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A fully three-dimensional finite-strain viscoelastic model is developed, characterized by: (i) general 

anisotropic response, (ii) uncoupled bulk and deviatoric response over any range of deformations, (iii) 

general relaxation functions, and (iv) recovery of finite elasticity for very fast or very slow processes; in 

particular, classical models of rubber elasticity (e.g. Mooney-Rivlin). Continuum damage mechanics is 

employed to develop a simple isotropic damage mechanism, which incorporates softening behavior 

under deformation, and leads to progressive degradation of the storage modulus in a cyclic test with 

increasing amplitude (Mullins’ effect). A numerical integration procedure is proposed which trivially 

satisfies objectivity and bypasses the use of midpoint configurations. The resulting algorithm can be 

exactly linearized in closed form, and leads to symmetric tangent moduli. Quasi-incompressible 

response is accounted for within the context of a three-field variational formulation of the Hu-Washizu 

type. 

Introduction 

A fully three-dimensional finite-strain viscoelastic constitutive model incorporating a dam- 

age mechanism is developed, based on irreversible thermodynamics with internal variables. In 

contrast with several formulations proposed in the past, [2, 3, 15, 301, the present approach is 

not restricted to isotropic response. Basic characteristics are: 

(i) Local additive decomposition of the stress tensor into initial and nonequilibrium parts. 

This results from a structure of the free energy that generalizes linear viscous models. 

(ii) Uncoupled volumetric and deviatoric response over any range of deformation. This is 

achieved by a local multiplicative decomposition of the deformation gradient into volume- 

preserving and dilational parts which goes back at least to Flory [12], and has been employed 

by Sidoroff [42], Ogden [37], Simo, Taylor and Pister [45], Lubliner [30], and Simo and Taylor 

WI. 
(iii) Viscous response characterized by a linear rate constitutive equation, leading to a 

convolution representation that generalizes viscoelastic models with linearized kinematics. For 

relaxation times, either extremely small or very large, general finite elasticity is recovered; in 

particular classical models of rubber elasticity, e.g. neo-Hookean, Mooney-Rivlin, and Blatz 

and Ko [l]. 
To enhance the applicability of the model, continuum damage mechanics is employed [5, 6, 

27, 281 to develop a simple three-dimensional isotropic damage mechanism. In a uniaxial test, 

the resulting model exhibits loss of stiffness in a range of strains lower than the previously 

attained maximum strain. This softening with deformation is typically observed in filled 
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polymers, and is often referred to as Mullins’ effect [34,47,48]. The dependence of the stress 

response on the past maximum strain [lo] results in the degradation of the storage moduli with 

increasing amplitude in a cyclic test, in agreement with experimental results (491. Damage 

models based on the maximum strain concept have been often restricted to linear kinematics 

and one-dimensional forms 14, 171. 

An essential purpose of this paper is to show that the resulting constitutive model is 

particularly well suited for large-scale computation. Concerning the constitutive integration 

algorithm it is noted that: 

(iv) Generalized midpoint algorithms that ensure incremental objectivity [21,24,38] are 

entirely bypassed. The proposed integration procedure is second-order accurate and takes 

place entirely in the reference configuration. Incremental objectivity is trivially satisfied, and 

midpoint transformations are avoided. 

(v) As opposed to spatial midpoint algorithms, the proposed procedure can be exactly 

linearized in closed form. Due to the structure of the rate equation characterizing inelastic 

response, the tangent operator is symmetric. 

The overall complexity of the proposed algorithm thus compares favorably with existing 

computational models [l&24], which do not even incorporate damage effects. 

To appropriately account for the volume constraint emanating from a quasi-incompress- 

ible response, a mixed finite element procedure is adopted, based on a three-field variational 

formulation of the mu-Washizu type, as proposed in [45]. Within this framework, widely used 

procedures [20,32] can be formulated in the fully nonlinear range without resorting to rate 

forms. This includes interpolation schemes known to satisfy the LBB condition in the linear 

case [35]. In addition, iterative augmented Lagrangian procedures [13,16] fit naturally within 

the present context. Consistent linearization procedures [33] are employed systematically to 

obtain tangent operators. 

Comparison with experimental data and numerical simulations are presented to illustrate 

the effectiveness of the proposed formulation. 

1. Nonlinear viscoelastic model 

In this section we develop the basic structure of the proposed finite-strain viscoelastic model. In 

contrast with formulations based on a multiplicative decomposition of the deformation 

gradient [15,30,42] or on an additive split of the Lagrangian strain tensor [7], the proposed 

model results in an additive split of the stress tensor into initial and n~,nequilibrium parts. 

