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Abstract

We investigate the existence of solutions for a Caputo–Hadamard fractional

integro-differential equation with boundary value conditions involving the Hadamard

fractional operators via different orders. By using the Krasnoselskii’s fixed point

theorem, the Leray–Schauder nonlinear alternative, and the Banach contraction

principle, we prove our main results. Also, we provide three examples to illustrate our

main results.
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1 Introduction

In recent decades, it has become clear to researchers that studying different types of frac-

tional differential equations is of particular importance. This is a tool to complete our

modeling information.

In fact, some practical instances done in the framework of the concepts and notions of

the fractional calculus show us the power of this branch of mathematics in the modeling

of different natural phenomena. In the meantime, fractional differential equations and in-

clusions of different types play an important role to reach desired practical goals. More

precisely, in recent years, some researches invoked these fractional equations to model

some processes and patterns via newly defined fractional operators (see, for example, [1–

4]). The techniques used in these initial value problems are based on the analytical and

the existencemethods. In the following, some researchers designed new fractionalmodels

and investigated them via numerical techniques (see, for example, [5–14]). Therefore, the

fractional calculus has been created a powerful tool for researchers to achieve more exact

findings in other applied sciences. Also for further study, notice that a lot of works about

different types of fractional integro-differential equations have been published (see, for

example, [15–45]), q-difference equations (see, for example, [46–48]), integro-differential

equations involving the Caputo–Fabrizio or the Caputo–Hadamard derivatives (see, for
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example, [49–51]), hybrid equations (see, for example, [52]), approximate solutions of dif-

ferent fractional equations (see, for example, [53, 54]), andmodernmodels (see, for exam-

ple, [55]).

In 2014, Ahmad et al. investigated the existence of solutions for the nonlinear fractional

q-difference equation equipped with four-point nonlocal integral boundary conditions

⎧

⎨

⎩

cD
β
q (

cD
γ
q + λ)u(t) = f (t,u(t)),

u(0) = aIα–1
q u(η), u(1) = bIα–1

q u(σ ),

where t ∈ [0, 1], q ∈ (0, 1), λ ∈ R, 0 < η,σ < 1 and α > 2; cDϑ
q denotes the Caputo q-

fractional derivative of order ϑ ∈ {β ,γ : β ,γ ∈ (0, 1]}, Iα
q denotes the Riemann–Liouville

q-fractional integral of order α, and f : [0, 1] × R → R is a continuous function [46]. In

2016, Niyom et al. reviewed the problem

⎧

⎨

⎩

(λDα + (1 – λ)Dβ )u(t) = f (t,u(t)),

u(0) = 0, μDγ1u(T) + (1 –μ)Dγ2u(T) = γ3,

where T > 0, t ∈ [0,T], 1 < α,β < 2, 0 < γ1, γ2 < α – β , Dφ is the Riemann–Liouville

fractional derivative of order φ ∈ {α,β ,γ1,γ2}, 0 < λ ≤ 1, 0 ≤ μ ≤ 1, γ3 ∈ R, and f ∈

C([0,T]×R,R) [56]. In the same year, Ahmad et al. extended the boundary value problem

presented by Niyom to the sequential fractional integro-differential equation of the form

⎧

⎨

⎩

(cDq + kcDq–1)x(t) = f (t,x(t), cDβx(t),Iγ x(t)),

x(0) = 0, x′(0) = 0,
∑m

i=1 aix(ξi) = λIδx(η),

where t ∈ [0, 1], ξi,η ∈ (0, 1), q ∈ (2, 3], β ,γ ∈ (0, 1), k, δ > 0, λ, ai (i = 1, . . . ,m) are real

constants, cD(·) denotes the Caputo derivative of the fractional order (·), and f : [0, 1] ×

R
3 →R is a continuous function [57].

By using main ideas of the aforementioned articles, we investigate the Caputo–

Hadamard fractional integro-differential equation of different orders:

[

κCHD
̺

1+ + (1 – κ)CHD̟
1+

]

w(t) = αψ
(

t,w(t)
)

+ βHI
μ

1+ϕ
(

t,w(t)
)

, (1)

with mixed Hadamard and Caputo–Hadamard boundary value conditions

⎧

⎨

⎩

w(1) = 0, CHDδ
1+w(e) = 0,

CHD1+w(1) = 0, 1
Γ (ϑ)

∫ e

1
(ln e

s
)ϑ–1w(s) ds

s
= 0,

(2)

where t ∈ [1, e], ̺,̟ ∈ (3, 4], δ ∈ (1, 2], κ ∈ (0, 1], μ,ϑ > 0 with δ + ϑ �= 0 and also α,β ∈

R
+. The notation CHDν

1+ denotes the Caputo–Hadamard fractional derivative of order ν ∈

{̺,̟ } and HIμ is the Hadamard fractional integral of order μ. Moreover, functions ψ ,ϕ :

[1, e] × R → R are continuous. Note that the integro-differential equation (1) contains

the Caputo–Hadamard derivatives of fractional orders ̺ and ̟ and a Hadamard integral

of fractional order μ, while the Caputo–Hadamard derivative of order δ and Hadamard

integral of order ϑ are involved in the boundary value conditions (2).
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It should also be noted that boundary value conditions given in this paper are general

and cover many different special cases. This new type of the modeling is an abstract idea

and can include various existing natural processes in the future studies. Therefore, the

main purpose of this manuscript is to focus on the existence results and provide some

necessary conditions for the analytical investigation and so the practical aspects of bound-

ary value problem (1)–(2) is not our main desire here. To reach our main aim, we ap-

ply three different fixed point theorems to establish the existence and uniqueness results.

These analytical results guarantee the convergence of the numerical methods to desired

solution with the least error, and so this can be a reliable criterion for modeling real pro-

cesses.

The rest of the paper is arranged by follows. In the next section, we recall some basic

notions and definitions which are necessary in the sequel. In Sect. 3, our main existence

results are presented by three different analytical techniques such as the Krasnoselskii’s

fixed point theorem, the Leray–Schauder nonlinear alternative, and the Banach contrac-

tion principle. In Sect. 4, we examine the validity of our theoretical findings by providing

three illustrative examples. In Sect. 5, the conclusion is stated.

2 Preliminaries

In this section, we recall some important and basic definitions on the fractional operators.

Definition 1 ([58, 59]) Let ̺ ≥ 0. The Hadamard fractional integral of a continuous func-

tion w : (a,b)→R of order ̺ is defined by (HI0
a+w)(t) = w(t) and

(

HI
̺

a+w
)

(t) =
1

Γ (̺)

∫ t

a

(

ln
t

s

)(̺–1)

w(s)
ds

s

provided that the right-hand side integral exists.

Note that the semigroup property is satisfied by the Hadamard fractional integral as

follows: HI̟
a+

HI
̺

a+w(t) =
HI

̟+̺

a+ w(t) for ̺,̟ ∈R
+. Also, we have

HI
̺

a+

(

ln
t

a

)̟

=
Γ (̟ + 1)

Γ (̺ +̟ + 1)

(

ln
t

a

)̺+̟

for ̺,̟ ≥ 0 and t > a [58, 59]. It is clear that HI
̺

a+1 =
1

Γ (̺+1)
(ln t

a
)̺ for all t > a by putting

̟ = 0 [59].

Definition 2 ([58, 59]) Let n = [̺] + 1 and n–1 < ̺ ≤ n. The Hadamard fractional deriva-

tive of order ̺ for a continuous function w : (a,b)→ R is defined by

(

HD
̺

a+w
)

(t) =
1

Γ (n – ̺)

(

t
dt

t

)n ∫ t

a

(

ln
t

s

)(n–̺–1)

w(s)
ds

s

provided that the right-hand side integral exists.

Definition 3 ([51, 58]) Let ACn
θ [a,b] = {w : [a,b] → R : θn–1w(t) ∈ AC[a,b], θ = t d

dt
}. The

Caputo–Hadamard fractional derivative of order ̺ for an absolutely continuous function
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w ∈ ACn
θ ([a,b],R) is defined by

(

CHD
̺

a+w
)

(t) =
1

Γ (n – ̺)

∫ t

a

(

ln
t

s

)(n–̺–1)(

t
dt

t

)n

w(s)
ds

s

whenever the right-hand side integral exists.

