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ABSTRACT

In this paper we consider high—order difference approximations of 3/3x and
especially one method based on the fast Fourier transform. It is used to appro-
ximate space derivatives for hyperbolic partial differential equations, and its

accuracy, stability and speed on a computer are discussed,
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INTRODUCTION

Consider a first-order hyperbolic system of partial differential equations

s
du _ du
ot vzl A, (x,t) ox, + B(x,t)u + F(x,t) , &)

where Av and B are square n X n matrices, u and F column vectors of n elements.
We assume that the matrices Av are Hermitian and that Av’ B, F and the initial
conditions for s v=1, 2, ... , n, are periodic in the space variables X s

v=1l, 2, ... , 8.

The Fourier method considered here consists of replacing the x-derivatives
over a grid with uniform spacing h, by the analytical derivative of the inter-
polating trigonometrical polynomial over the grid points. This can be done by
two fast Fourier transforms (FFTs) for each U v=1, 2, ... , n and each
Xys V= 1, 2, ... , 8. This leads to a system of differential—-difference equations
which can be solved numerically by introducing a time step k and using for example
central difference approximation in time. This method was originally suggested by

Kreiss and Oliger [3], and has later been considered by Orszag [4, 5] and the pre—
sent author [1].

The purpose of this paper is to give a survey of the basic properties of this
technique, such as its stability and accuracy. We compare it with high-order dif-

ference approximations and give numerical results.

In general, we will not get a stable approximation if we straightforwardly
apply the Fourier method to the space derivatives in (1) even if (for theoretical
reasons) we keep the derivatives in time. This has been demonstrated for a scalar
equation by Kreiss and Oliger [3]. One way to get around this instability is to
rewrite (1) in antisymmetric form, as we have done in equation (3) in the next sec-
tion. However, this rewriting is numerically inefficient since we have to approxi-
mate twice as many derivatives (involving u). We will study a model equation

Myam =0 @)
and investigate the behaviour of the Fourier method if it is applied directly
without any rewriting. The method turns out to be stable if a(x) > e > 0

[or a(x) < e < Oj.

In Section 3 we repeat briefly the known argument showing the very high for-

mal accuracy of the method, and we indicate how an error estimate can be obtained.

Section 4 contains some basic theory for high-order difference approximations,

and we find that the Fourier method can be regarded as a limit of such approximations

when their width and accuracy (for a periodic problem with a fixed mesh) tend to

infinity.
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In Section 5, finally, we present some numerical results.

STABILITY CONDITIONS

Assuming that the matrices Av are differentiable with respect to X,s We can

rewrite (1) in antisymmetric form

5w 1 Y. 1T ) L & ooa
u _ 1 1 I V
—B_t_ZZ a ZZZ) \) ZZBXU‘*BU‘*F. 3)
V=] v=1 v=1l v
We define the scalar product and the norm by
*
(f,g) =SS ... [ £ g dxy dxp ... dx

S

and
l£11% = (£,£) .

Each 1ntegra1 is taken over one period of the corresponding space variable, and
by f we mean the vector f transposed and conjugated. We get from (3), after

scalar multiplication with u and using partial integration,

s
A
19 1
§-5E||uH2 = Re {- 5 Eh JZ; 5;% u) + (u,Bu) + (u,F)} < constant ']|u||2

assuming that BAv/axv, B and F are bounded. The solution to (3) increases thus at
most exponentially in time. If all space derivatives in (3) are straightforwardly
approximated by any antisymmetric difference operator, we find in the same way as
above that the obtained differential-difference system is stable in the correspond-
ing discrete norm. This applies in particular to the Fourier method, which later
will be shown to be equivalent to certain wide antisymmetric difference operators.
lhe rewriting of equation (1) in the form of equation (3) at least doubles the work,

and we want to avoid it.

Let us, instead of the general system (3), consider the model equation (2)

Ju ou _
T T a(x) Tx c,

where u = u(x,t) is a scalar function. We consider the period interval [0,1] and
discretize it in 2N + 1 intervals of length h. Let T be the operator which cor-

responds to using the Fourier method or any difference method to find approxima-

tions for the derivative at the mesh points, using the values at these points,

Since T is linear, we can represent it by a square matrix S of order 2N + 1.
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Theorem. Consider the differential-difference scheme obtained when (2) is discre-
tized only in space and approximated in space with any method such that its cor-
responding matrix S, as defined above, is anti-Hermitian. Assuming that the
coefficient a(x) satisfies a(x) > € > 0, we have

max a(x llV“

I V”t=t1 s min a(x)

t=tp °’

where v is a column vector of length 2N + 1 containing the mesh values, The norms

are the standard L,-vector norms, and t; and t, are any time values,

Proof. The approximation of equation (2) is

dv _
EE‘*‘ASV—O,

where A is a positive definite diagonal matrix with the diagonal elements equal

to the values of a(x) at the mesh points. We get

=1 -1
-(ASv,A v) - (v,A ASv)