However, for the particular case of neo-Hookean type of elastic response, the model is 

consistent with a multiplicative decomposition of the deformation gradient. The assumption of 

isotropy, crucial in the Green and Tobolsky model and its subsequent extension due to 

Lubliner [30], is not invoked here. Furthermore, as opposed to second-order theories based 

on asymptotic expansions [7], complete uncoupling over any range of strains of volumetric and 

deviatoric responses may be obtained due to the exact multiplicative split into volume- 

preserving and dilational parts discussed below. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

1.1. Motivation. Linear theory 

To motivate the fully nonlinear formulation developed below, we first consider the 

following alternative formulation of the standard linear solid. Let 1v(c, 4) be the free energy 
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W(E, q): = U”(tr E) + e”(e) - q: e + !PI( q) . (14 

Here, U” and !@’ are the volumetric and deviatoric parts of the initial elastic stored energy 

function !P” (uncoupling is assumed), and e = dev[e] is the strain deviator, where dev[ a] = 

( 0) - 3 tr( -  )l. For the isotropic case one has U”(tr E) = i K’(tr E)~ and @O(e) = p” 1) e]12. In 

the present formulation q is an internal variable governed by the following equation of 

evolution: 

dev[a*‘(e)/ae] , qlrzo = 0, (1.2) 

where y E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[0, 1) is a given parameter. Note that for the standard solid (1 - y)q/y gives the 

(nonequilibrium) force acting on the spring parallel to the dashpot. The second law of 

thermodynamics gives 

u = r3W(E, q)/de = cr” - q ) (1.3) 

where 0’: = ~W”(E) Me. Thus, we have an additive decomposition of the current stress tensor 

into initial stress a0 and nonequilibrium stress q. Integration of (1.2) and substitution of q into 

(1.3) yield the classical convolution representation of the standard linear solid. 

REMARK 1.1. Wf( q) in (1.1) is determined from the conditions of thermodynamic equilib- 

rium. As an example, assuming rate equation (1.2), at equilibrium a*(&, q)/dq = 0 and Q = 0, 

so that from (1.1) and (1.2) one has 

e = dWI(q)/dq and q = (1 - y) dev[a*‘(e)lae] . (1.4) 

It follows from (1.4) that W1( q) is given by the Legendre transformation 

q,(q) = -(l - y)*‘(e) + e: q. 

Note that for the isotropic case WI(q) = (1/4,~‘(1 - y))11q11*. 

(1.5) 

The formulation outlined can be extended to the fully nonlinear case as follows. 

1.2. Kinematic split and structure of the free energy 

Let +9(X,t):BxlR + R3 denote the motion and let F(X, t) be the deformation gradient. 

Here X E R3 designates the position of a particle in the reference configuration 0 c R3. 

Further, let J = det F be the Jacobian of the deformation gradient. To properly define 
volumetric and deviatoric reponses in the nonlinear range, we 

kinematic split: 

F = J’13F where F: = J-li3F , zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF:=a@tax. 

Since det @ = 1, we refer to @ as the volume-preserving part of the 

introduce the following 

(1.6) 

deformation gradient F. 
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Associated with F and F we define the corresponding right Cauchy-Green tensors as 

C=F’F, Cc J-~'"~-LF~F. 

Lagrangian strain tensors are given by the standard expressions 

E: = t[C-Gl, Z?:=$[C-G], 

where G is the metric tensor in the reference con~guration 

6, = 4,). 

(3.7a,b) 

w-9 

(in Cartesian components, 

REMARK 1.2. Expression (1.7b) furnishes the proper generalization to finite motions of the 

decomposition of the linearized strain tensor into spherical and deviatoric parts. To illustrate 

the point consider the linearization of (1.7b) about cp = Identity. Let cp, = cp + EU 0 v), where 

E E [w, and u : cp(f2)* R3 is an incremental displacement from (p(0). Since FE = [F + EVUF] 

and C, = FiF,, it follows that 

d 

dE &=O 
det FB = (det F) tr Vcl + -$ 

&=O 
C, = F’(V’u + Vu)F . (1.9) 

Since F = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 at q = Identity, the linearization of (1.7b) yields the relation e = E - f (tr Va)l of 

the linear theory. 

Motivated by (1.1) for the linear theory, we postulate an uncoupled free energy function 

W(Z3, Q) of the form1 

‘IV‘@, Q): = U’(J) + @*(Z?) - Q :E + ur,(Q) , (1.10) 

where Q plays the role of an internal variable. Let r = Jo- = FSF t denote the Kirchhoff stress 

tensor. where q is the Cauchv stress tensor, and S is the symmetric Piola-Kirchoff stress 

tensor: Restricting our attention to the isothermal case, standard arguments [9], 

Clausius-Duhem inequality - ?ZF + &S : d 3 0, lead to 

Straightforward application of the chain rule along with the formula t3JlaC = 

ati/aE = aCiac = J-2’3[Z - $C@ C-‘j , 

where Z is the symmetric rank-four unit tensor. From (l.lO)-( 1.12) we obtain 

constitutive equation for the second Piola-Kirchhoff tensor: 

exploiting the 

(1.11) 

JI2C” yields 

(1.12) 

the following 

‘There is no difficulty in considering forms other than (1.10). Typically, elastic stored energy functions of the 

form ly: = J@‘“(E) + UO(J) may be more appropriate for rubberlike materials [36]. 
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S = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJpC-’ + J-*13 DEV[a@‘(E) /aE - Q] . (1.13a) 

Here p = duo(J) ldJ denotes the hydrostatic pressure and DEV[ *I: = (e) - f [C: (.)]C’. 

