0 and [E | glx) P%? < + oo for some & > 0;
0

(i) n is a positive integer, g®0)=0 k=0, ..., n—1) and / | g ™(z) 32%
. 4]
< 4 oo for some ¢ > 0.

Assertion: (9Y) € HH*— oo, + oo) and the estimate holds:
(3.70) 19X ) 4112, o) =<

=C

inf lg — wP ant12(—co, o) -+
wECT (=, O])

1z

+oe
+ [ laoep

where C is an absolute constant. Here Y is the Heaviside function.

.Proor. - Consider for istance the case (ii). Clearly (gY)e H(— oo, 4 o0},
in virtne of the conditions: g(0) = ... g—9(0) = 0.

Using a representation of the HY — morm involving the differential
quotient, we can verify that the conditions g™ e H'*(— oo, 4 oo) and

-+ oo
[ 1996PE < oo imply g0 YeRr—oo, 4 oo

0

For more details see Lions-Maeunes [6), chapter 1, sections 11.2 — 11.3.
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Proof of lemma 3.4. - Let g be in H* i(— oo, -+ o) and consider the
Cavony integral (3.25). We suppose that either of the conditions (i) and (ii)
of the previous lemma holds.

Let us define: @&_ = —Tl g+ % Hg, Oy = —i g+ —; Hg, where H denotes
the Hiuperr's transform. Equivalently:
(8.71) O_=—(gY)" O =(g—9Y),

for %+% sgu (z) = Y (x). Here Y is the Heaviside function and the formula

(3.65) should be used.
From the lemma 3.11 we infer:

+o°
f (1 4 Bt | @) 2dE < + oo,

more precisely

+r><;
(1 4 &rte|@_@PdE < C int 19 — [P sty o)
7 wECy (e 0)
- a
(3.72) +C j }gtn)@)gz.g
N %
[ a+ertio@raso 9 — #Pur o)
— v G5 (10, +o])
0
: dz
+ ¢ f Lo @ x>[2._
~ g ( i }xi
where C is an absolnte constant.
Obviously: R
(I)+ P = g.
We show later that
(L +4gr+s
(3.73) o) =
(L —ilpe
q +o0 | S (1 - apr+d ot ==£ 44y and % <0
_1 N (M dt
ﬂf € — 849 I
—eo (1 — étpts () C=E&+4idn and >0
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From (3.72), (3.73) and the obvious inequality | 1—i sgn (Im{) > =14 (Rel)?,
we obtain for every v == 0:

+oo oo
a1 [ 4 e e imid s 0o+ [ l90@2 7]

—c0

via well-known properties of the Porsson integral (compare with lemma 3.10);
moreover:
oo
(L 38 — 7 2@ + i) — (L + #7082 — 0

—co

(3.75) it 0> n—0
+<>o

f%a—&+w%wmwm—a~ﬁw%gWﬁeo

——00

if 0<n—0.
From (3.74) and (3.75) we can easily deduce:
o o_ (5] it 0>n—0
(3.76) fﬂ+8W%M+M%— dE — 0
e D4 (5 ifO0<n—0

owing to the inequality:

(1= oyt — (1 iEp | <
< (constant) (1 4 &2)%(n+%) 0|14 s

Thus the properties asserted in the statement of the lemma 3.4 are proved.

We prove now the formula (3.73). For semplicity we restrict ourselves to
the case Im( < 0.

Let u; be a sequence of C5(J0, 4 oo[) — functions coverging to — (g¥)
in H*+(— co, -+ oo). Such sequence exists, for (gY)€ H*+3(— oo, -+ o) in
reason of lemma 3.11 and spt (gY) S [0, 4 o[.

As already remarked, the Fourier transforms &k are entire holomorphic
functions such that: [#4{)| < (constant) (L 4~ |[{|)—™ for every integer m and
every { in the lower half plane Im{ < 0.