-1
%E (Vv,A v)

* * —] *
= =(v,S AA v) - (v,ISv) = =(v,(S +S)v) =0 .
Hence the solution to dv/dt + ASv = 0 is constant in time with respect to the
-1 2 -1
A - norm || v ”A_l = (v,A V). We have
1

(v,v) < (V,A_IV) < (v,v) ,

max a(x) - min a(x)

from which the theorem follows.

We will now show that the condition that S is anti-Hermitian is satisfied
for the Fourier method and for any difference approximation with antisymmetric
coefficients. Since the Fourier method treats the first N Fourier components

without error, the vectors

2Tiwx 2miwx 2TLiWX 54y, T
e 0 e ! e 2N)

viw) = (

9 oo g

[where w is an integer, |w| < N and x, = Vh, v =0, 1, ... , ZNJ are eigenvectors

of S with the eigenvalues 2miw, i.e. Sv(w) = 2miwv(w). [We can also choose the
number of points even, 2N. The eigenvectors are then, apart from v(w), le < N-1,
also v(N) + v(-N) with eigenvalue O.] Since the eigenvectors are orthogonal and
the eigenvalues are purely imaginary, S is an anti-Hermitian matrix. It can easily
be verified that the same vectors v{(w) also are eigenvectors if we use an arbitrary
difference approximation with antisymmetric coefficients. The eigenvalues are

again purely imaginary, however depending on the approximation.



ERROR ESTIMATES

3.1 Formal accuracy for space derivatives

Let us consider a function v({(x) which is analytic and has period 1. We in-
troduce as usual a mesh with spacing h = 1/(2N + 1) and want to estimate how fast
the error in the Fourier approximation of v/(x) at the mesh points goes to zero

when h + 0 (or equivalently N » ®), We have

vi{x) =Z?’(w) eZTTiwX = Z + Z =3Iy *+ 22,

) lw|sN  w|>N

where Iﬁ(w)i < ¢ e—czlwI, c; and c, > 0. [This estimate follows from the fact
that the Fourier series for v(x) should be valid also in some neighbourhood of the
real axis.] Let T be the linear operator corresponding to derivation with the

Fourier method. We get
vix) =8l + 88 =TL, + 2] =T, + T2, + (£ = TZ,) =T v(x) + (T5 - 1X,) .

Since
%) = Z iwd () e
o [>N
and

L, = Z Z iovw + k(2N+1) ] R
lw|<N  k#0

a straightforward estimate shows that both Ij and T%, are bounded by a constant

. -c,N ) -
times N e 2 , and thus the error is of the form (c3/h) e Cz/h, co, and ¢35 > 0.
If we assume v(x) to be only infinitely differentiable on the real axis instead

of analytic, we get similarly that the error decreases faster than any power of h.

3.2 Error estimate for the differential-difference equation

The analytical solution to (2) can be written

uCe,t) =) Aw,t) e THX ) D R, (4)
w oy Jw|>N

Theorem, The difference between the approximate and exact solution to Eq. (2) can

be estimated in the discrete L,-norm at t = t; by (assume we started at t = 0)

v -u < IR [max_a(x) N IaRN + a(x) i
| l|t=t1 < N||t=t1 NV min a(x) ! lat 9x {{max in [O,tlj. (5)
Proof, From equation (4) we get
Ju du BRN 3R oR oR
N _ _ N _N_ N - N _ N
PSR el el GO > a(x)Tuy = 3 a(x)—m— -
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This is valid for all x, in particular at the mesh points. Letting ug and RN now

denote column vectors and A and S the matrices introduced before, we get

ot U o J
Subtracting
ov _
-5?— ASv
leads to N
0 ] _EEE_AEN_]
57 (uy = V) = 78S (ug = V) T {5g 5% )"
At t = 0, ug TV is zero, and the solution to the homogenous equation can grow at

most with the factor vmax a(x)/min a(x) in the L,-norm. This leads to equation (5).