Note that DEV[ . ] gives the physically correct deviator in the reference configuration, with the 

right Cauchy-Green tensor C operating as metric tensor. Since 7 = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFSF t , in the spatial 

description expression (1.13a) may be recast in the equivalent form 

7 = Jpl+ dev[#{d@“(E)l~E - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ}F’] , (1.13b) 

where dev[ a] = (*) - $ tr( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-)l denotes the deviator (in the spatial configuration) of the 

indicated argument. 

EXAMPLE 1.3. An example of the elastic constitutive equation is furnished by the following 

uncoupled stored energy function: 

@(E) = ; j.LOI + U”(J) ) (1.14) 
-- 

where r: = tr b is the first invariant of b = FF t  and E_L’ > 0 is a constant (shear modulus). It 

follows from (l.l3a, b) that the Kirchhoff and symmetric Piola-Kirchhoff tensors are given by 

7 = Jpl + p” dev[b - FQF’] , S = JpC-’ + P’J-*‘~ DEV[G - Q] , (1.15) 

where DEV[G] = G - f (G : C)C’. This model furnishes an extension to the compressible 

range of the classical neo-Hookean model and was employed by Simo et al. [45] for finite 

deformation elastoplasticity formulated in the context of a multiplicative decomposition. 

1.3. Rate equation and convolution representation 

Motivated by our discussion of Section 1.1, we propose the following linear rate equation to 

introduce “standard solid” type of viscoelastic behavior: 

(1.16) 

where v E [0, ~0) is the relaxation time and y E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[0, 1) is given parameter. As in Section 1.1.) 

the linear structure of (1.16) enables us to express Q in terms of a simple convolution integral. 

Substitution into (1.13a) and (1.13b) then yields the following equivalent expressions in terms 

of either the Kirchhoff or the symmetric Piola-Kirchhoff tensors, 

S = JpC-’ + J-*” DEV[H] 3 r = Jpl + dev[FHp’] , 

(y + (1 - r) e(-(r-wu) ) $ (DEV[ d’~$s))]] ds , (1.17) 

DEV[.]:=(.)- i[(.):C]C-‘. 

We note the following. 
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REMARK 1.4. y = 0 corresponds to a Maxwell fluid, whereas y = 1 defines an elastic solid. Any 

model of linear viscoelasticity may be trivially considered by an appropriate choice of the 

kernel in the convolution representation for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAH. As an example, several relaxation times may 

be introduced by replacing the single term y + (1 - y ) exp[ - t/l/] with the kernel 

K(t): = y. + 5 ‘y, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe-““” . (1.18) 

A continuous spectrum of relaxation times could also be introduced [8]. Similarly, H in (1.17) 

may also be defined by convolution representations involving fractional derivatives [25,40], or 

power type of kernels as in [29]. 

REMARK 1.5. ~quil~~ri~~. The conditions of thermodynamic equilibrium are given by 

d’P(E, Q>/aQ = -E + dVI(Q)ldQ = 0, Q = (1 - y) DEV[awO@)/#]. 

(1.19) 

Note that Q attains its equilibrium value as t/v+~. The corresponding value of the 

equilibrium stress is a fraction y of the initial stress; that is 

lim S = {JpC-’ + yJFzi3 DEV[a@“(@/aE]} = :JpC-’ + y DEV[S”] . (1.20) 
flV_fX 

Since S = So as t/v-+ 0, we conclude that finite elasticity is recovered for both very slow and 

very fast processes. We finally note that, as in the linear theory, conditions (1.19) show that 

the function !P”(Q> is given by the Legendre transformation 

q[(Q) = -( 1 - ~)~‘(~) + i : Q . (1.21) 

REMARK 1.6. For the particular elastic response given in Example 1.3 (compressible 

neo-Hookean), it can be shown that model (1.17) is consistent with a multiplicative 

decomposition of the deformation gradient of the form F = F,F,, with internal variable 

Q = ~°Cz~l, and C-l: = FzT’FIY’. The resulting model is similar to the class of isotropic models 

proposed by Lubliner [30] as an extension of the Green and Tobolsky model ]15]. Note, 

however, that even in this case rate equation (1.16) differs from that proposed in [30]. It can 

be shown that, in contrast with (1.16), the latter equation results in a nonsymmetric tangent 

operator. 

We finally note that model (1.17) fits within the notion of “simple material” in the sense of 

No11 [46, Section 29, equation (29.6)]. 

2. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPhenomenologi~ aI isotropic damage model 

Material damage in polymers is a complex process which may involve chain and multichain 

damage, microstructural damage, and microvoid formation [14,26]. Here, our purpose is to 

account for the loss of stiffness experimentally observed in polymers when subjected to levels 
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of strain below the maximum strain previously attained by the specimen. This softening of 

rubber by deformation is commonly referred to as “Mullins’ effect” [34,47-491. Typically, 

the uniaxial stress-strain curve remains insensitive at strains above the previous maximum, but 

experiences a substantial softening below this maximum strain. The higher the previously 

attained maximum the bigger the subsequent loss of stiffness. In a cyclic test, this effect results 

in a progressive reduction of the storage moduli with increasing maximum strain amplitude. 

Almost all of the loss in stiffness takes place at first deformation, and steady-state response is 

attained in very few cycles provided the maximum strain amplitude remains constant. 

In what follows a phenomenological point of view is adopted, based on the use of 

continuous damage mechanics and the “equivalent stress” concept first introduced by Kach- 

anov 1221. See, e.g., [5,6,27,28]. Within this framework, a simple three-dimensional isotropic 

damage mechanism is developed, which is suitable for computation. The crucial assumption is 

that the maximum strain attained by the specimen up to the present time completely controls 

the damage process [4,10,17]. Based on thermodynamic arguments, we generalize this notion 

to the 3-D case by introducing the strain energy of the undamaged material as a scalar 

measure of the maximum strain. This choice is essential from a computational standpoint, 

since it results in a symmetric tangent stiffness. Two example models are considered. 

2.1. Motivation. Elastic damage at finite strains 

We consider first the case of a material initially characterized by a generai stored energy 

function q”(E) undergoing an isotropic damage process. The point of departure is a free 

energy of the form 

where D E [O, l] is the damage parameter and (1 - n) a reduction factor of the form first 

suggested by Kachanov 1221. From the Clausius-~uhem inequality - @ + S : & > 0, it follows 

that 

(2.2a, b) 

Inequality (2.2a) expresses the fact that damage is a dissipative process. Constitutive equation 

(2,2b), on the other hand, is the finite-strain version of the equivalent stress concept first 

introduced by Kachanov [22]. 

21.1. Evotirtion of damage 

We first note that the “elastic” stored energy function of the undamaged material, q”(E), 

is the thermodynamic variable conjugate to the damage variable I), since @Pi aL> = -?fr”(E). 

The evolution of the damage parameter D is then characterized by an irreversible equation of 

evolution as follows. Define an equivalent strain Z“ by the expression 

E$ = ~2~“(~(~)} ) (2.3) 

where E(s) is the strain tensor at time s E R, .-Now, let Ey be the maximum value of %V over 
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the past history up to current time t E IL?,. That is, 

We define a outage criter~u~ in strain space by the condition that at any time t E Iw, of the 

loading process, 

cp(~(t), ST): = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd-j - E’: G 0. (2.5) 

The equation &Y(t), ZT ) = 0 defines a damage surface in the strain space. Denoting by 

N: = ~~/~~ = (l/Zs) ~~‘/~~, the normal to the damage surface, the following alternative 

situations may occur: either 

N:,?kO, 
cp<O or q=O and N:ti=O, (2.6) 

N:ti>O. 

Borrowing a terminology typically found in (strain space) plasticity [31], we speak of 

unloading, neutral loading, or loading from a damage state, according to the sign of N :k. 

Finally, the evolution of the damage variable D is specified by the irreversible rate equation 

ifcp=OandN:Z?>O, 

otherwise . P-7) 

I-Iere h(E, D) is a given function that characterizes the damage process in the material. This 

completes the formulation of the elastic-damage model at finite strains. Regarding this 

formulation the following should be noted. 

REMARK 2.1. If h(Z, D) in (2.7) is indepertdent of D, then the isotropic damage model outlined 

above may be expressed in the following equivalent form: 

This form follows simply by setting h(a) = -dg(s)/dX One-dimensional models with the 

stress tensor depending on the maximum value attained by the stress during the loading 

history have been proposed by Browning, Gurtin and Williams [4], Gurtin and Francis [17], 

and Simo and Taylor [43,44]. 

REMARK 2.2, We note that the evolution of the stress tensor is completely determined. 

Employing the notation of Remark 2.1 and making use of the chain rule we have 
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gf(E:“) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAaw ”  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa*" 
$” -Tj-pT :c 1 iff cp=O and N:E>O, 

otherwise , 

(2.9) 

where 8’: = de/d, - * = -6. In what follows, attention is restricted to this case. 

REMARKS 2.3. To completely determine the damage model, it remains to specify the 

function g(Em) in (2.8) or, equivalently, the function h = -dg/dZin (2.7). Such a determina- 

tion should be made on the basis of available experimental data. Here, for definiteness, we 

shall adopt the following exponential form [43,44j: 

1 - e-.‘l” 
g(X)=p+(l-p) x,a , PqOJl, ~ww)* (2.10) 

In this relationship, /3 and (Y are regarded as given parameters. 

