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The functional differential equation Q ’ ( t )  = A c ) ( t )

BQ (T—t), — ‘° <t  < 
~~~, 

whore A ,B are ii n con stan t
matrices , T > 0, Q(L) is a differentiable n ‘~ n matri:-:
and QT(t) is its transpose , is studied . Existence ,
uniqueness and an algebraic representation of its solutions
is given .

This equation , of considerable interest in its cwn r..uht ,
naturally arises in the construction of Liapunov functionals
of difference differential equations of the type ~~(t)

~~~ cx(t) + Dx(t- -r ), where C,D are constant n x n matr ices.
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functional differentia equation Q’ (t) = AQ(t) ±

BQ (-r— t) , —
~~~ 

<t < 
~~~, 

whore A , B are n X n constant
matrices , t > 0, Q ( t )  is a d i f f e r e n t i a b l e  n n matri:•:
and QT(t) is its transpose, is studied . Existence ,
uniqueness and an algebraic representation of its solutions
is given.

This equation , of considerable interest in its own ri-h: ,
naturally arises in the construction of Liapuriov functionals
of difference differential equations of the type x(t) =

Cx(t) + Dx(t-t), where C ,D are constan t n n matric es .
The role played by the matrix Q ( t )  is analogous to the one
played by a positive definite matrix in the construction of
Liapunov functions for ordinary diff eren tial equat ions.

In this paper, we show that , in spite of the fu nc tiona l
nature of this ~quation , the linear vector space of its
solutions is n’; moreover , we give a complete algeb r aic
characterization of its solutions and indicate computationally
simple methods for obtaining these solutions , which we illus-
trate through an example. Finally, we briefly ind icate how
to obtain solutions for the non-homogeneous problem , through
the usual variation of constants method .
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ON A FUNCTIONAL EQUATION 
. -