Assume that w ∈ ACn
θ ([a,b],R) and n – 1 < ̺ ≤ n. It has been proved that the solution

of the Caputo–Hadamard fractional differential equation (CHD
̺

a+w)(t) = 0 is in the form

w(t) =
∑n–1

k=0 ck(ln
t
a
)k , and we have

HI
̺

a+
CHD

̺

a+w(t) = w(t) + c0 + c1

(

ln
t

a

)

+ c2

(

ln
t

a

)2

+ · · · + cn–1

(

ln
t

a

)n–1

for all t > a [58, 59]. We need the following results.

Lemma 4 (Krasnoselskii’s, [60]) LetM be a closed, bounded, convex, and nonempty subset

of a Banach space E . Consider two operators Υ1 and Υ2 from M into E such that

(i) Υ1w1 + Υ2w2 ∈ M for all w1,w2 ∈M,

(ii) Υ1 is compact and continuous,

(iii) Υ2 is a contraction map.

Then there exists z ∈ M such that z = Υ1z +Υ2z.

Lemma 5 ([61]) Let E be a Banach space, C a closed, convex subset of E , U an open subset

of C, and 0 ∈ U . Suppose that Υ : U → C is a continuous and compact map (that is, Υ (U )

is a relatively compact subset of C). Then Υ has a fixed point in U or there is a w ∈ ∂U (the

boundary of U in C) and λ ∈ (0, 1) with w = λΥ (w).

Lemma 6 ([62]) Let E be a Banach space and M a closed subset of E . Suppose that Υ :

M →M is a contraction. Then Υ has a unique fixed point in M.

3 Main results

Here, we are ready to prove our main results. We first characterize the structure of the

solutions of the problem (1)–(2). Consider the Banach space E = {w : w(t) ∈ C([1, e],R)}

with the norm ‖w‖E = supt∈[1,e] |w(t)|. We first provide our key lemma.

Lemma 7 Let φ(t) ∈ E . Then w0 is a solution for the Caputo–Hadamard problem

⎧

⎪

⎪

⎨

⎪

⎪

⎩

[κCHD
̺

1+ + (1 – κ)CHD̟
1+ ]w(t) = φ(t) (t ∈ [1, e]),

w(1) = 0, CHDδ
1+w(e) = 0,

CHD1+w(1) = 0, 1
Γ (ϑ)

∫ e

1
(ln e

s
)ϑ–1w(s) ds

s
= 0

(3)

if and only if w0 is a solution for the fractional integral equation

w(t) =
(κ – 1)

κΓ (̺ –̟ )

∫ t

1

(

ln
t

s

)̺–̟–1

w(s)
ds

s
+

1

κΓ (̺)

∫ t

1

(

ln
t

s

)̺–1

φ(s)
ds

s

+
(1 – κ)[3Γ (4 + ϑ)(ln t)2 + (δ – 3)Γ (4 – ϑ)(ln t)3]

6κ(δ + ϑ)Γ (̺ –̟ + ϑ)
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×

∫ e

1

(

ln
e

s

)̺–̟+ϑ–1

w(s)
ds

s

+
(1 – κ)Γ (4 – δ)[Γ (4 – ϑ)(ln t)3 – 3Γ (3 + ϑ)(ln t)2]

6κ(δ + ϑ)Γ (3 + ϑ)Γ (̺ –̟ – δ)

×

∫ e

1

(

ln
e

s

)̺–̟–δ–1

w(s)
ds

s

+
(3 – δ)Γ (4 – ϑ)(ln t)3 – 3Γ (4 + ϑ)(ln t)2

6κ(δ + ϑ)Γ (̺ + ϑ)

∫ e

1

(

ln
e

s

)̺+ϑ–1

φ(s)
ds

s

+
Γ (4 – δ)[3Γ (3 + ϑ)(ln t)2 – Γ (4 – ϑ)(ln t)3]

6κ(δ + ϑ)Γ (3 + ϑ)Γ (̺ – δ)

×

∫ e

1

(

ln
e

s

)̺–δ–1

φ(s)
ds

s
. (4)

Proof Let w0 be a solution for the Caputo–Hadamard problem (3). Then, we have

κCHD
̺

1+w0(t) + (1 – κ)CHD̟
1+w0(t) = φ(t)

and so CHD
̺

1+w0(t) =
κ–1
κ

CHD̟
1+w0(t) +

1
κ
φ(t). By using the Hadamard fractional integral of

order ̺, we obtain

w0(t) =
κ – 1

κ

HI
̺

1+
CHD̟

1+w0(t) +
1

κ

HI
̺

1+φ(t)

+ b0 + b1(ln t) + b2(ln t)
2 + b3(ln t)

3,

where b0, b1, b2, and b3 are some real constants. Hence,

w0(t) =
κ – 1

κΓ (̺ –̟ )

∫ t

1

(

ln
t

s

)̺–̟–1

w0(s)
ds

s

+
1

κΓ (̺)

∫ t

1

(

ln
t

s

)̺–1

φ(s)
ds

s

+ b0 + b1(ln t) + b2(ln t)
2 + b3(ln t)

3. (5)

Now by using the boundary value conditions and properties of the Hadamard and

Caputo–Hadamard fractional operators, we get

CHD1+w0(t) =
κ – 1

κΓ (̺ –̟ – 1)

∫ t

1

(

ln
t

s

)̺–̟–2

w0(s)
ds

s

+
1

κΓ (̺ – 1)

∫ t

1

(

ln
t

s

)̺–2

φ(s)
ds

s
+ b1 + 2b2(ln t) + 3b3(ln t)

2,

CHDδ
1+w0(t) =

κ – 1

κΓ (̺ –̟ – δ)

∫ t

1

(

ln
t

s

)̺–̟–δ–1

w0(s)
ds

s

+
1

κΓ (̺ – δ)

∫ t

1

(

ln
t

s

)̺–δ–1

φ(s)
ds

s
+ b2

2

Γ (3 – δ)
(ln t)2–δ

+ b3
6

Γ (4 – δ)
(ln t)3–δ ,
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and

HIϑ
1+w0(t) =

κ – 1

κΓ (̺ –̟ + ϑ)

∫ t

1

(

ln
t

s

)̺–̟+ϑ–1

w0(s)
ds

s

+
1

κΓ (̺ + ϑ)

∫ t

1

(

ln
t

s

)̺+ϑ–1

φ(s)
ds

s
+ b0

1

Γ (1 + ϑ)
(ln t)ϑ

+ b1
1

Γ (2 + ϑ)
(ln t)1+ϑ

+ b2
2

Γ (3 + ϑ)
(ln t)2+ϑ + b3

6

Γ (4 + ϑ)
(ln t)3+ϑ .

By using twofirst boundary conditions, we obtain b0 = b1 = 0. By using twoother boundary

conditions, we obtain

b2 =
(1 – κ)Γ (4 + ϑ)

2κ(δ + ϑ)Γ (̺ –̟ + ϑ)

∫ e

1

(

ln
e

s

)̺–̟+ϑ–1

w0(s)
ds

s

+
(κ – 1)Γ (4 – δ)

2κ(δ + ϑ)Γ (̺ –̟ – δ)

∫ e

1

(

ln
e

s

)̺–̟–δ–1

w0(s)
ds

s

–
Γ (4 + ϑ)

2κ(δ + ϑ)Γ (̺ + ϑ)

∫ e

1

(

ln
e

s

)̺+ϑ–1

φ(s)
ds

s

+
Γ (4 – δ)

2κ(δ + ϑ)Γ (̺ – δ)

∫ e

1

(

ln
e

s

)̺–δ–1

φ(s)
ds

s

and

b3 =
(1 – κ)(δ – 3)Γ (4 – ϑ)

6κ(δ + ϑ)Γ (̺ –̟ + ϑ)

∫ e

1

(

ln
e

s

)̺–̟+ϑ–1

w0(s)
ds

s

+
(1 – κ)Γ (4 – δ)Γ (4 – ϑ)

6κ(δ + ϑ)Γ (3 + ϑ)Γ (̺ –̟ – δ)

∫ e

1

(

ln
e

s

)̺–̟–δ–1

w0(s)
ds

s

+
(3 – δ)Γ (4 – ϑ)

6κ(δ + ϑ)Γ (̺ + ϑ)

∫ e

1

(

ln
e

s

)̺+ϑ–1

φ(s)
ds

s

–
Γ (4 – δ)Γ (4 – ϑ)

6κ(δ + ϑ)Γ (3 + ϑ)Γ (̺ – δ)

∫ e

1

(

ln
e

s

)̺–δ–1

φ(s)
ds

s
.