Then, as {—(1 + iy +z is holomorphic in the half plane Im{ < 1, from
the Cauchy integral theorem we get

+ oo
B8.77) (1 + iy +Hudl) = ~ f

p—

(1 4 dtptsudt)
m# at (Im§ < O)
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In reason of (i), lemma 3.6, the right side of (3.77) equals the Porssox
i
N 2
0x(B) = (1 4 iy P E)

Applying a theorem of Paumv-Wimner, we see that v, is an infinitely
differentiable function whose support is strictly contained in }0, 4 oc[, so
the right side of (3.77) is exactly the Poissox integral of ve. Thus (3.77) can
be rewritten in this form:

integral of +- éa_ Ho, = (v,Y)", where v, is the function defined by:

(3.78) (1 4 iyl =
to ]
_1 o e
Tn f (g — 5)2 + 7)2(1 -+ 1t} +2’Mz}¢($}dt

E+in=8, n1<0).

Clearly ui(§) — ©(C) for every { such that Im{ <O0. In fact by (ii), lemma

3.6, we have:

/:§~oo

) =— | e gada (Im¢ < 0).

o

0
hence:

i |

lus(C) — D) | = ] f e~ (1) + gl)de | <

o

= 1 2ImG [ ue + (9Y ) |(—wo. 4oy = O (ImE < O).

On the other hand, in reason of the Scmwarrz inequality, the right side
of (3.78) couverges for every £ and 7% =0 to the Poissox integral of
E s (1 4 Ep+id_(5), since d_ = — (gY; and u, tends to -gY in H"+;(-oo, +o0l.

Thus (3.78) implies (3.73) in the case Im{ < 0. The proof of (3.78) in the
cage Im{ > 0 is similar.

The lemma 3.4 is completely proved.



46 C. D. Pagani - G. TaLenTI: On a forward-backward parabolic equation.

4. - Proof of the theorems 1.1 and 1.2,
We look for solutions u represented in this way:

¥ 2

[ oxt (— g =g~ b — 1)
— w(tydt 4 Uz, 9)
- Vnly —9) Y
if >0 and y > 0;
we, y) = N ,
= z
— g — Mt — )
f ud LT ——"
(4.1) ¥ It — Y

if <0 and y > 0.
Here ¢ and ¢ are functions, to be determined, such that:

¢ € H'¥{—o0, 4 00) spt ¢ &[0, 4 oo,
(4.2)

Y e M4(— oo, + oo);

here U is given by (1.7), that is:

 oxp (_ & — ky)
Uz, y) = / 4{ h(|8])dt
— (4dny)s

(—oo L g < oo, y>0).

As already remarked, U is an infinitely differentiable bounded function
belonging to W(Ri), and verifies: U, — U, + kU =0, Uz, 0 +)= h{|z]|)
(— co <z < co). An easy inspection shows that:

“43) U0, y)=0 for every y>0.

For the following assertions one should to bear in mind the theorems
listed in the appendix.
The function u is given by (4.1) verifies (1.1) and (1.8), namely:

ue W{G+}
sgn (2)u, — . +Eu=0.

By the second condition (4.2) we have u(z, 0 +)= Uz, 04y if 2>0,
thus the condition (1.3) = (1.9) holds true:

w(z, 0 4)=~nh(z) if z>0.
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The following equations hold:

if y>0
(0 —, 1) = d(y)

d.4)

the first being a consequence of (4.3).

Moreover:
e—Hy—1)
w0+, 9= — / Yy — £) whdt + U©O, »
&5) ify>0
B e*lr—1)
u0 —, y)= ] frjz — 1| d()at

H ¥

We point out that a function ue W(Gy) belongs actually to W(R%L) if
and only if 40—, Hy=u0+, ) and u.(0—, )=u 0L+, ).

Thus, by (4.4) and (4.5), the function u given by (4.1) verifies one of the
conditions: (1.2), (1.10), (1.11) if and only if the pair ¢, ¢ solves respectively
the system: (4.6), (4.7), (4.8).

g oly) = d(y),

4 e—Hr—1) o eklr—1)
4.6 J =i+ | g 4= 00, )
e ¥
0<y <+ oo.
| oY) = $(y),
o t
TV war ok [ eo-var [T
| ety — g 0t + / ° / =t — nype ¥
_ / »
47 J = eklr—9
@ \, + | ey e =
—t—w
= — U0, y) + 2k / eo=al (0, Hdt,
5‘

\
10 <y <+ oo
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+DQ
o) + V() = 2 f =) §(t)dt,

¥

(4.8) 4 o=H y—1) e oHr—1)

—-00

O0<y <+ oo.