ARI SING IN TIlE STABIL ITY THEORY 

~~~~~~~~~~~~~~~~~~~~~ 

OF D IFFERENCE-DIFFERENT IAL EQUA TIONS

Abstract: The functional differential equation

ft
Q ’ ( t )  = A Q ( t )  + BQ

T ( T _ t ) ,  -~~~ < t <

.

~~
.
,

where A , B are n ~ n constant  ma t ri ce s , -~~ > ‘ O , Q ( t )  is a

differe ntiable n x n mat r ix  and Q
T

(t )  is i ts  t ranspose , is

studied. Existence , uniqueness and an algebraic representation of

its solutions is given .

This equation , of considerable  inL e rest  in its own r igh t ,

naturally arises in the construct ion of Liapunov f u n c t i o n a l s  of

difference differential equations of the type (t) = Cx(t) +

+ Dx(t—f ), where C ,D are constant n x n matrices. The role

played by the matrix Q(t) is analogous to the one played by a

positive definite matrix in the construction of Liapunov functions

for ordinary differential equations.

In this paper , we show that, in spite of the f u n c t i o n a l  na tu re

of this equation , the linear vector space of its solutions is n
2
;

moreover , we give a complete algebraic characte riza tion of its

solutions and indicate computationally simp le methods for  obta i n i n g

these solutions , which we illustrat e through an ex amp le. Finall y,

we briefly indica te how to obtain soluti ons for the nonhomoge neous

problem , through th e usual variation of constants method .
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ON A FUNCTIO N AL EQUATION

ARISING IN THE STABILITY Th EORY

OF DIFFERENCE-DIFFERENTIAL EQUATIONS

I. Introduction

The study of difference—differential equations has received

considerable attention in recent times J2 ,6,7), the over’,Jhe1m in ?~

interest devoted to equations with positive delays.

In this brief paper we wish to stud y the matrix functional

equation

Q’(t) = AQ(t) + BQ
T
(r_ t) , - o  “ (1.1)

where A ,B are constant n n matrices and T 0. This equation

is neither of the retarded nor advanced type. ~e show , that ,

unlike the infinite dir nensionali ty of the vector space of solu tions

of functional differential equations , the linear vector space of

2
solutions of this equation is n . Moreover , we cjive a simple

algebraic characterization of these n
2 

l i n e a r l y  inde pendent

solutions which parallels the one for ordinary d i f f e r e n t i a l  equa tions ,

indicate some methods of computa tion of these solu tions and all ude

to the variation of constants formula for the nonhomogeneous

problem.

This equation , of interest in its own right , is particularly

important since it aris es natu rall y in th e process of constructing

Liapunov functionals for retarded differential equations of the

form x ’(t) Cx(t) + Dx(t— i ) . Datko [4] has encoun tered , in a
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2

somewhat different form , this equation , hut has not studied it.

Repin [11], in his construction of Liapunov functionals uses this

equation , hut does so erroneously in replacing, in (1.1) , the

term BQ
T(T_t) by BQ(T—t), making the analysis trivial.

This equation has been used by Infante and Walker [911 in the

construction of the Liapunov functional for a scalar difference-

differential equation . The study presen ted here arose in the use

of the solutions of this equation in a forthcoming paper [8]

which treats the construction of Liapunov functionals for matrix

difference—differential equations.

II. Existence, Uniqueness and Algebraic  St ructure

of the Solutions

Consider the equation

Q ’ ( t )  A Q ( t )  + BQ
T
(T_t) , — - ~ < t < ~~~ , 

(2.1)

with  the condit ion

K , ( 2 . 2 )

where K is an arbitrary n x n matrix ; this e?!uation is in—

timately related to the differential equation

Q’(t) AQ (t) + BR (t), (2.3) 

R ’ (t) =_ Q(t)B
T 

- R ( t ) A
T
,

with the initial conditions
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Q (
~

-) = K , R~~
-) = K

T
. ( 2 . 4 )

Moreover , for any two n x n matrices P,S, let the n
2 

~

matrix P ® S denote their Kronecker (or direct) product 11 ,10]

and introduce the notation for the n x n ma t r i x

S
:..*

S = (s..) = =

where ~~~ 
and s~~. are , respect ively ,  tile ~

th 
row and the

~th column of S ; further , let there  correspond , to the n n

matr ix  S , the n
2
-vector s =

With this notation [1,10) ,  equations (2.3) and (2.4 )  can he

rewritten as

r q t l  [A ®  I B ®
= I , (2.5)

Lr
~
t)J L-’ 0 B -I 0 A r ( t ) ]

and

q(
~~
) = ~~~~~~~~~~~~~~~~ r(

~~
) = [k

~ 1
,... ,k~~~i

T
, (2.6)

which , w i t h  the obvious cor respondence  and f o r  s i m p l i c i t y  of n o t a t i o n ,

we denote as

= Cp (t), (2.7)

p . (2.8)
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Here , p ( t )  is an 2n
2
—vector and C is a 2n

2 
2n

2 
constant

matrix .

The use of the Kronecker prod uct , which has allowed us to re-

duce (2.3) — (2.4) to (2.7) — (2.8) permits us to prove our first

result.

Theorem 1: Equation 2.1 with condition (2.2) has a unique solution

Q (t )  fo r  _ CC) < ~ <

Proof: If equation (2.1) with condition (2.2) has a differ-

entiable solution Q(t), then , d e f i n i n g  R (t ) = Q
T

( t _ i ) ,  the

pair of matrices Q(t), R (t )  wi l l  sat isf y equations (2.3) and ( 2 . 4 ) ;

hence , with the notation introduc ed above , the pair of vectors q(t)

and r(t) will satisfy equations (2.5), (2.6). These remarks , the

l i n e a r i t y  of a l l  tile involved equa t ions , and the u n i q u e n e s s  of the

solutions of ( 2 . 5 )  — (2.6) immediately impl ies  that  if a so lu t ion

Q ( t )  exis t , it is unique.

On the other hand , (2.5) — (2.6) has a unique solution defined

for —
~~~ < t ~ 

- -
, and this implies tile existence of a unieue pair

of differentiable matrices Q (t) and R(t) defined for — - -: t

and satisf ying (2.3) — (2.4) . But  these last e :u,it: ions ean 1)0 t (’—

written as

Q(t) AQ(t) + 13R (t),

(2. ~)

E R
T (T_ t) AR

T (r_t) + BO
T ( t _ t ) ,

with initial condi tion

~ ~~ - -  

——



= 1< = R
T
(~..), (2.10)

from which it follow s, from uniqueness , that R(t)

completing the proof.

Examination of the above proof makes it clear tha t knowledge

of the soluti on of (2 .5) — (2.6) inuucdiatelv y i e h I.h; the ~o Iti t ion ol

(2.1) — (2.2). But (2.5) — (2.6) is a standard initial value

problem in ordinary differen tial equations; the structure of tile

solutions of such problems is well known [3 ,5]. Moreover , since

the 2n
2 

x 2n
2 

matrix C has a very special structure , it shou ld

be possible to recover the structure of the solutions of

equation 2.1.