Now by substituting the values for b0, b1, b2, b3 in equation (5), we see that w0 is a solution

for the integral equation. For the converse part, by using some direct calculations, one can

see that w0 is a solution for the Caputo–Hadamard problem (3) whenever w0 is a solution

for the integral equation (4). This completes the proof. �

Now, consider the operator Υ : E → E defined by

(Υw)(t) =
(κ – 1)

κΓ (̺ –̟ )

∫ t

1

(

ln
t

s

)̺–̟–1

w(s)
ds

s

+
α

κΓ (̺)

∫ t

1

(

ln
t

s

)̺–1

ψ
(

s,w(s)
)ds

s
+

β

κΓ (̺ +μ)



Etemad et al. Advances in Difference Equations        ( 2020)  2020:272 Page 7 of 20

×

∫ t

1

(

ln
t

s

)̺+μ–1

ϕ
(

s,w(s)
)ds

s

+
(1 – κ)[3Γ (4 + ϑ)(ln t)2 + (δ – 3)Γ (4 – ϑ)(ln t)3]

6κ(δ + ϑ)Γ (̺ –̟ + ϑ)

×

∫ e

1

(

ln
e

s

)̺–̟+ϑ–1

w(s)
ds

s

+
(1 – κ)Γ (4 – δ)[Γ (4 – ϑ)(ln t)3 – 3Γ (3 + ϑ)(ln t)2]

6κ(δ + ϑ)Γ (3 + ϑ)Γ (̺ –̟ – δ)

×

∫ e

1

(

ln
e

s

)̺–̟–δ–1

w(s)
ds

s

+
α[(3 – δ)Γ (4 – ϑ)(ln t)3 – 3Γ (4 + ϑ)(ln t)2]

6κ(δ + ϑ)Γ (̺ + ϑ)

×

∫ e

1

(

ln
e

s

)̺+ϑ–1

ψ
(

s,w(s)
)ds

s

+
β[(3 – δ)Γ (4 – ϑ)(ln t)3 – 3Γ (4 + ϑ)(ln t)2]

6κ(δ + ϑ)Γ (̺ + ϑ +μ)

×

∫ e

1

(

ln
e

s

)̺+ϑ+μ–1

ϕ
(

s,w(s)
)ds

s

+
αΓ (4 – δ)[3Γ (3 + ϑ)(ln t)2 – Γ (4 – ϑ)(ln t)3]

6κ(δ + ϑ)Γ (3 + ϑ)Γ (̺ – δ)

×

∫ e

1

(

ln
e

s

)̺–δ–1

ψ
(

s,w(s)
)ds

s

+
βΓ (4 – δ)[3Γ (3 + ϑ)(ln t)2 – Γ (4 – ϑ)(ln t)3]

6κ(δ + ϑ)Γ (3 + ϑ)Γ (̺ +μ – δ)

×

∫ e

1

(

ln
e

s

)̺+μ–δ–1

ϕ
(

s,w(s)
)ds

s
, (6)

where w ∈ E and t ∈ [1, e]. Put

K∗
0 :=

|κ – 1|

κΓ (̺ –̟ + 1)
+
(1 – κ)[|3Γ (4 + ϑ)| + |(δ – 3)Γ (4 – ϑ)|]

6κ(δ + ϑ)Γ (̺ –̟ + ϑ + 1)

+
(1 – κ)|Γ (4 – δ)|[|Γ (4 – ϑ)| + 3|Γ (3 + ϑ)|]

6κ(δ + ϑ)Γ (3 + ϑ)Γ (̺ –̟ – δ + 1)
,

K∗
1 :=

α

κΓ (̺ + 1)
+

α[|(3 – δ)Γ (4 – ϑ)| + 3|Γ (4 + ϑ)|]

6κ(δ + ϑ)Γ (̺ + ϑ + 1)

+
α|Γ (4 – δ)|[3|Γ (3 + ϑ)| + |Γ (4 – ϑ)|]

6κ(δ + ϑ)Γ (3 + ϑ)Γ (̺ – δ + 1)
,

K∗
2 :=

β

κΓ (̺ +μ + 1)
+

β[|(3 – δ)Γ (4 – ϑ)| + 3|Γ (4 + ϑ)|]

6κ(δ + ϑ)Γ (̺ + ϑ +μ + 1)

+
β|Γ (4 – δ)|[3|Γ (3 + ϑ)| + |Γ (4 – ϑ)|]

6κ(δ + ϑ)Γ (3 + ϑ)Γ (̺ +μ – δ + 1)
.

(7)

Theorem 8 Suppose that ψ ,ϕ : [1, e]×R→ R are continuous functions such that

(N1) there is L > 0 so that |ψ(t,w1)–ψ(t,w2)| ≤ L|w1–w2| for allw1,w2 ∈R and t ∈ [1, e],
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(N2) there exists a real-valued continuous function σ on [1, e] such that |ϕ(t,w)| ≤ σ (t)

for all w ∈R and t ∈ [1, e].

IfK∗
0 + LK∗

1 < 1, then the Caputo–Hadamard boundary value problem (1)–(2) has at least

one solution, where K∗
0 and K∗

1 are given by (7).

Proof Let ‖σ‖ := supt∈[1,e] |σ (t)| andO := supt∈[1,e] |ψ(t, 0)|. Consider the operator Υ : E →

E and the set Vr := {w ∈ E : ‖w‖E ≤ r} which is a closed, convex, and bounded nonempty

subset of Banach space E , where r ≥
‖σ‖K∗

2+OK
∗
1

1–(K∗
0+LK

∗
1)
andK∗

1 andK∗
2 are given by (7). Note that

each fixed point ofΥ is a solution for the Caputo–Hadamard problem (1)–(2). Let t ∈ [1, e]

be given. Then, we have

(Υ1w)(t) =
(κ – 1)

κΓ (̺ –̟ )

∫ t

1

(

ln
t

s

)̺–̟–1

w(s)
ds

s

+
α

κΓ (̺)

∫ t

1

(

ln
t

s

)̺–1

ψ
(

s,w(s)
)ds

s

+
(1 – κ)[3Γ (4 + ϑ)(ln t)2 + (δ – 3)Γ (4 – ϑ)(ln t)3]

6κ(δ + ϑ)Γ (̺ –̟ + ϑ)

×

∫ e

1

(

ln
e

s

)̺–̟+ϑ–1

w(s)
ds

s

+
(1 – κ)Γ (4 – δ)[Γ (4 – ϑ)(ln t)3 – 3Γ (3 + ϑ)(ln t)2]

6κ(δ + ϑ)Γ (3 + ϑ)Γ (̺ –̟ – δ)

×

∫ e

1

(

ln
e

s

)̺–̟–δ–1

w(s)
ds

s

+
α[(3 – δ)Γ (4 – ϑ)(ln t)3 – 3Γ (4 + ϑ)(ln t)2]

6κ(δ + ϑ)Γ (̺ + ϑ)

×

∫ e

1

(

ln
e

s

)̺+ϑ–1

ψ
(

s,w(s)
)ds

s

+
αΓ (4 – δ)[3Γ (3 + ϑ)(ln t)2 – Γ (4 – ϑ)(ln t)3]

6κ(δ + ϑ)Γ (3 + ϑ)Γ (̺ – δ)

