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The functional differential equation Q'(t) = AQ(t) +
BQ  (t=-t), -= <t < », where A,B are n ¥ n constant
matrices, T > 0, Q(t) is a differentiable n * n matrix
and Q*(t) 1is its transpose, is studied. Existence,
unigqueness and an algebraic representation of its solutions
is given.

This equation, of considerable interest in its own right,
naturally arises in the construction of Liapunov fuqctlonals
of difference differential equations of the type x(t) =
Cx(t) + Dx(t-1), where C,D are constant n x n matrices.
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TThe functional differential equation Q'(t) = AQ(t) +
BQ (t—-t), -« <t < », where A,B are n * n constant
matrlces, T >0, 0(t) is a differentiable n * n matrix
and QT(t) is its transpose, is studied. Existence,
unigueness and an algebraic representation of its solutions
is given.

This equation, of considerable interest in its own right,
naturally arises in the construction of Liapunov functiocnals
of difference differential equations of the type x(t) =
Cx(t) + Dx(t-t), where C,D are constant n x n matrices.
The role played by the matrix Q(t) is analogous to the one
played by a positive definite matrix in the construction of
Liapunov functions for ordinary differential eqguations.

In this paper, we show that, in spite of the functional
nature of this 3quatlon, the linear vector space of its
solutions is moreover, we give a complete algebraic
characterizatlon of its solutions and indicate computationally
simple methods for obtaining these solutions, which we illus-
trate through an example. Finally, we briefly indicate how
to obtain solutions for the non-homogeneous prcblem, through
the usual variation of constants method.
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ON A FUNCTIONAL EQUATION
ARISING IN THIL STABILITY THEORY

OF DIFFERENCE-DIFFERENTIAL EQUATIONS

Abstract: The functional differential equation

o ok - ¥ T
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Q' (£) = AQ(E) + BQT (t-t), -= < t < 3,

o
where A,B are n x n constant matrices;~r > dl:d(t) is a
differentiable n x n matrix and QT(t} is its transpose, is
studied. Existence, uniqueness and én éigcbraic representation of
its solutions is given.

This equation, of considerable interest in its own right,
naturally arises in the construction of Liapunov Eunctionals of
difference differential equations of the type *%(t) = Cx(t) +
+ Dx(t?%}; where C,D are constant n x n matrices. The role
played by the matrix 0(t) is analoygyous to the one played by a
positive definite matrix in the construction of Liapunov functions
for ordinary differential equations.

In this paper, we show that, in spite of the functional nature
of this equation, the linear vector space of its solutions is n2;
moreover, we give a complete algebraic characterization of its
solutions and indicate computationally simple methods for obtaining
these solutions, which we illustrate through an example. TFinally,
we briefly indicate how to obtain solutions for the nonhomogeneous

problem, through the usual variation of constants method. &




ON A FUNCTIONAL EQUATION

ARISING IN THE STABILITY THEORY

OF DIFFERENCE~-DIFFERENTIAL EQUATIONS

I. Introduction

The study of difference-differential equations has received
considerable attention in recent times [2,6,7]), the overwhelming
interest devoted to equations with positive delays.

In this brief paper we wish to study the matrix functional

equation
AL .
Q'{t) = BO(t)Y + BO (t=t), == < & ¢ o (1.1)
where A,B are constant n x n matrices and 1 > 0. This equation
is neither of the retarded nor advanced type. We show, that,

unlike the infinite dimensionality of the vector space of solutions
of functional differential equations, the linear vector space of
solutions of this equation is n2. Moreover, we give a simple
algebraic characterization of these n2 linearly independent
solutions which parallels the one for ordinary differential cquations,
indicate some methods of computation of these solutions and allude
to the variation of constants formula for the nonhomogeneous
problem.

This equation, of interest in its own right, is particularly
important since it arises naturally in the process of constructing
Liapunov functionals for retarded differential equations of the

form x'"(t) = Cx(t) + Dx(t-1). Datko [4] has encountered, in a ;




somewhat different form, this equation, but has not studied it.

Repin [11], in his construction of Liapunov functionals uses this
equation, but does so erroneously in replacing, in (1.1), the
term BQT(T-t) by BQ(r-t), making the analysis trivial.