2.2. Viscoelastic damage model 

The ideas discussed above can be readily extended to account for viscous effects by the 

same approach of Section 1. Employing the notation of Remark 2.1, the elastic-damage free 

energy (2.1) is replaced by the augmented free energy 

Q(E, Q, sm ): = ~(~m)~~(~) - Q : E + yl;( Q) . (2.11) 

Standard arguments based on the Clausius-Duhem inequality lead to the representation 

(2.12) 

Finally, the evolution of the internal variable Q, which represents the nonequilibrium viscous 

stress, may be specified by a linear rate equation. For the standard solid, for instance, one has 

(1.16) with the right-hand side now given by ((1 - y) /~)jj(ay) dly.“(E) /aE. As a result one 

obtains the convolution model 

(2.13) 

where K(t) is the relaxation function. In this expression, volumetric and deviatoric effects are 

not uncoupled, an assumption often made in viscoelastic analysis. To incorporate this feature 

into the model, we may proceed as in Section 1. Two examples of this type are summarized 

below, 

EXAMPLE 2.4. The following example assumes uncoupled volumetric/deviatoric response. 



(2.14) 

H: = 
J- 

; K(t - s) $ [K@(s), ET)] ds , 

w%) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA, 8:): = S(Z;) DEV[CY@~(E(~))/~,!?] , 

B”. = 
f’ SE!pa& ~ 7 

-xia 

l?(xl=P+(l-PI ‘,Ta I P E [O, 11 > o! E [O, 4 * 

For the compressible case we have that p = d@(J) ldJ. Note that there is no difficulty in 

including the effect of hydrostatic pressure by replacing !@O with @” + U0 in the de~nition of 

Ey, as in (2.12). However, this results in nonsymmetric algorithmic tangent moduli. 
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In addition, we assume that the damage mechanism is associated with maximum distortional 

energy and is independent of hydrostatic pressure. 

r = Jpl t dev[?HF’] , 

EXAMPLE 2.5. Different theories and damage mechanisms warrant different definitions of 

E;“‘: and a different expression of the free energy. For instance, it has been suggested that the 

degree of damage in polymers is a function of the hydrostatic pressure (e.g. 140, p. 167)). 

Assuming an uncoupled volumetric/deviatoric response, a possible finite-strain viscoelastic 

damage model incorporating this mechanism is given by (1.17) with the hydro- 

static pressure now defined as follows: 

r= Jfil+dev zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF [ -{lo K(t - s) $ DEV~~~*(~(~)) ia@ ds}F’] , 

i;:=@;‘“)dU’(J)IdJ, -I. S”. = 
se_a:xt) m. (2.15) 

We note that this model results from a 

?li(E, Q, g:‘” ): = ~(~)~~(J) + 

As shown in Section 3, both this model 

which are symmetric. 

free energy potential of the form 

@O(E) - Q:E + yf,(Q). (2.16) 

and model (2.14) lead to algorithmic tangent moduli 

3. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIntegration algorithm for constitutive equations 

The basic idea in the numerical integration of constitutive equations (1.9) and (1.12) is to 

evaluate the convolution integral in (1.12) through a recurrence relation. A related procedure 

was first suggested by Herrmann and Peterson 1193, and employed by Key and Krieg [24] in a 

finite-strain context. However, the crucial difference with the latter approach is that the need 

for an incrementally objective algorithm based on the use of a midpoint configuration, as 
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proposed by Hughes and Winget [21], is entirely bypassed. As a result, intermediate midpoint 

transformations employing half-increment rotation tensors are avoided. In addition, by 

contrast with midpoint algorithms, the proposed approach can be exactly linearized in closed 

form. 

Without loss of generality we shall consider standard solid viscoelasticity and the constitu- 

tive model of Example 2.4. Identical considerations apply to Example 2.5. Let [0, T] zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC R! be 

the time interval of interest. We introduce the following history variable J?(t,*) defined at any 

time t, E [0, T] by 

(3.1) 

Then we proceed to update the stress tensor as follows. It is essential to recall that from a 

computational standpoint this update process is always regarded as strain driven. 

3.1. Recursive update of the stress deviator at Gauss points 

Let x, = cp,(X, t,) be the configuration at time t,, assumed to be known. Further, let an 

incremental displacement field U(X) = u(~~(X, t,)) be given. Since the process is strain 

driven, we simply set 

qc n+l =R+Ju Fn+l = F, + GRAD U =[l + V,u]F, , C,,+r : = F;+,F,+I , 

(3.2) 

where GRAD ( .) is the gradient relative to X E 0, and V,,( *) is the gradient relative to x,. 

From (3.2) we immediately have 

F,+, : = (det Fn+,)-1’3F,,+l , Cn+, : = Fi+IF,+, , E,,+, : = :[cn+l - G] . 