Let us consider , for the moment , the solutions of equation

(2.5). Recall [3 ,5) that it has 2n
2 

li nearly independent solutions

which can be obtained in the following fashion . let 
~~

,.

p = 2n
2
, be the distinct eigenvalues of the matrix C, t h a t is ,

solutions of the determinental equation

[T\I-A ) 0 I -B 0 I 1
det [AI—C] = det~ 

= 0; (2.11)

L 
l O B  I ®  ( \ I - l - A )

each k. , j = 1,... ,p with algebraic multiplicity ni. and qeometric

r 
S

r 2 2
multiplicities fl , ~ 

n~ 
= m~ , ~

‘ 

m~ 
= 2n . Then , 2n linearly

r=1 j  -

independent solutions of (2.5) (or (2.7)) are given by
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X .(t - 1) ~ 
(t  -

= e 
2 

(q—i) 1 
— C

~~~r 
( 2 . 12 )

S

where q = 1,.. .,n~~, r = 1,... ,s, ~ n~ 
= m. , m. = 2n

2
, and

r=l~~ ~ j ~

the 2n
2 

linearly independent eigenvectors and generalized eigen—

vectors are given by

[~~.I—C]e~ 
= —e~~~

1 
, e9 = 0. (2.13)

j j,r j,r j,s

A change of notation , and a return from the vector to tile matrix

form , shows tha t 2n
2 

l inear ly indepen den t sol u tions of ( 2 . 3 )

are given by

~~~~
. (t - I) q (t  - 

T
)
q-i 

L
j , r

L1,r ( t)] 
= e 

2 
(q-i)! 

(2.14)

5
r . r

for  q = l,...,n ., r l ,...,s, j  = l ,...,p, 
~

‘ 

n . = rn
3 n l 3

m. = 2n
2
, and where the generalized eigenniatrix pair (L

~ 
,M~ r~j j , r j ,

associated with the eigenvalue X. , sa t i s f y the equat ions

(A . 1-A) L~ 
- BM~ = —L~~~

1
j  j,r j,r j,r 

(2.15 )

L~ 8
T 

+ ~~ ( A . I I ~A
T

) =~_M
: l

j,r j,r j j,r 

- — —
~~~~~~~~~ -~~~~- -~~~~~

=-- - ,
- -~~~~~~- -- -
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r 0 0
for  i = 1,.. ., n., r = 1,. ..,s, L.

5 
= M~~ 5 

= 0.

The structure of these equations is a most particular one;

indeed , if they are m u l t i plied by — 1 , tra nsposed , and wr itten in

reverse order , they yield

T

(-A.I—A)M ~ 
- BL~ 

= 
i—l

j  j , r j , r j , r 
(2.16)

.T •T • T .

i i i T i— i
M. B + L. (—X.i+A ) L.
j,r j,r j  j , r

T T
for i = 1,... ,n~~, r = 1,. ..,s, LP = M ? = 0. But this result

j  j,r j,r

demonstrates that if A. is a solution of (2.11), —
~~~~~

. w i l l  a l so
J 3

be a solution; moreover A. and — A .  have tile same g e o m e t r i c

multiplicities and the same algebraic multiplicity. Hence , the

distinct eigenvalues always appear in pairs (A ,-) .), and an

examination of equations (2.15) and (2.16) shows tha t if the

generalized eigenma trix pairs corresp onding to A . are (L
~ 

,M~ ) ,
3 J , L j,r

the generalized eigenmatrix pairs corresponding to _ \
~ wi l l  be

((_l)
~~

+l
M~~ r 

i (_ 1) ’
~~

1
L
~~ r

)•

But these remarks imply that if the solution (2.12) corresponu-

ing to A~ is added to the solut ion ( 2 . 1 2 )  co r r e spond ing  to - \~

multiplied by ( 1 )
q+l 

the n
2 

linearl y ind ependen t solu tions of

(2.3) given by

~

— 

- 

-,-

~~~~

—---—----- -- 
-
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X~~(t 
- 

~
) q (t - ~~)

q-’

TI~ 
( t )  i~ l ~~

(7i Jfl~~

L
~
’

5

-A. (t - 
t

) (J (t
T
)
~
1 ’  

~~j r

iz= 1 
(q—i) !

qT 
~satisf y the condition E