×

∫ e

1

(

ln
e

s

)̺–δ–1

ψ
(

s,w(s)
)ds

s

and

(Υ2w)(t) =
β

κΓ (̺ +μ)

∫ t

1

(

ln
t

s

)̺+μ–1

ϕ
(

s,w(s)
)ds

s

+
β[(3 – δ)Γ (4 – ϑ)(ln t)3 – 3Γ (4 + ϑ)(ln t)2]

6κ(δ + ϑ)Γ (̺ + ϑ +μ)

×

∫ e

1

(

ln
e

s

)̺+ϑ+μ–1

ϕ
(

s,w(s)
)ds

s

+
βΓ (4 – δ)[3Γ (3 + ϑ)(ln t)2 – Γ (4 – ϑ)(ln t)3]

6κ(δ + ϑ)Γ (3 + ϑ)Γ (̺ +μ – δ)

×

∫ e

1

(

ln
e

s

)̺+μ–δ–1

ϕ
(

s,w(s)
)ds

s
.
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Thus, we have

∣

∣(Υ1w1)(t) + (Υ2w2)(t)
∣

∣

≤
|κ – 1|

κΓ (̺ –̟ )

∫ t

1

(

ln
t

s

)̺–̟–1
∣

∣w1(s)
∣

∣

ds

s

+
α

κΓ (̺)

∫ t

1

(

ln
t

s

)̺–1
(
∣

∣ψ
(

s,w1(s)
)

–ψ(s, 0)
∣

∣ +
∣

∣ψ(s, 0)
∣

∣

)ds

s

+
β

κΓ (̺ +μ)

∫ t

1

(

ln
t

s

)̺+μ–1
∣

∣ϕ
(

s,w2(s)
)∣

∣

ds

s

+
(1 – κ)[|3Γ (4 + ϑ)|(ln t)2 + |(δ – 3)Γ (4 – ϑ)|(ln t)3]

6κ(δ + ϑ)Γ (̺ –̟ + ϑ)

×

∫ e

1

(

ln
e

s

)̺–̟+ϑ–1
∣

∣w1(s)
∣

∣

ds

s

+
(1 – κ)|Γ (4 – δ)|[|Γ (4 – ϑ)|(ln t)3 + 3|Γ (3 + ϑ)|(ln t)2]

6κ(δ + ϑ)Γ (3 + ϑ)Γ (̺ –̟ – δ)

×

∫ e

1

(

ln
e

s

)̺–̟–δ–1
∣

∣w1(s)
∣

∣

ds

s

+
α[|(3 – δ)Γ (4 – ϑ)|(ln t)3 + 3|Γ (4 + ϑ)|(ln t)2]

6κ(δ + ϑ)Γ (̺ + ϑ)

×

∫ e

1

(

ln
e

s

)̺+ϑ–1
(
∣

∣ψ
(

s,w1(s)
)

–ψ(s, 0)
∣

∣ +
∣

∣ψ(s, 0)
∣

∣

)ds

s

+
β[|(3 – δ)Γ (4 – ϑ)|(ln t)3 + 3|Γ (4 + ϑ)|(ln t)2]

6κ(δ + ϑ)Γ (̺ + ϑ +μ)

×

∫ e

1

(

ln
e

s

)̺+ϑ+μ–1
∣

∣ϕ
(

s,w2(s)
)
∣

∣

ds

s

+
α|Γ (4 – δ)|[3|Γ (3 + ϑ)|(ln t)2 + |Γ (4 – ϑ)|(ln t)3]

6κ(δ + ϑ)Γ (3 + ϑ)Γ (̺ – δ)

×

∫ e

1

(

ln
e

s

)̺–δ–1
(
∣

∣ψ
(

s,w1(s)
)

–ψ(s, 0)
∣

∣ +
∣

∣ψ(s, 0)
∣

∣

)ds

s

+
β|Γ (4 – δ)|[3|Γ (3 + ϑ)|(ln t)2 + |Γ (4 – ϑ)|(ln t)3]

6κ(δ + ϑ)Γ (3 + ϑ)Γ (̺ +μ – δ)

×

∫ e

1

(

ln
e

s

)̺+μ–δ–1
∣

∣ϕ
(

s,w2(s)
)
∣

∣

ds

s

≤
|κ – 1|

κΓ (̺ –̟ + 1)
‖w1‖ +

α

κΓ (̺ + 1)

(

L‖w1‖ +O
)

+
β

κΓ (̺ +μ + 1)
‖σ‖

+
(1 – κ)[|3Γ (4 + ϑ)| + |(δ – 3)Γ (4 – ϑ)|]

6κ(δ + ϑ)Γ (̺ –̟ + ϑ + 1)
‖w1‖

+
(1 – κ)|Γ (4 – δ)|[|Γ (4 – ϑ)| + 3|Γ (3 + ϑ)|]

6κ(δ + ϑ)Γ (3 + ϑ)Γ (̺ –̟ – δ + 1)
‖w1‖

+
α[|(3 – δ)Γ (4 – ϑ)| + 3|Γ (4 + ϑ)|]

6κ(δ + ϑ)Γ (̺ + ϑ + 1)

(

L‖w1‖ +O
)
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+
β[|(3 – δ)Γ (4 – ϑ)| + 3|Γ (4 + ϑ)|]

6κ(δ + ϑ)Γ (̺ + ϑ +μ + 1)
‖σ‖

+
α|Γ (4 – δ)|[3|Γ (3 + ϑ)| + |Γ (4 – ϑ)|]

6κ(δ + ϑ)Γ (3 + ϑ)Γ (̺ – δ + 1)

(

L‖w1‖ +O
)

+
β|Γ (4 – δ)|[3|Γ (3 + ϑ)| + |Γ (4 – ϑ)|]

6κ(δ + ϑ)Γ (3 + ϑ)Γ (̺ +μ – δ + 1)
‖σ‖

=
(

K∗
0 + LK∗

1

)

‖w1‖ +K∗
2‖σ‖ +K∗

1O

≤
(

K∗
0 + LK∗

1

)

r +K∗
2‖σ‖ +K∗

1O ≤ r

for all w1,w2 ∈ Vr . Hence, ‖Υ1w1 + Υ2w2‖ ≤ r and so Υ1w1 + Υ2w2 ∈ Vr for all w1,w2 ∈ Vr .

Now let {wn}n≥1 be a sequence in Vr with wn → w and t ∈ [1, e]. Then, we have

∣

∣(Υ2wn)(t) – (Υ2w)(t)
∣

∣

≤
β

κΓ (̺ +μ)

∫ t

1

(

ln
t

s

)̺+μ–1
∣

∣ϕ
(

s,wn(s)
)

– ϕ
(

s,w(s)
)
∣

∣

ds

s

+
β[|(3 – δ)Γ (4 – ϑ)|(ln t)3 + 3|Γ (4 + ϑ)|(ln t)2]

6κ(δ + ϑ)Γ (̺ + ϑ +μ)

×

∫ e

1

(

ln
e

s

)̺+ϑ+μ–1
∣

∣ϕ
(

s,wn(s)
)

– ϕ
(

s,w(s)
)
∣

∣

ds

s

+
β|Γ (4 – δ)|[3|Γ (3 + ϑ)|(ln t)2 + |Γ (4 – ϑ)|(ln t)3]

6κ(δ + ϑ)Γ (3 + ϑ)Γ (̺ +μ – δ)

×

∫ e

1

(

ln
e

s

)̺+μ–δ–1
∣

∣ϕ
(

s,wn(s)
)

– ϕ
(

s,w(s)
)
∣

∣

ds

s

≤
β

κΓ (̺ +μ + 1)

∣

∣ϕ
(

s,wn(s)
)

– ϕ
(

s,w(s)
)
∣

∣

+
β[|(3 – δ)Γ (4 – ϑ)| + 3|Γ (4 + ϑ)|]

6κ(δ + ϑ)Γ (̺ + ϑ +μ + 1)

∣

∣ϕ
(

s,wn(s)
)

– ϕ
(

s,w(s)
)
∣

∣

+
β|Γ (4 – δ)|[3|Γ (3 + ϑ)| + |Γ (4 – ϑ)|]

6κ(δ + ϑ)Γ (3 + ϑ)Γ (̺ +μ – δ + 1)

∣

∣ϕ
(

s,wn(s)
)

– ϕ
(

s,w(s)
)
∣

∣.