The problem of estimating the error ||v - ul| t= is thus reduced to estimat-

ing the norms on the right-hand side of (5). Theset;orms depend only on the ana-
lytic solution of equation (2), not on the special approximation method used.
We will now proceed to give some heuristic arguments which show how these norms can
be estimated fairly accurately. We will also see in which way these norms depend
on u(x,0) and a(x).

To equation (2) corresponds a system of eigenfunctions, which are obtained
by substituting u(x,t) = ezﬂikvt¢v(x) in the equation. This gives (after normal-

ization)

¢\)(x) = exp [—ZTri)\vé/}}aczg)] .

The functions ¢v have the period 1. Thus the Xv are multiples of A = 1/{f1 dE/a(&).
0

Nothing essential is changed if a(x) is multiplied by a constant factor such that

A = 1. We assume in the rest of this section that this has been done. In these
eigenfunctions, which form a complete system and are orthogonal with respect to

the scalar product,

l—
(f,g) =‘[ fg atx) dx ,
0

we can expand any (piecewise continuous) solution to (2) as

u(x,t) =§,aw> 2TVt ¢,(x) (6)

We note that the coefficients u(V) in this expansion are time-independent in con-
trast to the coefficients u(w,t) for the usual Fourier expansion, defined in equa-

tion (4).

The essential point for the performance of the Fourier method is how many

eigenfunctions are well approximated. The characteristic property of the method

. . . 2miwx . ,
is that it treats the set of functions e T s Iw[ < N, without error. The ideal
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situation is if these happen to agree with ¢v(x), [v[ < N, which actually is the
case if we have a constant coefficient problem., Otherwise an eigenfunction is
treated well only if the amplitudes of all frequency components present in it,

and exceeding N, are small. For a(x) given later in Diagram 4 the 10th, 30th

and 50th eigenfunctions have been evaluated. Figure 1 shows the amplitudes of
different frequency components in these eigenfunctions. We get almost exact
symmetry around the frequency that corresponds to the number of the eigenfunc-
tion. Numerical tests suggest that the highest frequency that cannot be ignored
is roughly this number times 1/min a(x), this approximation being better the less
a(x) deviates from 1. The smoothness of a(x) seems in this context to be of minor

importance.

We shall finally indicate a possible way to estimate the norms on the right-
hand side of (5). By equation (6) for t = 0, we can evaluate or estimate G(V).

. . . . . ~ 27l . .
Since the magnitudes of the coefficients in (6), [u(v) T vtl, are time-indepen-—
dent, we need only the estimate just considered of the different Fourier components

With this

in the eigenfunctions to obtain a time=-i

estimate, we can find a bound for ”RNH, and assuming

a(x) = Z a(w) ezﬂi(DX

w

a straightforward calculation shows that

EEﬂ + a(x) [ Z: z: z: z: ][2W1wu(w t) a(p-w) eZWlUX]

ot >N w lw|>N

Most ot the terms cancel and the whole expression can be estimated in terms of
|G(w,t)| and |&(w)| only. We note that in the case of constant coefficients

|a)| = 0 for w # 0 and everything vanishes.

COMPARISONS WITH DIFFERENCE METHODS

4.1 Coefficients for difference approximations of 3/3x

By I we denote the identity operator Iv(x) = v(x) and by E the translation
operator Ev(x) = v(x+h). By Dy, D, and D_ we denote the usual central, forward
. . . . . -1
and backward difference approximations of 3/9x, respectively, i.e. 2hDy = E - E ,

-1
hD+ =E-TIand hD_ =1 - E ,

We define the difference approximation
Z A e (7
VN

of 3/3x to be accurate to the order of p if p is the highest integer for which

Dv by Taylor expansion can be represented as dv/dx + O(hp).
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We consider only approximations D which are antisymmetric in the sense that
B—V = 'Bv, v=1, 2, ... , N, Bg = 0. This antisymmetry is normally necessary for
stability (see [2], and it also gives the highest accuracy for a fixed N. We can
then express D in (7) as '
N-1
Y v
D = Dy 2: (1), (a®D,D_)" . (8)
v=0 2V

The optimal choice of a concerning accuracy is given by

0Lo=1

\) =
uz\) = az\)—z m Iy Vv 1, 2, CRCINY . (9)
These oy which are independent of N, make (8) accurate to the order of 2N. To

obtain the relations (9), we apply (8) to the function eZNwa, i.e.