~~~r
(
~~

) = 11j , r~~~~ 
But t h i s  is preci sely

condition (2.4); it therefore follows that

_~~~~q i  
~ t -~~ 

- \ -i

E~ 
(t )  = — 

-

, [e ~ 
- 

+ (-~~~~ ~~ ~ M.~ 
] ,  (2.17)

j,r i=l 
(q i ) !  j , i

5
r - r - 2 2 - -

for q = l , . . ., n . ,  ~ n .  = m ., m. = 2n , are n linearly in—

~ r=1 -~ ~~ 2 j

dependent solutions of (2.1). We have , t h e r e f o r e  proven

Theorem 2: Equation 2.1 has n
2 

linearly independent solutions given

by ecuation 2.17 , where tile generalized ei qenmat ri,x pairs (L
~ 

,H

sat is fy equation 2.17 for one of tile elements of the p a i r  ( .\
1~~

_ A
~~

)
~

each of wh ic h is a solu tion of equa t ion 2 .11.

It is i n t e r e s t i n g  to remark  t h a t  t he  d et c r m i n en t a l  e q u a t i o n

(2.11), involving a 2n
2 

2n
2 

determinant , qiven the con lmut ativity

of its elements , can always be rewritten as

det[ (XI—A) 0 (\ 1+A) + B 0 13] 0. ( 2 . 1 8 )
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1

Theorem 2 gives the desired algebraic representation of the solu-

tions , a r e p re sen t a t i o n  which is comple te ly  analogous  to t h a t  fo r

ordinary differential equations. It is surprising that the vector

space of solutions of (2. 1) has d i m e n s i o n  0

III. Sonic Further Character~ zat~ ons

Theorem 2 of the prev ious  sect ion gives a complete cha rac te r i za -

tion of tile solutions of our original functional equation. It is

possible , however , to give some further properties of tile eigen—

matrix pairs in c e r t a i n  p a r t i c u l a r  cases;  these  f u rt h e r  c h a r a c t e r i z a -

tions of the eigenmatrix paiis are vor” useful from a computational

vIewpoint , as we demons t r a t e  in t i le next section.

Lemm a I: If , for a \ .  s a t i s f ying E
~~uation 2.18 , there exists

an ~ 0 and corresponding vectors x., v .  such that

fl .I — A — d B ]x . = 0,
3 3 J

(3.1)

fl .I + A + i— B]y. = 0,

~~~~~ ~~~~~~~~~~ ~~~~ is s at  i s f i e d  for  ~ 
= 1 with L

~~,r 
= X

1
V~~

= ( I  .L~m ,r j  j , r

Proof: A simple substitution of the indicated result into

equation (2.1.5) shows that this equation is satisfied .

The proofs of the following two lemmas are equally obvious.

______L_ — -—-~~~-- - -—~~~ Il. _
_

~~~~~~~~~~~~~~ 

- — - - - .-
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Lemma 2: If , f or a .\
~~ 

sa t i s f y ing eciuation 2 .18 , there  exis t

vectors  ~~~~~~ such tha t

13x . = 0
J

(3.2)

(A ~~
I+ A ) y

~ 
= 0

then :quation (2.15) is satisfied for i 1 with L
~~,r 

=

j,r

Lemma 3: If , for a ~
. .  s a t i s fy ing E cu a t i o n  2.18 there exist 1:

vectors ~< ,y. such that

(
~ 

. I — A ) x .  = 0
3 3

(3.3)

P-v . = 0
— J

then equation 2.15 is satisfied for i = 1 wi t h

1 T 1
= .y. , M .  

- 
0.

I, ) I I

It is noted that , i f  the  as sum p t i o n s  oi any of these three  lemmas

hold , t hen  the  f o r m o f our  e i q c n m a tr i x  p a i r s  is dvadi c .  More-

over , d e t e r m i n a t i o n  of the x~ 
depends on simu ltaneous solutions

of the dctcrr,iincntai e u.itions , for a given satisfying (2.18),

(lOt I I—A— Dl = 0,
- 

(3.4)

(1et
~ I .1 F A 

~ Hi 0,

.- -. —-
~ -.-~ -————-- — . -— - - ---,
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where , for Lemma 2 we let k— = 0 and , for Lemma 3 , a .  = 0. The
3

computations involved for tile determination of ct. , x . and y . are

much simpler than tilose implicd. by ec iunt ion  ( 2 . 15 ) .

I f  13 and e i ther  ( A l — A )  or ( A l  + A) are not invertible ,

then Lemmas 2 and 3 apply. It is not difficult to show that , if

such is not the case , there always exists at least one ~ 0

such tha t ( 3.4) is satisfied , which implies tile applicability

of Lemma 1.