Since ϕ is continuous, ‖Υ2wn – Υ2w‖ → 0, and so the operator Υ2 is continuous on the

open ball Vr . Now, we show that Υ2 is uniformly bounded. Let w ∈ Vr and t ∈ [1, e]. Then,

we get

∣

∣(Υ2w)(t)
∣

∣ ≤
β

κΓ (̺ +μ)

∫ t

1

(

ln
t

s

)̺+μ–1
∣

∣ϕ
(

s,w(s)
)
∣

∣

ds

s

+
β[|(3 – δ)Γ (4 – ϑ)|(ln t)3 + 3|Γ (4 + ϑ)|(ln t)2]

6κ(δ + ϑ)Γ (̺ + ϑ +μ)

×

∫ e

1

(

ln
e

s

)̺+ϑ+μ–1
∣

∣ϕ
(

s,w(s)
)∣

∣

ds

s

+
β|Γ (4 – δ)|[3|Γ (3 + ϑ)|(ln t)2 + |Γ (4 – ϑ)|(ln t)3]

6κ(δ + ϑ)Γ (3 + ϑ)Γ (̺ +μ – δ)

×

∫ e

1

(

ln
e

s

)̺+μ–δ–1
∣

∣ϕ
(

s,w(s)
)
∣

∣

ds

s
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≤
β

κΓ (̺ +μ + 1)
‖σ‖ +

β[|(3 – δ)Γ (4 – ϑ)| + 3|Γ (4 + ϑ)|]

6κ(δ + ϑ)Γ (̺ + ϑ +μ + 1)
‖σ‖

+
β|Γ (4 – δ)|[3|Γ (3 + ϑ)| + |Γ (4 – ϑ)|]

6κ(δ + ϑ)Γ (3 + ϑ)Γ (̺ +μ – δ + 1)
‖σ‖

≤ ‖σ‖

[

β

κΓ (̺ +μ + 1)
+

β[|(3 – δ)Γ (4 – ϑ)| + 3|Γ (4 + ϑ)|]

6κ(δ + ϑ)Γ (̺ + ϑ +μ + 1)

+
β|Γ (4 – δ)|[3|Γ (3 + ϑ)| + |Γ (4 – ϑ)|]

6κ(δ + ϑ)Γ (3 + ϑ)Γ (̺ +μ – δ + 1)

]

=K∗
2‖σ‖

which implies that ‖Υ2w‖ ≤ K∗
2‖σ‖. This shows that Υ2 is uniformly bounded. Here, we

prove that Υ2 is equicontinuous. Let t1, t2 ∈ [1, e] with t1 < t2. We show that Υ2 maps

bounded sets into equicontinuous sets. For each w ∈ Vr , we have

∣

∣(Υ2w)(t2) – (Υ2w)(t1)
∣

∣

≤
β

κΓ (̺ +μ)

∫ t1

1

[(

ln
t2

s

)̺+μ–1

–

(

ln
t1

s

)̺+μ–1]
∣

∣ϕ
(

s,w(s)
)
∣

∣

ds

s

+
β

κΓ (̺ +μ)

∫ t2

t1

(

ln
t2

s

)̺+μ–1
∣

∣ϕ
(

s,w(s)
)
∣

∣

ds

s

+
β[|(3 – δ)Γ (4 – ϑ)|[(ln t2)

3 – (ln t1)
3] + 3|Γ (4 + ϑ)|[(ln t2)

2 – (ln t1)
2]]

6κ(δ + ϑ)Γ (̺ + ϑ +μ)

×

∫ e

1

(

ln
e

s

)̺+ϑ+μ–1
∣

∣ϕ
(

s,w(s)
)
∣

∣

ds

s

+
β|Γ (4 – δ)|[3|Γ (3 + ϑ)|[(ln t2)

2 – (ln t1)
2] + |Γ (4 – ϑ)|[(ln t2)

3 – (ln t1)
3]]

6κ(δ + ϑ)Γ (3 + ϑ)Γ (̺ +μ – δ)

×

∫ e

1

(

ln
e

s

)̺+μ–δ–1
∣

∣ϕ
(

s,w(s)
)
∣

∣

ds

s

≤ ‖σ‖

(

2β

κΓ (̺ +μ + 1)

(

ln
t2

t1

)̺+μ

+
β

κΓ (̺ +μ + 1)

∣

∣(ln t2)
̺+μ – (ln t1)

̺+μ
∣

∣

+
β[|(3 – δ)Γ (4 – ϑ)|[(ln t2)

3 – (ln t1)
3] + 3|Γ (4 + ϑ)|[(ln t2)

2 – (ln t1)
2]]

6κ(δ + ϑ)Γ (̺ + ϑ +μ + 1)

+
β|Γ (4 – δ)|[3|Γ (3 + ϑ)|[(ln t2)

2 – (ln t1)
2] + |Γ (4 – ϑ)|[(ln t2)

3 – (ln t1)
3]]

6κ(δ + ϑ)Γ (3 + ϑ)Γ (̺ +μ – δ + 1)

)

.

Note that the right-hand side is independent of w ∈ Vr and converges to zero as t1 → t2.

This means thatΥ2 is equicontinuous. Consequently, the operatorΥ2 is relatively compact

on Vr and, by using the Arzela–Ascoli theorem, we conclude that Υ2 is completely con-

tinuous. Hence, Υ2 is compact on the open ball Vr . Now, we show that Υ1 is a contraction.

Let w1,w2 ∈ Vr and t ∈ [1, e]. Then, we have

∣

∣(Υ1w1)(t) – (Υ1w2)(t)
∣

∣

≤
|κ – 1|

κΓ (̺ –̟ )

∫ t

1

(

ln
t

s

)̺–̟–1
∣

∣w1(s) –w2(s)
∣

∣

ds

s
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+
α

κΓ (̺)

∫ t

1

(

ln
t

s

)̺–1
∣

∣ψ
(

s,w1(s)
)

–ψ
(

s,w2(s)
)
∣

∣

ds

s

+
(1 – κ)[|3Γ (4 + ϑ)|(ln t)2 + |(δ – 3)Γ (4 – ϑ)|(ln t)3]

6κ(δ + ϑ)Γ (̺ –̟ + ϑ)

×

∫ e

1

(

ln
e

s

)̺–̟+ϑ–1
∣

∣w1(s) –w2(s)
∣

∣

ds

s

+
(1 – κ)|Γ (4 – δ)|[|Γ (4 – ϑ)|(ln t)3 + 3|Γ (3 + ϑ)|(ln t)2]

6κ(δ + ϑ)Γ (3 + ϑ)Γ (̺ –̟ – δ)

×

∫ e

1

(

ln
e

s

)̺–̟–δ–1
∣

∣w1(s) –w2(s)
∣

∣

ds

s

+
α[|(3 – δ)Γ (4 – ϑ)|(ln t)3 + 3|Γ (4 + ϑ)|(ln t)2]

6κ(δ + ϑ)Γ (̺ + ϑ)

×

∫ e

1

(

ln
e

s

)̺+ϑ–1
∣

∣ψ
(

s,w1(s)
)

–ψ
(

s,w2(s)
)
∣

∣

ds

s

+
α|Γ (4 – δ)|[3|Γ (3 + ϑ)|(ln t)2 + |Γ (4 – ϑ)|(ln t)3]

6κ(δ + ϑ)Γ (3 + ϑ)Γ (̺ – δ)

×

∫ e

1

(

ln
e

s

)̺–δ–1
∣

∣ψ
(

s,w1(s)
)

–ψ
(

s,w2(s)
)
∣

∣

ds

s

≤

[

|κ – 1|

κΓ (̺ –̟ + 1)
+
(1 – κ)[|3Γ (4 + ϑ)| + |(δ – 3)Γ (4 – ϑ)|]

6κ(δ + ϑ)Γ (̺ –̟ + ϑ + 1)

+
(1 – κ)|Γ (4 – δ)|[|Γ (4 – ϑ)| + 3|Γ (3 + ϑ)|]

6κ(δ + ϑ)Γ (3 + ϑ)Γ (̺ –̟ – δ + 1)
+

Lα

κΓ (̺ + 1)

+
Lα[|(3 – δ)Γ (4 – ϑ)| + 3|Γ (4 + ϑ)|]

6κ(δ + ϑ)Γ (̺ + ϑ + 1)

+
Lα|Γ (4 – δ)|[3|Γ (3 + ϑ)| + |Γ (4 – ϑ)|]

6κ(δ + ϑ)Γ (3 + ϑ)Γ (̺ – δ + 1)

]

‖w1 –w2‖

=
(

K∗
0 + LK∗

1

)

‖w1 –w2‖.