(3.3) 

Next, the. evolution of damage is evaluated as follows. The damage variable Z;“,mt 1 is updated 

as 

Fm * - max{ Er$, En} 
-n+1* - 

where Zrti : = j/m . (3.4a) 

Then II,,,, is computed as 

n n+1 = l!W:“,“+, 

where 

) DEK+,[ !$ @“,I)] > 

DEV,+,[.]: =()- f[():C,+,]C,:, . 

(3.4b) 

(3.4c) 

To update I?, , defined by (3.1), use is made of the midpoint rule and the mean value theorem 

to obtain the following expression 

fin+1 = epA’n’” fin + (3.5) 
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The deviator of the second Piola-Kirchhoff stress tensor S, is then updated according to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

DEV,.+,[S,+,I = (detC+,)-2’3 DW+,[m,+, + (1 - ~)&+,l. (3.6) 

Finally, the deviator dev 7: = 7 - 4 (tr ~)l of the Kirchhoff stress tensor is obtained by 

transforming (3.6) to the current configuration as 

dev[T,+,l = F,+, ~DEVn+l[S,+ll~~~~+l - (3.7) 

REMARK 3.1. Note that the entire update procedure takes place in the reference configura- 

tion. Hence, objectivity of the algorithm with respect to superposed rigid-body motions onto 

the current configuration follows trivially. Further, note that the algorithm is second-order 

accurate. 

REMARK 3.2. In the update procedure discussed above, only the stress deviator is involved. 

It remains to compute the hydrostatic pressure p = dU”(.Z) ldJ. We recall, however, that in a 

discrete sense the pressure constitutive equation cannot be enforced pointwise. This would 

lead to “locking” of the finite element procedure for quasi-incompressible response. To avoid 

these difficulties, the Jacobian J and the pressure p are interpolated independently in the 

context of a Hu-Washizu principle. This is considered in the next section. 

3.2. Consistent linearization of the algorithm 

By contrast with algorithms based on the notion of the midpoint configuration, the 

proposed approach can be exactly linearized in closed form. The resulting tangent moduli play 

a crucial role in the numerical solution of the boundary value problem by Newton-type 

iterative methods. For instance, use of these consistently linearized moduli is essential in order 

to preserve the quadratic rate of the asymptotic convergence that characterizes Newton’s 

method. 

We recall that at time step t,,+, E R, the material and spatial tangent moduli associated with 

the configuration x,*+, = pU+ I (X, t,,, ), denoted by L,, I and c,+, , respectively, are defined in 

component form by 

L 
IJKL. _ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAasIJ ijki _ 

--  
n+l * aEKL ,,_&I ’ ‘n+l- 

F;F$F;F;LI~~~ . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAWI-1 

(3.8a, b) 

Since Sri+++ = {JpC-’ + DEVIS]},,,, differentiation of this expression yields the result 

L 
n-t1 

I ?I+1 
+ [Jp(C-’ Q9 C-’ - 21,~1) + Ldev n+, , 

I 

where ZzFIL: = ~[(c-‘)~~(c-~)~~ + (c-~)‘~(C.-‘)‘~], and Ldev is defined as 

L := WEV ISI) 
dev 

n + I aE n+l . 

(3.9) 

(3.10) 

Note that by (3.8b), the spatial counterpart of (3.9) is given by 
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C zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 n+l 
+ [PO@1 - 20 + %vln+l 2 (3.11) 

where Z is the symmetric rank-four unit tensor, and cdev is defined in terms of Ldev by a 

transformation (push-forward) identical to (3.8b). Thus, all that remains is to compute Ldev or 

c de” by consistent linearization of the integration algorithm in Section 3.1. 

As an illustration, we consider again the constitutive model outlined in Example 2.4 above. 

The main steps in the evaluation of cdev involve the repeated use of the directional derivative 

formula, and details are omitted. In order to express the final result in a compact form it is 

useful to define the rank-four spatial symmetric tensor dev[c] as follows. For notational 

simplicity, the subindex II + 1 is omitted and all the expressions that follow are understood to 

be evaluated at t,, , . Let 

L”: = f32*“(Z7)/dE2 ) 

Define dev[c’] by the expression 

(3.12) 

dev[E’]: = co- 3 l@[C”:l] - 3 [E”:l]@l+ $[l:E”:l]l@l. (3.13) 

With this notation at hand, the consistent tangent moduli cdev may be expressed as 

(det zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF)cdev = $ tr(h+&Atlv)+)[Z- $l@l]- ~ [ti@l+l@+] 

+ (det F)p(AtlY)g dev[$)] - S’ (d;:;2’3 [ 57 63 7T] . (3.14) 

In this expression, Z is the rank-four unit tensor, 1 the rank-two unit tensor, and the following 

additional notation has been employed: 

Note that 

6 = F(gl7 + (1 - y)H}F’ ) ti=kIlF’, 

p(Atly): = ‘Y + (I - 7’) 

I _ eAt’v 

At,,, . 

the moduli in (3.12) are symmetric. 