Lemma 4: If either B is invertible or (A.I—A) and (A.I+A)

are invertible , then there exist an . ~ 0 which satisfies (2.22).

Proof: If 13 is invertible , for a given i,r and i = 1,

o (j u at  L d ) f l S  (2. 1.5) are equivalent to

B
l
(X
j
I_ A)L~~ r

(~
•
~j

I+A )
T
13
T 

=

( 3 . 5 )

1 1 T 
— l 

1
Ii (A . I —A) M . (A . U +A)  1~

T 
= N

j  j , r j j,r

But this implies that the matri:-: [B ’(~~. I—A) } 0 [B
1
(A .I÷ A)]

has at least one ciqenvalue that equals —1. Since [10] the eigen—

values of a Kron ccker product are tu e products of the eigenvalues of

the two matrices ap~~n a r i n q  in the produc t , then there exis t  an

a . ~ 0 and vectors x . andi V - such t hat
3 3 - 3

( I—A) a

(3.6)

- I 
~~~~~ 

- -  — .i..
~. ~-

. .,
I J
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which is equivalent to the assumptions of Lemma 1.

If B is not invertible but (A l—A) and (
~~.I+A ) are both

invertible , then (2.15), for i = 1, are equivalent to

(A ~~I— A )
1
B L

j , r
[3
T 

~I÷A
T
)

l 
=

(A.I—A )~~~B M~ B
T

(A I÷A
T
)

l 
=

j  j,r j j,r

and a repetition of the above argument leads to the same conclusion.

These last four Lemmas imply that , associated with each distinct

eigenvalue pair (A .,—A j, a solution (2.17) to our equation exists

I U which  
‘
~~~, 

r , i: 
are for Sonic r d”adic and linearly dependent

It is also worth remarking that Lemmas 1—3 are not exclusi”e , and

tha t more than one set ~~~~~~~~~~ could , in some cases , be ob—

tam ed from the appropriate equations , y ielding a similar result

for other values of r.

IV. An Examp le

h e re  we p iTese i lt , as an illustration of the computa t ions  in-

volved , the c o ns tr u c t i o n  of the l i n e a r l y  i n d e p e n d e n t  s o l u t i o ns  fo r

a 2 - 2 systems of the form

Q’ (t) = Ac
~
(t) ~ BQ

T
(T_t), - - . -

. t < -- . (4.1)

where , for illustrative nurp o s e s , we have Cfr 1O St . - l i

-5 o~A = , ,  B = . (4.2) 
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For the computation of the eigenvalues , the determinental equation

(2.18) gives

(Al—A) 0 I —B 0 1

(lOt. = dctf (\I— A) 0 (-.1 + A )-s- B 0 B) =

1. 0 B 1. 0 ( 1 +

(A+5) (A—5 ) + 16 0 0 0

= det 
8 (A +5) (X—2) 0 0 

=

8 0 (
~ +2) (A— 5) 0

4 0 0 (A+2) (A—2)

f r om wh ich we obtain tile four pairs of roots ( X 1, — A
1

) = (5 ,—5)

= (3,— 3), (A 3,-A
3
) = (2,— 2), (A 41 -A

4
) = (2 ,-2) = 

~~3,—A 3
).

For the first pair , note that A
1 

= 5 is an eigenvalue of —A

and that 13 is not invertible. Application of Lemma 2, equa tion

(3.2) yields that

4 0
fix = 0, oi = 0,

1 2 0

0
(A  I + A ) y  = 0, or y

1 
0

1 1 0 3

hence  we have l~ 1 
0 and ~-l~ 

~ 
= [1 ,01 yielding the

1

S O 1 U L  iO n



- .-..._-_ .. ~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ 
— --- .-- -----—.---‘-.---—-— ——.—.-—--,— 

~~~~~~~~~~~~~~~~~~~ 
- - -.-... - - ---

~~~

.--.-.-.- ----— -—
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= 0
-5 (t-3) 

(4.3)

~~~~~ 0

The second pair , (
~
)
~2 , k

2
) = (3,—3 ) , does not consist of eigen—

values of either A or -A. h ence , we search for  an ~ such

that equations (3.4) are satisfied , that is

+ 5 - 

“2~ 
0 1

det L 
_2

2 
3 + 2~

3 - 5 + - ~-- 4

dot 
‘2

3 — 2
“2

which yields the value ‘2 
= 2. Equations (3.1) with 3 and

= 2 now y~ e1d

-
5

- 

r l
x
2

= 
‘ 

~
‘2

--
-l-

and , f r o m  our  f i i T s t  1 eIu!’lO we o b t a i n  tile so lu t  i o n

H
- 

~~1
(t) e 

(t n 
~ ~~~~ 

(t
~~~ . (4.4)

L4 -‘1 -
~~~ 

-

~~~~~ 

-
,
- .
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The last pdr of eiqcnvalues is of algebraic multip licity

two but it is easy to check that they are of geometric multiplicity

one , hence we can attemp t to t rea t them on ce again through our

lemmas.