This equation has been used by Infante and Walker [9] in the
construction of the Liapunov functional for a scalar difference-
differential equation. The study presented here arose in the use
of the solutions of this equation in a forthcoming paper [8]
which treats the construction of Liapunov functionals for matrix

difference-differential ecquations.

II. Existence, Uniqueness and Algebraic Structure
of the Solutions

Consider the equation
T
Q' (k) = AQ(E) + BQ (1=t); == < & < =, (2.1)
with the condition
T: —
Q(f} = K, (ds:2]

where K is an arbitrary n x n matrix; this equation is in-

timately related to the differential equation

Q' (t) AQ(t) + BR(t), (2.3)

R' (t) =-Q(t)BY - R(t)AT,

with the initial conditions




Moreover, for any two n x n matrices P,S, let the n2 b n2

matrix P ® S denote their Kronecker (or direct) product [1,10]

and introduce the notation for the n x n matrix

where S and s are, respectively, the ith row and the

ol
4

jth column of §S; further, let there correspond, to the n »* n

matrix S, the nz—VEctor s = (sl*,...,sn*)T

With this notation [1,10], equations (2.3) and (2.4) can be

rewritten as

ql(t) A®1I Bo®I q(t)‘
= i (2.5)
rit) -1 8 B -I 6 A r(t)‘
and
¥ T Pl T e
q(E) = [kl*'...'kn*] [ r{'i‘) i [k*lrcut;k*nj r {2.6}
which, with the obvious correspondence and for simplicity of notation,

we denote as




f -

Here, p(t) is an 2n2-vector and € 1is & 2!‘12 2 2112 constant

matrix.

The use of the Kronecker product, which has allowed us to re-
duce (2.3) - (2.4) to (2.7) - (2.8) permits us to prove our first

result.

Theorem l: Equation 2.1 with condition (2.2) has a unique solution

Q(t) for =-m < t < o,

Proof: If equation (2.1) with condition (2.2) has a differ-
entiable solution Q(t), then, defining R(t) = QT(t-r}, the
pair of matrices Q(t), R(t) will satisfy equations (2.3) and (2.4);
hence, with the notation introduced above, the pair of vectors q(t)
and r(t) will satisfy equations (2.5), (2.6). These remarks, the
linearity of all the involved equations, and the uniqueness of the
solutions of (2.5) - (2.6) immediately implies that if a solution
Q(t) exist, it is unigue.

On the other hand, (2.5) = (2.6) has a unique solution defined
for -» < t < =, and this implies the existence of a unigue pair
of differentiable matrices Q(t) and R(t) defined for -« < t

and satisfying (2.3) - (2.4). But thesec last equations can bhe re-

written as

Q(t) = AQ(t) + BR(t),

(Llf.‘...
o

T

(:'-t} r

R® (t=t) = AR® (t=-t) + BQ

D.-lf‘—-
rt

with initial condition




T

i

Q) = K = R (3}, (2.10)
from which it follows, from uniqueness, that R(t) = QT(r-t),
completing the proof.

Examination of the above proof makes it clear that knowledge
of the solution of (2.5) - (2.6) immediately yiclds the solution ol
(2.1} - (2.2). But (2.5) - (2.6) is a standard initial wvalue
problem in ordinary differential equations; the structure of the
solutions of such problems is well known [3,5]. Morcover, since
the 2n2 x 2n2 matrix C has a very special structure, it should
be possible to recover the structure of the solutions of
egquation 2.1.

Let us consider, for the moment, the solutions of equation
(2.5). Recall [3,5] that it has 2n2 linearly independent solutions
which can be obtained in the following fashion. Let 11""'lp'

p = 2n2, be the distinct eigenvalues of the matrix C, that is,

solutions of the determinental equation

(AI-p) O I B8 I
det[AI-C] = det = 0; (2.11)
168 I & (AI+A)
each A., j = 1l,...,p with algebraic multiplicity mj and geometric
s
multiplicities g ) ny =m; , ) m, = 2n2. Then, 2n? linearly
3" gy J J j B

independent solutions of (2.5) (or (2.7)) are given by

e - _ _ ‘




holk = 2 g (& =% .
q = J : _.._2_,.____ s]- 2
9 pft) = e i£1 T (2.12)
X g r N 2
whére q = l,...,n.; = Y,...,8, } n. =m. , ) m. = 2n“, and
] et iR U

the 2n2 linearly independent eigenvectors and generalized eigen-

vectors are given by
. e =0, (2.13)