Since K∗
0 + LK∗

1 < 1, Υ1 is a contraction. Note that Υ = Υ1 + Υ2. Now, by using Lemma 4,

the operator Υ has a fixed point which is a solution for the Caputo–Hadamard boundary

value problem (1)–(2). �

Here, we are going to investigate the existence of solutions for the Caputo–Hadamard

problem (1)–(2) by considering different conditions.

Theorem 9 Suppose that ψ ,ϕ : [1, e]×R→ R are continuous functions such that

(N3) there are continuous nondecreasing functions ξ1, ξ2 : [0,∞) → (0,∞) and two maps

θ1, θ2 ∈ C([0, 1],R+) such that |ψ(t,w)| ≤ θ1(t)ξ1(|w|) and |ϕ(t,w)| ≤ θ2(t)ξ2(|w|) for

all (t,w) ∈ [1, e]×R,

(N4) K∗
0 < 1 and there is a constant Ξ > 0 such that

(1–K∗
0)Ξ

K∗
1‖θ1‖ξ1(Ξ )+K∗

2‖θ2‖ξ2(Ξ )
> 1, where K∗

0 ,

K∗
1 , K

∗
2 are defined by (7).

Then the Caputo–Hadamard problem (1)–(2) has at least one solution.
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Proof We first show that the operator Υ maps bounded sets of E into bounded sets. Let

ǫ > 0, Bǫ = {w ∈ E : ‖w‖ ≤ ǫ} and t ∈ [1, e]. Then, we have

∣

∣(Υw)(t)
∣

∣ ≤
|κ – 1|

κΓ (̺ –̟ )

∫ t

1

(

ln
t

s

)̺–̟–1

‖w‖
ds

s

+
α

κΓ (̺)

∫ t

1

(

ln
t

s

)̺–1

‖θ1‖ξ1
(

‖w‖
)ds

s

+
β

κΓ (̺ +μ)

∫ t

1

(

ln
t

s

)̺+μ–1

‖θ2‖ξ2
(

‖w‖
)ds

s

+
(1 – κ)[|3Γ (4 + ϑ)|(ln t)2 + |(δ – 3)Γ (4 – ϑ)|(ln t)3]

6κ(δ + ϑ)Γ (̺ –̟ + ϑ)

×

∫ e

1

(

ln
e

s

)̺–̟+ϑ–1

‖w‖
ds

s

+
(1 – κ)|Γ (4 – δ)|[|Γ (4 – ϑ)|(ln t)3 + 3|Γ (3 + ϑ)|(ln t)2]

6κ(δ + ϑ)Γ (3 + ϑ)Γ (̺ –̟ – δ)

×

∫ e

1

(

ln
e

s

)̺–̟–δ–1

‖w‖
ds

s

+
α[|(3 – δ)Γ (4 – ϑ)|(ln t)3 + 3|Γ (4 + ϑ)|(ln t)2]

6κ(δ + ϑ)Γ (̺ + ϑ)

×

∫ e

1

(

ln
e

s

)̺+ϑ–1

‖θ1‖ξ1
(

‖w‖
)ds

s

+
β[|(3 – δ)Γ (4 – ϑ)|(ln t)3 + 3|Γ (4 + ϑ)|(ln t)2]

6κ(δ + ϑ)Γ (̺ + ϑ +μ)

×

∫ e

1

(

ln
e

s

)̺+ϑ+μ–1

‖θ2‖ξ2
(

‖w‖
)ds

s

+
α|Γ (4 – δ)|[3|Γ (3 + ϑ)|(ln t)2 + |Γ (4 – ϑ)|(ln t)3]

6κ(δ + ϑ)Γ (3 + ϑ)Γ (̺ – δ)

×

∫ e

1

(

ln
e

s

)̺–δ–1

‖θ1‖ξ1
(

‖w‖
)ds

s

+
β|Γ (4 – δ)|[3|Γ (3 + ϑ)|(ln t)2 + |Γ (4 – ϑ)|(ln t)3]

6κ(δ + ϑ)Γ (3 + ϑ)Γ (̺ +μ – δ)

×

∫ e

1

(

ln
e

s

)̺+μ–δ–1

‖θ2‖ξ2
(

‖w‖
)ds

s

≤K∗
0‖w‖ +K∗

1‖θ1‖ξ1
(

‖w‖
)

+K∗
2‖θ2‖ξ2

(

‖w‖
)

.

Hence, ‖Υw‖ ≤ K∗
0ǫ +K∗

1‖θ1‖ξ1(ǫ) +K∗
2‖θ2‖ξ1(ǫ). Now, we prove that Υ maps bounded

sets into equicontinuous sets of E . Let t1, t2 ∈ [1, e] with t1 < t2 and w ∈ Bǫ . Then, we get

∣

∣(Υw)(t2) – (Υw)(t1)
∣

∣

≤
|κ – 1|ǫ

κΓ (̺ –̟ )

[∫ t1

1

[(

ln
t2

s

)̺+̟–1

–

(

ln
t1

s

)̺+̟–1]ds

s
+

∫ t2

t1

(

ln
t2

s

)̺+̟–1 ds

s

]
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+
α‖θ1‖ξ1(ǫ)

κΓ (̺)

[∫ t1

1

[(

ln
t2

s

)̺–1

–

(

ln
t1

s

)̺–1]ds

s
+

∫ t2

t1

(

ln
t2

s

)̺–1 ds

s

]

+
β‖θ2‖ξ2(ǫ)

κΓ (̺ +μ)

[∫ t1

1

[(

ln
t2

s

)̺+μ–1

–

(

ln
t1

s

)̺+μ–1]ds

s
+

∫ t2

t1

(

ln
t2

s

)̺+μ–1 ds

s

]

+
(1 – κ)[|3Γ (4 + ϑ)|[(ln t2)

2 – (ln t1)
2] + |(δ – 3)Γ (4 – ϑ)|[(ln t2)

3 – (ln t1)
3]]ǫ

6κ(δ + ϑ)Γ (̺ –̟ + ϑ + 1)

+
(

(1 – κ)
∣

∣Γ (4 – δ)
∣

∣

[
∣

∣Γ (4 – ϑ)
∣

∣

[

(ln t2)
3 – (ln t1)

3
]

+ 3
∣

∣Γ (3 + ϑ)
∣

∣

[

(ln t2)
2 – (ln t1)

2
]]

ǫ
)

/
(

6κ(δ + ϑ)Γ (3 + ϑ)Γ (̺ –̟ – δ + 1)
)

+
(

α
[
∣

∣(3 – δ)Γ (4 – ϑ)
∣

∣

[

(ln t2)
3 – (ln t1)

3
]

+ 3
∣

∣Γ (4 + ϑ)
∣

∣

[

(ln t2)
2 – (ln t1)

2
]]

‖θ1‖ξ1(ǫ)
)

/
(

6κ(δ + ϑ)Γ (̺ + ϑ + 1)
)

+
(

β
[∣

∣(3 – δ)Γ (4 – ϑ)
∣

∣

[

(ln t2)
3 – (ln t1)

3
]

+ 3
∣

∣Γ (4 + ϑ)
∣

∣

[

(ln t2)
2 – (ln t1)

2
]]

‖θ2‖ξ2(ǫ)
)

/
(

6κ(δ + ϑ)Γ (̺ + ϑ +μ + 1)
)

+
(

α
∣

∣Γ (4 – δ)
∣

∣

[

3
∣

∣Γ (3 + ϑ)
∣

∣

[

(ln t2)
2 – (ln t1)

2
]

+
∣

∣Γ (4 – ϑ)
∣

∣

[

(ln t2)
3 – (ln t1)

3
]]

‖θ1‖ξ1(ǫ)
)

/
(

6κ(δ + ϑ)Γ (3 + ϑ)Γ (̺ – δ + 1)
)

+
(

β
∣

∣Γ (4 – δ)
∣

∣

[

3
∣

∣Γ (3 + ϑ)
∣

∣

[

(ln t2)
2 – (ln t1)

2
]

+
∣

∣Γ (4 – ϑ)
∣

∣

[

(ln t2)
3 – (ln t1)

3
]]

‖θ2‖ξ2(ǫ)
)

/
(

6κ(δ + ϑ)Γ (3 + ϑ)Γ (̺ +μ – δ + 1)
)

.