In t h e first case , = 2 is an eiqcnvalue of —A. Then

equat ions ( 3 . 2) become

Bx
3 1  

= 0, or 
2 :1x3 , i = 0,

-3 0
(\

3
1+A )y

3 1. 
= 0, or y

3 1 
=

0 0

yielding L~~~3 
= 0 and = [0,1] ,  and ther efore , the

solu tion

~ 
1
(t) = e

2(t
~~~ 

ro °1. (4.5)
0

I n hit ~ 
s~-coii ~I case  , ~

- +2 is an eiqenva lue of A , sti l l ,

~~u~~tjons (3.4) are satisfied for an / 0; indeed , we requ i re

+ 5 — 0
3
4 0

[ ‘
3

T - A —  t
3
131 = dot = 0,

L —
3
2 2 + 

--— ---

~~~~~~~~~ 
- - - - .~~~~~~~~~~

—.- -

~~~~~~

-- --
~~~~

-. -
~~~~

. 
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det EA
3
I + A + BJ = det~ = 0,

L
~~~~~

which are clearly sa t i s f ied  for

“3 
— 

4 
.

The corresponding vectors are immediately compu ted as

r°
= V

3 2  
=

yieldin g , throu gh Lemma 1 , the solu tion

~ 2~~~ 
= 

2(t-3) 
8 

+ ~ 
0 Ol _ 2 ( t _ 3 )  

( 4 . 6 )
, [p 7. ~ 

~ 7]

I t  is easily seen that these four solutions are linearly in-

dependent.

V. Tile Nonhomogeneous Problem

We br ief l y  consider  the nonhomogeneous pr oblem

Q’ (L) = AQ (t) + fl~
T
( 
~
—t ) + 1-’ (t) , — =  t < ~ (5.1)

where  A ,R are constant 11 n matrices wi~
1 Nt) is a continuous

.

~ 

-_
~~~~~-- 
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n ‘ n matrix. We seek a particular solution of this problem .

For s implic ity of no ta tion , let the n
2 

l inear ly  independe nt

solutions given by (2.17) be relabeled as Z
k
(t) = (z~~~ (t)) , 

-

k = 1,... ,n~~. Then , in a manner completely analogous to that tor

ord ina ry  d i f f e r e n t i a l  equa t ions , we ob ta in

Theorem 3: Equation 5.1 has a particular solution given by

2
n

Q(t) = r
k

( s ) d s  
~~(t), (5.2 )

where the r
k
(s) are g iven  below.

Proof: Substitution of (5.2) into (5.1), given that the Z
k

(t )  are

solu t ions  of th e homog eneous equat ion , yields that the r
k
(s) must

SO Il I sf y th e e qu ation

11

r
1 

( L ) z
k

(t )  = Nt) .  (5.3)

k = l

In the  n o t a t i o n  of Sec t i o n  2 , d e f i n e  the n
2
—vectors

(t) (:
~
(t) . . .  (t)) r ( t )  = (r

1 
(L) , .  . .  , r

2 
(t) 

T
,

f (t )  = . . . , f~~~) and tue n ~ n
2 

ma trix ~~ 
(t )  =

~ 
.,)  . Th ou ( 5 .  3) is eeuivalent to

Il

r (t) ~- I ( t )

t
~
J(t) is clearly nonvan i sii~u i q for  a l l  t , given the linear independence

of the solutions z1’(Il ) ; hence 

~~~~~~-
- - — -~~~~——-—.~

-- - - —.- --~
-

~~~~~~~~
--

~~~
- — -  - - - - - -  . .—.-
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r ( t ) = 
~~~~

1
( t ) f ( t )

(111(1 t h i s  concludes  the proo l . 

--~~~~~~~ 
_ -.._-.---- -.-~~~~~~~~~~ .-- ~~~~~~.- .~~~~~~~~~~~~~~~~~ - - - -. . . .  - - - -
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