As is easy to see by eliminating ¢, a solution verifying (4.2) of each of
the previous systems can be obtained in this way: ¢ is a solution, such that

(4.9) ¢ & HY—o0, +oc), spt ¢ &[0, + o

of the integral equation:

+w
(4.10) [ K(y — to(t)dt = () 0 <y <+ o0);

0

the kernel K, the right-hand side f the and ¢ are given by the following
tables respectively.

In the tables we have indicated besides: the Foumigr transform K of
the kernel and its factorisation, the function g and the parameters appearing
in the statement of theorem 3.1 (the expoments p, g connected with the fac-
torisation of K; the order s of the Sopormv space containing f; the number
s —p, which determines the compatibility conditions).
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TaBLrE 1

connected with the system (4.6) and the problem (1.1)-(1.2)-(1.3)

K(y) (= |y )12 et

fan lty) defined by (1.6)

d(y) ¢(y) for every y >0

K () 2Re(k + P

defined by (20)-(21)
K.® | B®)
3
§ 4
1
p 4
1
q 4
98 — UE1A®)
1
§—p é
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Tasre III

connected with the system (4.7) and the problem (1.1)~(1.8)-(1.9)-(1.10)

K(y) — (m|y|)"P et sgn (y) +
._i_oo
+ 2% J eHr—Y(— y + 8 (nt)y P ek df
4]
+oo
) — Uy) + 2k f eHr—9](tdt, 1 defined by (1.6)
¥
y) | 9y) for every y >0
K (k 4 452 (b — 4672 2Re(k + i€y
K (&) (k — 4)~'7* A(€)
K_(&) (k 4 4€)'*B(E)
A®©), B() defined by (20) ...... (23)

3
§ 4

3
p 4

1
4 !
g&) CEXES)

(b — &)y FAE)
§—p 0
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connected with the system (4.8) and the problem (1.1)-(1.8)~(1.9)-(1.11)

TasLe III

Ky (mlyl)y eyl sgn (y) 4 (2K e 1Y (y) +
+m
9 -klyl(1 - Y ) { __e“ﬁ__d{
. ’ J me4+ gDl
, i L [ e (B — 7P e
) \“—ﬂ@fe'k+gﬂ“
! defined by (1.6)
¥ any function belonging to C5(]— oo, 0])
¥
Yy) ~wm-x@+&kj e—O=0g(t) + (D)t
K@ | (b 8720k — 52 Re(k -+ i8)~"
K@) (b — 5 A%
K_1%) (k + i) B(E)
A, BE) defined by (20) ...... 28)
3
8 4
1
p T4
3
4 4
9@ G X&)

T R4 T T A0
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According to theorem 3.1, the following compatibility conditions guarantee
the existence of a solution of (4.9)-(4.10).

compatibility condifions
€ dy
case of table I yg(y)|2? < - oo for some & > 0.
case of table II none
case of fable I1I g0) =

The first is exaotly the condition (1.4). The last can be verified choosing
the function x in such a way thaf:

0

I
f Xy = gz, AliH) f = z&@)u@ .

—oc

In fact, from the table III we deduce:

15 % (ik)
2o = f = e ag ™t 2 g
for the residues theorems shows that:
o
f e B — 9% x(zk
(k+E)AE) A(ik)

e

as y € Cs (J— oo, 0.
In conclusion, by the hypotheses of theorems 1.1 and 1.2, a solution ¢
of (4.9)-(4.10) exists. Theorefore, (4.1) gives the wanted solution.
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Appendix: properties of solutions of the heat equation.
LemMma A.1. - Consider:

e exp(

(A1) e, y) = f 1ty

—00

(7
4y
(dmy)i2

dl (—co < <+ oo, y>0)

where f& Cy(— oo, +oo) and k is a positive constant; equivalently we can
write:

7
(A.2) ue, y)=g5- f FlEYe—rtHE it g

o

for £ —»exp (—y§*), with y >0, is the Foumier transform of x —» (dmy)—12
xZ
exp (— Z@j) . B
Clearly u e C=(RY), u(-, 0)=f. The following estimates hold:
oo Feo