2miwx _ i
e =

N-1 .
= sin 2mwh z: o 2%V(sin th)zv o 2TLWK
g0 ?V

=n

2TLWX

We want the coefficient for e on the right—hand side above to converge to

2miw when N increases to infinity, i.e. to find constants %, such that

. [
omiw = = sin 2mwh o, 22V(sin mwh)?V .
h = 2V
Putting & = mwh we get
N 2v v
28 = sin 2£ o, 2 (sin Y, (10)
\)=
The substitution t = sin £ leads to
. o +
arcsin t _ a vzzv th 1 .
V1 - t? v=0 2

The relations (9) follow from the known Taylor expansion of (arcsin t)/v 1 - t2. The
fact that the coefficients a,, are optimal also for a finite N may be deduced from
the fact that a truncated Taylor expansion is the unique polynomial which gives,

for a fixed degree, the highest order of fitting around the point of expansion.

The formula (8) with A,y given by (9) may be expressed in the form

N

_1 Y
D_-ﬁ B Ev(x) .

ey VN

In this representation, the coefficients depend on both v and N:

_ 22t

Bv,N V(N+V) T (N-V) T ? v #o0, 8O,N =0,
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Hence, A/V can for each method be expressed as a function of Tv/e. Figure 2 shows
this relation. For the Fourier method, however, A/V is not a function of Tv/e but
of v only. It is therefore given as different lines for some values of v. The

FFT routine used is described in [1]. We see from the diagram that the second-
order method is completely inferior to higher—order methods, which is also pointed
out in [3]. We can also see that not much is to be gained by accuracies higher than
sixth order. A detailed study along similar lines to this has been done recently

by Swartz and Wendroff [6].

In reality, one has to discretize also in the time direction, and normally,
leap-frog with a small step is the best one can do. The efficiency comparisons
between the different methods for fixed time and accuracy are now also valid.

For reasons of accuracy, the time step must be very small, and the stability

condition
K 1
A= h < max f(N,E)]

g

is no problem., For the Fourier method we have similarly A < (2N + 1)/27N assuming
2N + 1 points in the space direction. The critical values of \ are given in Tables 1
and 3.

NUMERICAL RESULTS

5.1 Eigenvalues for one-dimensional examples

The matrices AS, discussed in the stability proof in Section 2, can be expli-
citly written down, and the eigenvalues (and eigenvectors) evaluated. Since all
eigenvalues for the analytic solution are multiples of the first one, this gives us
a way to check how many eigenfunctions are treated well by the Fourier method.

The eigenvalues corresponding to the three functions a(x) in Diaerams 2. 3 and
4 are evaluated below by the QR-method on the matrices AS. The space interval

[0, 1] was discretized by 27 mesh points, i.e. 13 non-trivial frequencies were

used.
' '
1.5(-~-=-~-- 1.5]-=== == =~ =~
0.75 1 h 0.75F—
]
: ! 1 '
[} ' ' t
| . . '
0 L L —- 0 . ! —
0 0.25 0.75 1 0 0.09 091 1

Diagram 2 Diagram 3
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Diagram

4

The constants in the definitions of the functions above are chosen such that the

eigenvalues of the differential equation are 0, *2mi, *4wi, ... .

in Diagram 4 is

The function

a(x) = 1/[1 - 0.33 sin(2mx) + 0.25 sin(4mx) - 0.06 sin(6wx)] .

The eigenvalues of the matrices are *2mi times the following numbers:

Case 1 Case 2 Case 3
0.0000 0.000000 0.0000000000
1,0000 1.000000 1.0000000000
2,0002 2,000001 2.0000000000
3.0009 3.000002 3.0000000007
4,0033 4.000005 4,0000001524
5,0063 5.000031 5.0000107318
6.0107 6.000218 6.0003225521
7.0251 7.000427 7.0046336427
8.0485 8.001175 8.0338452305
9.0705 9.022565 9.1417166576
10.5953 10.143839 10.3759693310
12.7931 11,501528 11.7242030024
15.2507 13,233042 13.8615169380
17,8366 15,903069 19,3309646384

According to the estimate in Section 3, it is in all these cases the eigen-—

values higher than or equal to 13/[l/min a(x)] % 9 which are expected to be essen-

tially wrong.

stead influences the accuracy of the lower eigenvalues.