4. Mixed variational formulation 

(3.15) 

We shall outline the variational framework for the numerical solution of the nonlinear 

boundary value problem by a mixed finite element formulation. The basic idea is to introduce 

a three-field variational formulation involving configuration, Jacobian, and pressure, 

{ 9, J, p} . The well-known locking phenomenon associated with overconstraining of displace- 

ment formulations may then be avoided by appropriate independent interpolation of the 

pressure and volume (Jacobian) fields. 
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Ignoring for simplicity inertia effects, the equilibrium of the body at each time step 

t n+ 1 E IL!+ may be expressed as follows: 

Gnt-1: = I a ,(n) {~n+l d%+l 7 + dev[u,+,]:dev[V,+,~]} dv - GfcT =O, 
tZ+ 

- J,+,)Q dV= 0, (4.1) 

dU(J) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
-pn+1+ dJ 6JdV=O. 

Here, q(x) are admissible variations satisfying the homogeneous essential boundary condi- 

tions, and GE:: is the virtual work of the external loading, see e.g. [33, Section 5.11. For 

nonlinear elasticity, these variational equations emanate from a nonlinear Hu-Washizu 

principle [45]. Note the crucial role played by the constitutive algorithm developed in Section 

3 in this variational procedure. At time t, + 1 the values of p,+ 1 and dev [a,, 1] are known and 

computed through this algorithm. 

The finite element numerical solution of variational equations (4.1) involves the projection 

of these equations onto a finite dimensional subspace. Conceptually, an iterative solution 

procedure is based on the following linearized system about an intermediate configuration 

The moduli a!:, appearing in the linearized equations (4.2) are defined according to the 

relation 

(4.3) 

where, for notational simplicity, the subindex n + 1 and superindex (i) have been omitted. In 

this expression, cdev are the consistent tangent moduli defined, for Example 2.4, by (3.14). In a 

finite element context, the first term in (4.3) gives rise to the so-called “geometric stiffness” 

matrix, whereas the second term in (4.3) leads to the often referred to as material part of the 

tangent stiffness matrix. 

Several finite element interpolations schemes can be used within the mixed variational 

framework provided by (4.1)-(4.2). As an example, discontinous pressure and Jacobian 

interpolations enable one to eliminate these fields at the element level leading to a generalized 

displacement method. Typical examples are furnished by the “mean dilatation” approach 
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suggested by Nagtegaal, Parks and Rice [32], and the B-bar methods of Hughes [20] and Simo 

et al. [45]. We refer to [35] for a summary account of existing mathematical results in the 

context of the linear problem. 

5. Examples and numerical simulation 

In this section, two experimental results corresponding to highly filled rubbers subject to 

extension and simple shear test are first considered. These results illustrate the good 

qualitative agreement obtained with the simple exponential damage law proposed in (2.10). 

Next, a simple numerical simulation is presented for the purpose of exhibiting the basic 

behavior of the viscoelastic damage model. Finally, the numerical solution of a boundary 

value problem is considered to illustrate the good performance of the integration algorithm, 

and the excellent convergence properties of the solution procedure. 

EXAMPLE 5.1. In this example, we illustrate the ability of the exponential damage law (2.9) 

of modeling the qualitative response of highly filled rubbers. For this purpose, we consider 

first experimental data of a cyclic tension test performed at LLNL, and plotted in Fig. l(a). 

Points in this figure correspond to measurements performed once steady state is achieved for a 

given double strain amplitude. The figure clearly exhibits a progressive degradation of the loss 

and storage moduli, denoted by G” and G’, respectively, with increasing amplitude. Figure 

0 QO4 -0.06 -0.12 -0.16 -0.20 

18 

I I I I I I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0.01 0.03 0.075 0.12 0.16 0.20 

Fig. 1. Exponential fit to LLNL experimental data. 
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G*:G(l+itj)f=(G’fiG(oi_ 

f =~+(~_.fi~ I-exp [K/c&) 
K/aP zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Data: s=O,4 G=240 

Fit: a =o.t p=o.3 

80 

0 experiment01 dot0 

40 - exponentiol fit 

0 

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 

STRAIN x10-2 

Fig. 2. Exponential fit to experimental data reported in [23]. The elastomer is a highly filled rubber. 

l(b) shows the normalized curves obtained from Fig. l(a). It is interesting to observe that the 

curves for G’ and G” in Fig. l(a) lead to the same normalized curve in Fig. l(b). This figure 

also exhibits the excellent fit obtained with the simple exponential damage law (2.10). 

Figure 2 corresponds to the experimental data in simple shear reported by Kelly and Celebi 

1231. In this figure, the fit obtained by means of the exponential damage law is also shown. 

Good agreement is again obtained. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

EXAMPLE 5.2. In this example we consider the numerical simulation of a rubber block 

undergoing pure shear deformation. The data for this simulation corresponds to Fig. 2. The 

specimen is subjected to a cyclic shear strain history in the form of a triangular pulse, with 

increasing amplitude denoted by A. We have employed the notation: G,: = Y,U” and G,,: = 

(1 - Y Id). 