M |utz, y)lzse_“y( f | |2 dw f 1L dx>”2

— 0 o O

: f= ,
(i) fj[u[2dxdy=%J \f e"*/"_("“)f(t)dt1 dz

%
gt

v +W
(iif) fj(;ux{2+klué2)dfcdy:%f [T da
R

. O

e
{iv) jf({uylzﬂL [her |* + 2K |00, |* + B2 |0 ) dxdy =

R?‘

+

o
5 f (7 P+ k| £y

Ao oo

(v) f lu(z, 9 Pde < e f IfI2dz

——co

b il oo

| 1w v —ropas <3y [ arE i

o —303

for every y > 0.
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Lemma A.2. - Consider

xz

y exp —v—k(y~t)>

fr(y — T @0=0 —ee<y <o

where fe Cy(— oo, 4 o0) and k is a positive constant; equivalently we can
write :
o0

1 o—kig) 2
(A.4) u(z, ’t‘j)=”—2_7,C f f(g)(k—l— 51/2 7= dg

—c0

for £ — (kL ¢~ exp [— ok 4 %)), with 2 > 0, is the Fourigr fransform
2

of y— (my)—2Y(y) exp <~Z—y- ky> Here (k + ¢5)'2 is the square root of

k - ¢€ with positive real part; hence Re(k - 4&)'/ 2175 (k2 - EZUL

Olearly u is infinitely differentiable in the half-plane =0 and #.(0, ) =/.
The following estimates hold:

_ T oz
0 e, )7 5 5 ¢ f Dby

where the fractional derivative DY is defined by: (DVf)(§) = [§'*
exp (zg sgn E) (& or:

—t
(D¥f)y) = 3/4 f 1 tmy ) at

fo e L
(ii) f dxf 1%\2dy__]/_ f(k2+ﬁ2)‘3/4lf(5)lzd§

+oo +e

+oo
1 ~
_— ot 2 2y~1/4 24
bf dzx f . 2y SV_Q_ 2 ) (B> + & [FE) P d8

—oo

do e
(iid) fdxf (ty [ |t [ 200, B2 0 [2) Ay =

—co
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-0

-1 f Re(k -+ 52| {8)* 2
00 +x

(iv) f xe yﬂ?dyse—“’ﬂ] " dy
oo 40

|z, y) — () Pdy < (B2 4 E2104 | £ (y) |2 dE

y2 2n~oo
for every z > 0.
Leuma A.3. - Consider the trace wv(y)= (0, ¢) of the function (A.1) on
the positive y-axis; from (A.2) we have:

—+o0
(A.5) v@;)=§1;5 f fEe—t+8d: (5 > 0.

We have the following estimates:

—+ o oo
. 1 .
(1) f [0y P dy < P f (k 4 822 | $ (&) | dE

it s=0,1, 2, 3, ...

+ -+o0

(ii) j {—i=2dt f oy + 8 — vy Pdy <
0 0
+-c0
<2 " lne ol [ weponFora
828 — 1) 4 Jrdy

if 0<s<l

e
(i) [ f o) oY) dy

0

2
=

oo { oo
< [ 1oepang, [ ok wonfera

—00
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if s <0. Here ¢ is any function in C5(J0, 4 oc[) and the fractional deriva-
tive D—¢ is defined by:

40
1 ~
Do =g [ 1EF exp (i sen g)300E 0> 0)

Leuma A4, - Consider the trace v()= u(z, 0) of the function (A.3) on
the positive z-axis; from (A.4) we have:

+ 1 +OOA e-—-x(k—}—z;]lfz
{A.G) wz) = — 5 j (&) W ds (z > 0).

The following estimates hold:

+0oo . 00
) f |0 s <12 f (e + i3 | e e

[
its=0,1, 2, ...

~+co +oo

(ii) f = di f |v(z + &) — va) Pde <<
0 0
23/2 Q251 + 4( )
B sre = [ el iliferae
if0<s<1

oo .

(iii) \ f vi)p(x)de | <
— -0 “+00

if s <0 and e (0, + oof).
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