The smoothness of a(x) influences this number very little, but ins-

The figures above may be
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compared to Table 2, where we find the eigenvalues for the classical finite dif-
ference approximations in the constant coefficient case. For a fixed mesh with
period 27, we can note that the Fourier method with a discontinuous variable
coefficient gives an accuracy similar to what the finite difference approxima-

tions of orders 6 or 8 give for constant coefficients,

We can also study the influence of aliasing in this way. By aliasing we mean
that one high frequency in 3u/d9x multiplied with a high frequency in a(x) may get
outside the frequency range, and be interpreted by the mesh as a quite different
frequency. The Fourier transform is a unitary operator, and thus there corres-
ponds to it a matrix U such that U*U = T. The eigenvalues of AS are equal to
those of (U*AU) (U*SU) = A;S;. Eliminating aliasing corresponds precisely to
putting some of the elements of A, to zero. The influence of this is very small.
For the three functions above, we get in the aliasing-free case the following eigen-

values:

Case 1 Case 2 Case 3
0.0000 0.000000 0.0000000000
1.0000 1.000000 1.0000000000
2,0009 2.000001 2.0000000004
3.0025 3.000004 3.0000000030
4.0080 4.000008 4,0000003424
5.0147 5,000051 5.0000194579
6.0208 6.000312 6.0005036085
7.0404 7.000552 7.0063958390
8.0764 8.001570 8.0420575967
9.1053 9.027149 9.1629919404

10.7300 10.159474 10.4118840870

12.9634 11.533460 11.7626480000

15.4109 13.280343 13.9989557340

17,9610 15,985262 19.6778830089

If a(x) somewhere passes zero, we expect to run into trouble with any method,
because the analytic solution is then no longer periodic in time. It converges
normally to a discontinuous function. WNeither can we expand the solution in a
complete set of eigenfunctions any longer. If a(x) = sin x we find, instead
of bounded eigenfunctions, sets of solutions of the form e_->\t (tan x/2)x for any A.
The matrix AS now gets non-zero real parts in the eigenvalues for all previously

considered methods. This problem is however worst for high-order methods. The
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experience is that the Fourier method works well only when a(x) is never close to
zero. Otherwise a lower—order method (and a more dense mesh) should be used ins-

tead., For eigenvalue evaluations similar to those given above, see Orszag [5].

5.2 Two—dimensional test example

In two dimensions we want to approximate

Ju Ju du _
T + a(x,y) T + b(x,y) 5; =0 (12)

with all functions periodic in x and y. The standard test example for equations of
the form (12) is a(x,y) = -y and b(x,y) = x so that the analytic solution is a ro-
tation around origin. It must, however, be pointed out that this example to some
extent behaves like a constant coefficient example. The coefficient for du/dx does
not depend on x, and similarly for y. Figures 3-8 show test runs for this equation
with a cone as initial function. In all these runs, leap—frog with a comparatively
small step has been used in the time direction. The size of the time step was the
same in all calculations except in the last in Fig. 8, where it had to be divided

by 1.5 to maintain stability.
The stability condition for two dimensions is
S = {|max a(x,y)| + |max b(x,y)|}A < a constant depending on the method.

A has been chosen such that 400 (or 600) time steps correspond to one revolution

for the cone.

Number | Number Actual Theoretical Actual
Figure Method of of stability e computer
Mesh . . stability g
number in space revolu- time constant .. time
. limit
tions steps S (sec)
3 16 x 16 | Fourier 1 400 0.236 0.364 25,1
4 16 x 16 | Fourier 5 2000 0.236 0.364 117.9
5 32 x 32 | 2nd order 1 400 0.487 1.000 24,0
6 64 x 64 | 2nd order 1 400 0.990 1.000 (94)
7 32 x 32 | 4th order 1 400 0.487 0.729 38.9
8 64 X 64 | 4th order 1 600 0.660 0.729 (232)

The times for Figs. 7 and 8 are estimated double precision times. To reduce com~
puter time and storage, they were run in single precision (with actual times 68.2
and 176.4 sec, respectively). In the diagrams, the paths of the cone were in

counter-clockwise direction around the centre of the mesh. For technical details
on the test runs (performed on the IBM 370/155 computer at Uppsala University in
Sweden) and especially the coding principles for the fast Fourier transform used,

the reader is referred to [1].
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Figure captions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Amplitudes of different frequency components in the 10th, 30th and
50th eigenfunctions of 3u/3t + a(x) du/dx = 0. The function a(x)
in diagram 4 is used.

Comparison of efficiency of high-order methods.

One revolution with the Fourier method. 16 X 16 mesh points.

Five revolutions with the Fourier method. 16 X 16 mesh points,
One revolution with the second-order method. 32 x 32 mesh points.
One revolution with the second-order method. 64 X 64 mesh points.
One revolution with the fourth-order method. 32 x 32 mesh points.

One revolution with the fourth-order method. 64 X 64 mesh points.
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Fig. 6