A change of notation, and a return from the vector to the matrix
form, shows that 2n2 linearly independent solutions of (2.3)

are given by

q I i ¢
s _(t) i S
e Rk o STECRNERE T
A
= g ;1 W Mi ’ (2.14)
q i= - ;
.Fj:r(t) f_3’i
r S
for g = Y,ueesfle B8 LisvenBe 3= Licassly ) R: = W
J n=1 J ]
) mj = 2n2, and where the generalized eigenmatrix pair (L; rfm; rj
j r r

associated with the eigenvalue \j , satisfy the equations

i i =3
A E=A) I - BM. ==L
(AyI=A)Ly o Jox j.r ' (2.15)
i T i T yag
L. B + 7 .I+A ==M.
s oy ety $42 "




o = - 0 0
Tar 4 = Y, i.,0, £ = Liaaursy Lj,s = Mj,s = 0.

The structure of these equations is a most particular one;
indeed, if they are multiplied bv -1, transposed, and written in

reverse order, they vyield

% §* 31
(=A.I-A)M. - BL; = M. -
Jr 1.5 J.X (2.1%6)
j_T j_T i + i l'L‘
i s
M. .B™ + L. -A.I+A L.
JeX ]rr( J ) Jrete "
r ot 0T
for i = Yiwsepha, T = dpsseese Lo = M. = 0. But this result
J J.X J. X

demonstrates that if Aj is a solution of (2.11), —Xj will also
be a solution; moreover Aj and —lj have the same gecometric
multiplicities and the same algebraic multiplicity. Hence, the
distinct eigenvalues always appear in pairs (Aj,-lj}, and an
examination of equations (2.15) and (2.16) shows that if the

]

generalized eigenmatrix pairs corresponding to lj are {L; r'Mj g
- r r
the generalized eigenmatrix pairs corresponding to —Rj will be
; iy : Ay
i+l & LELk o
-1 M -1 : :
£ (=1) j,r , (=1) LJ,I}

But these remarks imply that if the solution (2.12) correspond-

ing to Aj is added to the solution (2.12) corresponding to =\.

]
multiplied by (-l}q+lr the n2 linearly independent solutions of

(2.3) given by

).




qT

satisfy the condition E? r{%) = Hj,r(%d. But this is precisely
r

condition (2.4); it therefore follows that

Ty g=1 T l
g kb == st = 5) . e TAE = =)
3 (&) = ) _T__T_Z' (e ] 2at o enT™e d Apd 1, 123
Jek = g-1)! 1,1 Jel
p
1 T L E v 2 2 ? .
for g = lyjsveehoy J o =MLy ) B = I, Are R linearly in-
J r=1 %, J 2:’ 2|

dependent solutions of (2.1). We have, therefore proven

Theorem 2: Equation 2.1 has n2 linearly independent solutions given
. )

2 pils -
1¢S5 1¢ S

bv equation 2.17, where the generalized ecigenmatrix pairs (I

satisfy equation 2.17 for one of the elements of the pair (\j.—ﬁjl,

each of which is a solution of equation 2.11.

It is interesting to remark that the determinental eguation
. - 2 ; . Sl
(2.11), involving a 2n2 x 2n determinant, given the commutativity

of its elements, can always be rewritten as

det[(AI-A) ® (AI+A) + B 6 B] = 0. (2.18)




Theorem 2 gives the desired algebraic representation of the solu-
tions, a representation which is completely analogous to that for
ordinary differential equations. It is surprising that the vector

2 $
space of solutions of (2.1) has dimension n-.

III. Some Further Characterizations b

Theorem 2 of the previous section gives a complete characteriza-
tion of the solutions of our original functional equation. It is
possible, however, to give some further properties of the eigen-
matrix pairs in certain particular cases; these further characteriza-
tions of the eigenmatrix pairs are very useful from a computational

viewpoint, as we demonstrate in the next section.