Note that the right-hand side tends to zero independently of w ∈ Bǫ as t2 → t1. By using

the Arzela–Ascoli theorem, we deduce that Υ : E → E is completely continuous. Here,

we prove that the set of all solutions of the equation w = λ(Υw) is bounded for each λ ∈

[0, 1]. Let λ ∈ [0, 1], w be such that w = λ(Υw) and t ∈ [1, e]. Then by using computations

used in the first step, we obtain ‖w‖ ≤K∗
0‖w‖+K∗

1‖θ1‖ξ1(‖w‖)+K∗
2‖θ2‖ξ2(‖w‖). Thus, we

conclude that
(1–K∗

0)‖w‖

K∗
1‖θ1‖ξ1(‖w‖)+K∗

2‖θ2‖ξ2(‖w‖)
≤ 1. By using the assumption (N4), we can choose a

number Ξ > 0 such that ‖w‖ �= Ξ and
(1–K∗

0)Ξ

K∗
1‖θ1‖ξ1(Ξ )+K∗

2‖θ2‖ξ2(Ξ )
> 1. Consider the set U = {w ∈

E : ‖w‖ < Ξ}. Note that the operator Υ : U → E is continuous and completely continuous

and also we can not find w ∈ ∂U such that w = λ(Υw) holds for some λ ∈ (0, 1). Now, by

using Lemma 5, the operator Υ has a fixed point in U which is a solution for the Caputo–

Hadamard fractional integro-differential boundary value problem (1)–(2). �

Nowby using the Banach contraction principle, we review theCaputo–Hadamard prob-

lem (1)–(2) under some different conditions.

Theorem 10 Suppose that ψ : [1, e]×R→R is a continuous function satisfying assump-

tion (N1). Assume that the function ϕ : [1, e]×R→ R satisfies the following condition:
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(N5) there is a positive constant L̃ such that for each |ϕ(t,w1) – ϕ(t,w2)| ≤ L̃|w1 –w2| for

all w1,w2 ∈R and t ∈ [1, e].

IfK∗
0 +LK

∗
1 + L̃K

∗
2 < 1, then the Caputo–Hadamard problem (1)–(2) has a unique solution,

where K∗
0 , K

∗
1 , and K∗

2 are given by (7).

Proof Put K∗ = supt∈[1,e] |ψ(t, 0)| < ∞ and N∗ = supt∈[1,e] |ϕ(t, 0)| < ∞. Choose r > 0 such

that r ≥
N∗K∗

2+K
∗K∗

1

1–(K∗
0+LK

∗
1+L̃K

∗
2)
. Let Br = {w ∈ E : ‖w‖ ≤ r}. We show that ΥBr ⊂ Br . Let w ∈ Br .

By using assumptions (N1) and (N5), we have

‖Υw‖ ≤
|κ – 1|

κΓ (̺ –̟ )

∫ t

1

(

ln
t

s

)̺–̟–1

‖w‖
ds

s

+
α

κΓ (̺)

∫ t

1

(

ln
t

s

)̺–1
(

L‖w‖ +K∗
)ds

s

+
β

κΓ (̺ +μ)

∫ t

1

(

ln
t

s

)̺+μ–1
(

L̃‖w‖ +N∗
)ds

s

+
(1 – κ)[|3Γ (4 + ϑ)|(ln t)2 + |(δ – 3)Γ (4 – ϑ)|(ln t)3]

6κ(δ + ϑ)Γ (̺ –̟ + ϑ)

×

∫ e

1

(

ln
e

s

)̺–̟+ϑ–1

‖w‖
ds

s

+
(1 – κ)|Γ (4 – δ)|[|Γ (4 – ϑ)|(ln t)3 + 3|Γ (3 + ϑ)|(ln t)2]

6κ(δ + ϑ)Γ (3 + ϑ)Γ (̺ –̟ – δ)

×

∫ e

1

(

ln
e

s

)̺–̟–δ–1

‖w‖
ds

s

+
α[|(3 – δ)Γ (4 – ϑ)|(ln t)3 + 3|Γ (4 + ϑ)|(ln t)2]

6κ(δ + ϑ)Γ (̺ + ϑ)

×

∫ e

1

(

ln
e

s

)̺+ϑ–1
(

L‖w‖ +K∗
)ds

s

+
β[|(3 – δ)Γ (4 – ϑ)|(ln t)3 + 3|Γ (4 + ϑ)|(ln t)2]

6κ(δ + ϑ)Γ (̺ + ϑ +μ)

×

∫ e

1

(

ln
e

s

)̺+ϑ+μ–1
(

L̃‖w‖ +N∗
)ds

s

+
α|Γ (4 – δ)|[3|Γ (3 + ϑ)|(ln t)2 + |Γ (4 – ϑ)|(ln t)3]

6κ(δ + ϑ)Γ (3 + ϑ)Γ (̺ – δ)

×

∫ e

1

(

ln
e

s

)̺–δ–1
(

L‖w‖ +K∗
)ds

s

+
β|Γ (4 – δ)|[3|Γ (3 + ϑ)|(ln t)2 + |Γ (4 – ϑ)|(ln t)3]

6κ(δ + ϑ)Γ (3 + ϑ)Γ (̺ +μ – δ)

×

∫ e

1

(

ln
e

s

)̺+μ–δ–1
(

L̃‖w‖ +N∗
)ds

s

≤
(

K∗
0 + LK∗

1 + L̃K∗
2

)

r +K∗
2N

∗ +K∗
1K

∗ < r.
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Hence, ΥBr ⊂ Br . Let t ∈ [1, e] and w1,w2 ∈R. Then, we have

∥

∥(Υw1)(t) – (Υw2)(t)
∥

∥ ≤
|κ – 1|

κΓ (̺ –̟ )

∫ t

1

(

ln
t

s

)̺–̟–1
∣

∣w1(s) –w2(s)
∣

∣

ds

s

+
α

κΓ (̺)

∫ t

1

(

ln
t

s

)̺–1
∣

∣ψ
(

s,w1(s)
)

–ψ
(

s,w2(s)
)∣

∣

ds

s

+
β

κΓ (̺ +μ)

∫ t

1

(

ln
t

s

)̺+μ–1
∣

∣ϕ
(

s,w1(s)
)

– ϕ
(

s,w2(s)
)
∣

∣

ds

s

+
(1 – κ)[|3Γ (4 + ϑ)|(ln t)2 + |(δ – 3)Γ (4 – ϑ)|(ln t)3]

6κ(δ + ϑ)Γ (̺ –̟ + ϑ)

×

∫ e

1

(

ln
e

s

)̺–̟+ϑ–1
∣

∣w1(s) –w2(s)
∣

∣

ds

s

+
(1 – κ)|Γ (4 – δ)|[|Γ (4 – ϑ)|(ln t)3 + 3|Γ (3 + ϑ)|(ln t)2]

6κ(δ + ϑ)Γ (3 + ϑ)Γ (̺ –̟ – δ)