Fig. 3. 

pulse. 

Numerical simulation in a pure shear test with data obtained from Fig. 2. The strain history is a triangular 

I”” 

60 

Go = 336 

%=I44 

t/ ~0.786 

p =0.3 

a =0.1 

_ 20 ,Q = 

STRAIN 
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to 37 

go 75 

~ to 112 
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m to 340 
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Fig. 4. Viscoelastic damage model. (a) 50% deformation. Contours of principal tensile stresses. 50 bilinear 

isoparametric quadrilateral elements with constant pressure. (b) 100% deformation. Clamped-clamped tensile test. 

Contours of principal stresses. 50 bilinear isoparametric quadrilateral elements with constant pressure. (c) 100% 

deformation. Clamped-clamped tensile test. Contours of principal (compressive) stresses. Deformed mesh also 

shown in the figure in dotted line. 
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The numerical results shown in Fig. 3 are in agreement with the experimental results 

reported in [23]. Although the stresses corresponding to peak strains are well captured, a 

discrepancy with the experimental results in the shape of the hysteresis loop is observed. This 

is attributed to the difference in shape of the pulse employed in the experimental test and in 

the numerical simulation. Identical simulations carried out with a sinusoidal pulse revealed the 

high sensitivity of the shape of the hysteresis loop to the shape of the input pulse. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

EXAMPLE 5.3. As our final example, the numerical solution of the boundary value problem 

corresponding to the extension of a rectangular strip in plane strain clamped on both ends. 

The purpose of this simulation is to demonstrate the effectiveness of the numerical algorithm 

and finite element implementation discussed in Sections 3 and 4. We consider the viscoelastic 

damage model summarized in (2.14), with deviatoric stored energy @O(E) given by (1.14); 

that is, of the compressible neo-Hookean type. In addition, we assume that the hydrostatic 

pressure is given by the elastic constitutive equation p = K log J, where K > 0 is the bulk 

modulus. The data for this example is contained in Fig. 3 with a value of (Y now chosen as 

(Y = 0.3333. The finite element mesh consists of 50 bilinear four-noded isoparametric elements 

with constant Jacobian and constant pressure on the element in its zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcurrent configuration, The 

deformed meshes and stress contours for principal stresses are shown in Figs. 4(a), (b) and (c) 

for extension ratios of 50% and 100%. 
Special attention is given to the convergence behavior observed during the numerical 

simulation. The solution strategy employed is a standard Newton-Raphson solution proce- 

dure. The values of the maximum Euclidean norm of the out of balance force during the 

iteration process corresponding to loading steps 2, 3, and 4 are displayed in Table 1. We note 
that the final 100% extension was achieved in 6 loading steps. It should be also noted that the 

maximum norm is far more demanding than the usually employed energy norm. The results in 

Table 1 clearly demonstrate the quadratic behavior of the asymptotic rate of convergence. 

Table 1 

Values of the Euclidean norm of the residual 

Step number Maximum norm 

2 0.3941 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA10" 

0.6506 lo3 

0.8008 102 

0.2486 10’ 

0.4285 lo-’ 

0.3705 1o-8 

0.3746 lo5 

0.6159 10’ 

0.2552 lo2 

0.2526 10’ 

0.4138 1o-3 

0.2794 1o-9 

0.3591’ lo5 

0.5584. lo3 

0.1005 lo2 

0.4546.10’ 

0.7936. 1O-5 
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6. Closure 

We have developed a fully nonlinear viscoelastic constitutive model capable of accom- 

modating general anisotropic response and general relaxation functions. Complete uncoupling 

between volumetric and deviatoric responses may be achieved as a result of a multiplicative 

split of the deformation gradient into volumetric and deviatoric parts. Hyperelastic behavior is 

asymptotically obtained for both very fast and very slow processes. In addition, a simple 

isotropic damage mechanism has been incorporated into the model within the framework of 

continuum damage mechanics. Based on thermodynamic considerations, damage is character- 

ized by the maximum value previously attained by the strain energy of the undamaged 

material. In a cyclic test, the resulting viscoelastic damage model predicts progressive loss of 

stiffness and increasing dissipation with increasing maximum amplitude, in agreement with 

Mullins’ effect. Crucial to these developments is the assumed structure of the free energy 

potential, leading to an additive split of the stress tensor into initial and nonequilibrium parts. 

Emphasis has been placed on the numerical treatment of the proposed formulation in the 

context of the finite element method. We have developed an implicit second-order accurate 

integration algorithm, which bypasses the need for the midpoint configurations, and trivially 

satisfies objectivity requirements under superposed rigid-body motions. This algorithm can be 

linearized exactly in closed form. Quasi-incompressible response has been numerically accoun- 

ted for by means of a three-field variational formulation of the Hu-Washizu type. 
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