Lemma 1: If, for a L. satisfying e€quation 2.18, there exists

an uj # 0 and corresponding vectors xj,yj such that

AT — A = a,.Blx. = 0
tA Bl ’
{3 1)
I
[\.T + A + — Bly. = 0, '
J s ] !
) ]
then equation 2.15 is satisfied for 1 = 1 with L% i
1. =+ Gl
1 _ 1
T'Im'r = “J JJ.']__. 3

Proof: A simple substitution of the indicated result into

equation (2.15) shows that this equation is satisfied.

The proofs of the following two lemmas are equally obvious. i




Lemma 2: 1If, for a Aj satisfying eguation 2.18, there exist

vectors xj’yj such that

Bx. = 0
J
{(3:2)
(A.I+A)y. = 0
e
then equation (2.15) is satisfied for i = 1 with L% == 0,
r
A s
M. = Niie
o0 T P
Lemma 3: IE, for a \j satisfying Eguation 2.18 there exist
vectors xj,yj such that
ALI-A)x, = 0
: i) J
(3.3}
By. = 0
=3
then equation 2.15 is satisfied for i =1 with
L% = X y? ' Ml = 0

Po

It is noted that, if the assumptions of any of these three lemmas
hold, then the form of our eigenmatrix pairs is dvadic. More-
over, determination of the xj depends on simultaneous solutions

of the determinental equations, for a given lj satisfying (2.18),

dct[\jl-h-wihl = 0,
' (3.4)

det[).T + A + 1 B} = 0,
] 'lj




11

1
where, for Lemma 2 we let = 0 and, for Lemma 3, uj = 0. The

computations involved for the determination of “j'xj and yj are

much simpler than those implied by equation (2,15).

If B and either ()th—A) or (J\jl + A) are not invertible,
then Lemmas 2 and 3 apply. It is not difficult to show that, if
such is not the case, there always exists at least one uj #Z0
such that (3.4) is satisfied, which implies the applicability

of Lemma 1.

Lemma 4: If either B 1s invertible or (AjI-A) and (J\jI+A) |

are invertible, then there exist an ”'j # 0 which satisfies (2.22).

Proof: Tf B is invertible, for a given j,r and i = 1,

cquations (2.15) are equivalent to

-1
B 1(X -I_A}ll]-_ (-'\ ‘I+A]TBT = —L%
J J.X ] %) 2
(3.5)
=1 7 pL 1
B T (A.I=-A)M (ALT4+A) B = A .
J ’ J )i E

But this implies that the matrix [B {le-A;] %) {B-l{le+A}]

has at least one ecigenvalue that equals -1. Since [10] the eigen=-
values of a Kronecker product are the products of the eigenvalues of
the two matrices appearing in the product, then there exist an

ltj # 0 and vectors .\'_i and yi such that

(3.6)
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which is equivalent to the assumptions of Lemma 1.

If B 1is not invertible but {le—A) and {1jI+A} are both

invertible, then (2.15); for i = 1, are equivalent to
i | ) T =1 1
ALI=N B L. B (A.I+A = =L
A yiri) ot VA EER ) et
-1 1 T T, -1 1
A=A B M. B (A.I+A = =M,
¢ ] ) J.r ( J ) J.X

and a repetition of the above argument leads to the same conclusion.
These last four Lemmas imply that, associated with each distinct

cigenvalue pair (Jj,—Aj}, a solution (2.17) to our equation exists

; ; 3 1L .
in which 1L} s and M . are for some r dvadic and linearlv dependent.

Jr Jek

It is also worth remarking that Lemmas 1-3 are not exclusive, and
that more than one set (”j’xj'yj] could, in some cases, be ob-
tained from the appropriate equations, yielding a similar result

for other values of r.

IvVv. An Example

llere we present, as an illustration of the computations in-
volved, the construction of the lincarly independent solutions for
a 2 x 2 systems of the form

@h (L) = AQ(L) + BQT(T—t), RS RS B e (4.1)

where, for illustrative purposes, we have chosen

—

5 o-i 4 0]
, B = : (4.2)

o -2 : oj

——————————l



For the computation of the eigenvalues,

the determinental equation

(2.18) gives
(AI-A) © 1 -B © 1 ‘
dot = det|(VI-A) © AT + A)+ B @ B] =
I 0B L& (AL + \ﬂ
(A+5) (A=5) + 16 0 0 0
s dat 8 (A+5) (A=2) 0 0 &,
8 0 (A+2) (A=5) 0
4 0 0 (A+2) (A=2)
from which we obtain the four pairs of roots (Al,—ll) = [5;=5),
(‘.'-21'-:.‘2) = (3!'—3)! ()-3|'_;\\3) = {2,-2), }.4;-}-_4) s {2p_2) - (]3:-)3]-