×

∫ e

1

(

ln
e

s

)̺–̟–δ–1
∣

∣w1(s) –w2(s)
∣

∣

ds

s

+
α[|(3 – δ)Γ (4 – ϑ)|(ln t)3 + 3|Γ (4 + ϑ)|(ln t)2]

6κ(δ + ϑ)Γ (̺ + ϑ)

×

∫ e

1

(

ln
e

s

)̺+ϑ–1
∣

∣ψ
(

s,w1(s)
)

–ψ
(

s,w2(s)
)
∣

∣

ds

s

+
β[|(3 – δ)Γ (4 – ϑ)|(ln t)3 + 3|Γ (4 + ϑ)|(ln t)2]

6κ(δ + ϑ)Γ (̺ + ϑ +μ)

×

∫ e

1

(

ln
e

s

)̺+ϑ+μ–1
∣

∣ϕ
(

s,w1(s)
)

– ϕ
(

s,w2(s)
)
∣

∣

ds

s

+
α|Γ (4 – δ)|[3|Γ (3 + ϑ)|(ln t)2 + |Γ (4 – ϑ)|(ln t)3]

6κ(δ + ϑ)Γ (3 + ϑ)Γ (̺ – δ)

×

∫ e

1

(

ln
e

s

)̺–δ–1
∣

∣ψ
(

s,w1(s)
)

–ψ
(

s,w2(s)
)
∣

∣

ds

s

+
β|Γ (4 – δ)|[3|Γ (3 + ϑ)|(ln t)2 + |Γ (4 – ϑ)|(ln t)3]

6κ(δ + ϑ)Γ (3 + ϑ)Γ (̺ +μ – δ)

×

∫ e

1

(

ln
e

s

)̺+μ–δ–1
∣

∣ϕ
(

s,w1(s)
)

– ϕ
(

s,w2(s)
)
∣

∣

ds

s

≤
(

K∗
0 + LK∗

1 + L̃K∗
2

)

‖w1 –w2‖.

Since we have K∗
0 + LK∗

1 + L̃K∗
2 < 1, Υ is a contraction. By using the Banach contrac-

tion principle, Υ has a unique fixed point which is the unique solution of the Caputo–

Hadamard problem (1)–(2). This completes the proof. �

4 Examples

In this section, we provide three numerical examples to examine the validity of our the-

oretical findings. To do this, we consider constants κ = 0.78, α = 0.69, β = 0.73, ̺ = 3.95,

̟ = 3.87, μ = 1.3, δ = 1.92, and ϑ = 0.001 with δ + ϑ = 1.921 �= 0 for our examples. The

next example illustrates Theorem 8.
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Example 1 Consider the Caputo–Hadamard fractional integro-differential equation

[

0.78CHD3.95
1+ + 0.22CHD3.87

1+

]

w(t) = 0.69
0.01t|w(t)|

7 + |w(t)|
+ 0.73HI1.3

1+ ln t
(

sinw(t)
)

(8)

with boundary value conditions

⎧

⎨

⎩

w(1) = 0, CHD1.92
1+ w(e) = 0,

CHD1+w(1) = 0, 1
Γ (0.001)

∫ e

1
(ln e

s
)0.001–1w(s) ds

s
= 0,

(9)

where t ∈ [1, e]. Define the continuous functions ψ ,ϕ : [1, e]×R → R by ψ(t,w) = 0.99t|w|

7+|w|

and ϕ(t,w) = ln t(sinw). Note that |ψ(t,w1) – ψ(t,w2)| ≤ L|w1 – w2| holds for all w1,w2 ∈

R, where L = 0.01e > 0. Also, the continuous function σ (t) = ln t on [1, e] is such that

|ϕ(t,w)| ≤ σ (t) = ln t for all w ∈ R. In this case, we have ‖σ‖ = supt∈[1,e] σ (t) = 1. Some

calculations show that K∗
0 = 0.8968 and K∗

1 = 0.3559. Hence, K∗
0 + LK∗

1 = 0.9064 < 1. By

using Theorem 8, the Caputo–Hadamard problem (8)–(9) has a solution.

Next example illustrates Theorem 9.

Example 2 Consider the Caputo–Hadamard fractional integro-differential equation

[

0.78CHD3.95
1+ + 0.22CHD3.87

1+

]

w(t) = 0.69
1

16 + t

(

3

4
+

|w(t)|

2 + |w(t)|

)

+ 0.73HI1.3
1+

1

3 + sin π t
2

(

4

5
+

|w(t)|

3 + |w(t)|

)

(10)

with boundary value conditions

⎧

⎨

⎩

w(1) = 0, CHD1.92
1+ w(e) = 0,

CHD1+w(1) = 0, 1
Γ (0.001)

∫ e

1
(ln e

s
)0.001–1w(s) ds

s
= 0,

(11)

where t ∈ [1, e]. Define continuous maps ψ ,ϕ : [1, e] ×R → R by ψ(t,w) = 1
16+t

( 3
4
+ |w|

2+|w|
)

and ϕ(t,w) = 1

3+sin π t
2
( 4
5
+ |w|

3+|w|
). Note that |ψ(t,w(t))| ≤ 1

16+t
(1 + ‖w‖) and |ϕ(t,w(t))| ≤

1

3+sin π t
2
(1 + ‖w‖) for all w ∈ R and t ∈ [1, e]. Put θ1(t) =

1
16+t

, θ2(t) =
1

3+sin π t
2
, and ξ1(‖w‖) =

ξ2(‖w‖) = 1 + ‖w‖. Then, we have ψ(t,w) ≤ θ1(t)ξ1(|w|) and ϕ(t,w) ≤ θ2(t)ξ2(|w|). Note

that ‖θ1‖ =
1
17

= 0.0588, ‖θ2‖ =
1
4
= 0.25, and ξ1(Ξ ) = ξ2(Ξ ) = 1 +Ξ . Also,K∗

0 = 0.8968 < 1,

K∗
1 = 0.3559, and K∗

2 = 0.2995. By considering assumption (N4), choose Ξ > 12.76. Now

by using Theorem 9, the Caputo–Hadamard problem (10)–(11) has a solution.

Next example illustrates Theorem 10.

Example 3 Consider the Caputo–Hadamard fractional integro-differential equation

[

0.78CHD3.95
1+ + 0.22CHD3.87

1+

]

w(t)

= 0.69
cos t|w(t)|

1 + |w(t)|
+ 0.73HI1.3

1+
2

5 + t

(

| arctanw(t)|

| arctanw(t)| + 1

)

(12)
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with boundary value conditions

⎧

⎨

⎩

w(1) = 0, CHD1.92
1+ w(e) = 0,

CHD1+w(1) = 0, 1
Γ (0.001)

∫ e

1
(ln e

s
)0.001–1w(s) ds

s
= 0,

(13)

where t ∈ [1, e]. Define continuous maps ψ ,ϕ : [1, e] × R → R by ψ(t,w) = cos t|w|

1+|w|
and

ϕ(t,w) = 2
7+t

( | arctanw(t)|
| arctanw(t)|+1

). Note that |ψ(t,w1(t)) – ψ(t,w2(t))| ≤ cos t(|w1(t) – w2(t)|) and

|ϕ(t,w1(t))–ϕ(t,w2(t))| ≤
2
7+t

(|w1(t)–w2(t)|). Put L = | cos(e)| = 0.9117 and L̃ = 0.25. Some

calculations show that K∗
0 + LK∗

1 + L̃K∗
2 = 0.98127 < 1. Now by using Theorem 10, the

Caputo–Hadamard problem (12)–(13) has a unique solution.

5 Conclusions

It is known that we should increase our ability for studying of different types of fractional

integro-differential equations. In this case, we could create modern software in the fu-

ture by using advanced modelings of distinct phenomena. In this way, we should try to

review different types of fractional integro-differential equations. In this work, we study

the existence of solutions for a Caputo–Hadamard fractional integro-differential equation

with boundary value conditions involving the Hadamard fractional operators via different

orders. Also, we provide three examples to illustrate our main results.
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