For the first pair,

and that B 1is not

(3.2) yields that
4 0
P.xl = 0, or - F Xy = 0,
0 0
(A.I+A)y. = 0, or y
o 0 3
hence we have 1l 0 and Hl =
1ence we 1é L2 J]. ? 1 s 1 - l

solution

note that A

invertible.

it
Application of Lemma 2, equation

5 1is an

O h

[(1,0]

eigenvalue of -A

vielding the




. o~5(t-3)

A

The second pair, (xz,—\q}

(

14

0
. (4.3)

|

3,~3), does not consist of eigen-

values of either A or -A. Hence, we search for an a such

that equations (3.4) are satisfied, that is

3 + 5 - :21
det
—hi“tz
and
B B g A
.
det -
S
(12

which yields the value «u, = 2.

by = 2 now yield

5

and, from our first lemma we obtain the solution

0
= 0;
+: 2
0
= 0,
- 2
Equations (3.1l) with X, = 3 and

]




The last pair of eigenvalues is of algebraic multiplicity

two but it is easy to check that they are of geometric multiplicity

one, hence we can attempt to treat them once again through our

lemmas.
In the first case, “3 = 2 1s an eigenvalue of -A. Then
cquations (3.2) become
4 0
Bx = 0, or X = 0
3,1 £ 2 9 3.1 4
-3 o[
(A5I+A) ¥, = B or )
3 \13'1 '’ 0 0]Y3'1
45 1 1 9
vielding L =0 and M = [0,1], and therefore, the
= 33 3.1 1
solution
; 0 0
; (k) = e efsssl : (4.5)
r 0 l
In the sccond case, V, = +2 1is an eigenvalue of A, still,

"

equations (3.4) are satisfied for an s # 0: indeed, we require

dut[lgf—ﬂ—-inl = det =0,




16
2~ 5 4 = 0
Ly
det [T # & + 2= Bl = det 3 = 0,
f._i "
. 2 = 2
‘3
which are clearly satisfied for
= 1
Li3 1 °
The corresponding vectors are immediately computed as
8 0
X oy A —
3027 | 4 | 43,2 L]
yielding, through I.emma 1, the solution
0 8 0 0
- - -
it = et + 1 g S\Es3 (4.6)
! 0 7 g 7
It is easily seen that these four solutions are linearly in-
dependent.
V. The HNonhomogeneous Problem
We briefly consider the nonhomogeneous problem
Q'(t) = AQ(t) + llf)rl(l-t) + F(t), == < t < o (5.1)

where A, are constant n * n matrices and F(t) is a continuous
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n x n matrix. We seek a particular solution of this problem.

For simplicity of notation, let the n2 linearly independent

; : k
solutions given by (2.17) be relabeled as 7, (t) = (z; j(t));
r
2,
k=1,...,n". Then, in a manner comnpletely analogous to that for

ordinary differential equations, we obtain

Theorem 3: Lguation 5.1 has a particular solution given by

2 __
0( = % t ]zk !?
Q(t) = ) r, (s)ds (t), (5.2) é

k=111 [
2 )

where the rk(s) are given below.

; : ; ) k
Proof: Substitution of (5.2) into (5.1), given that the 2 (t) are
solutions of the homogeneous equation, yields that the rk{si must
satisfy the equation

n° J
) r},(!.);: () = FiE): (5.3)
o

! . ] L 2
In the notation of Section 2, define the n -vectors

k K , SR e % . *
1*;.91;1-11*{L)J ’ l(t) (1I{L)!o--f12(t) r

" "} .)
f(t) = (fj_*,. . ,fll*) i, and the n~ x n° matrix @(t) =

oy (€)= (z(E)

({1,. sant a)e Theén (5.3) is equivalent to

n

®(t)r(t) = £(t).

(M(t) is clearly nonvanishing for all t, given the linear independence

of the solutions Zk(t): hence




r(t) = @ e)£(e)

and this concludes the proof,
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